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Announcements

• A2 has been posted. 
– Due on Nov. 10 

• Midterm:
– Where: Crowdmark (online)
– When: Nov. 1st, 1h20min long starting at 10:05am 

(written to be completed in 1h10) 
– Format: 50% multiple choice/short answers + 50% 

long answer (with 1 small proof) 



Minimum Spanning Tree (Example)

• A town has a set of houses and a set of roads.
• A road connects 2 and only 2 houses.
• A road connecting houses u and v has a repair cost w(u, v).

Goal: Repair enough (and no more) roads such that:

1. everyone stays connected: can reach every house from all 
other houses, and

2. total repair cost is minimum.



Model as graph
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• Undirected graph G = (V, E).
• Weight w(u, v) on each edge (u, v) ∈ E.
• Find T ⊆ E such that:

1. T connects all vertices (T is a spanning tree),
2. is minimized.w(T ) = w(u,v)

(u,v)∈T
∑



Minimum Spanning Tree (MST)
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• It has |V | − 1 edges.
• It has no cycles.
• It might not be unique.



Generic Algorithm

A ßÆ;
while A is not a spanning tree do

find a edge (u, v) that is safe for A;
A ß A È {(u, v)}

return A

• Initialization: The empty set trivially satisfies the loop invariant.
• Maintenance: We add only safe edges, A remains a subset of 

some MST.
• Termination: All edges added to A are in an MST, so when we 

stop, A is a spanning tree that is also an MST.

• Initially, A has no edges.
• Add edges to A and maintain the loop invariant: 

“A is a subset of some MST”.

Safe: can be 
added without 
breaking the 
property



Definitions
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cut partitions vertices into
disjoint sets, S and V – S.

S V - S

This edge crosses the cut.
(one endpoint is in S and 
the other is in V – S.)

A light edge crossing 
cut (may not be unique)

A cut respects A if 
and only if no 
edge in A crosses 
the cut.

b

a

c

e

A is a set of edges

Light = least heavy



What is a safe edge?
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Intuitively: Is (𝑐, 𝑓) safe when 𝐴 = �?
• Let 𝑆 be any set of vertices including 𝑐 but not 𝑓.
• There has to be one edge (at least) that connects 𝑆 with 𝑉 − 𝑆.
• Why not choosing the one with the minimum weight? 

S V - S



Proof:
Let 𝑇 be a MST that includes 𝐴.
Case 1: (𝑢, 𝑣) in 𝑇. We’re done.
Case 2: (𝑢, 𝑣) not in 𝑇.  Let's assume (𝑥, 𝑦) is the crossing edge in T.  

u y

x

v

edge in A

cut

We show 
edges in T

Safe edge
Theorem 1: Let (𝑆, 𝑉 − 𝑆) be any cut that respects 𝐴, and let (𝑢, 𝑣)
be a light edge crossing (𝑆, 𝑉 − 𝑆). Then, (𝑢, 𝑣) is safe for 𝐴.

Let 𝑇′ = 𝑇 − {(𝑥, 𝑦)} ∪ {(𝑢, 𝑣)}.

Because (𝑢, 𝑣) is light for the cut,
𝑤(𝑢, 𝑣) £ 𝑤(𝑥, 𝑦). Thus, 

𝑤 𝑇´ = 𝑤 𝑇 − 𝑤 𝑥, 𝑦 + 𝑤 𝑢, 𝑣
£𝑤(𝑇)

Hence, 𝑇′ is also a MST. So, (𝒖, 𝒗) is 
safe for 𝑨.



In general, A will consist of several connected components.

Corollary

Corollary: If (𝑢, 𝑣) is a light edge connecting one CC in (𝑉, 𝐴) to 
another CC in (𝑉, 𝐴), then (𝑢, 𝑣) is safe for A.

Intuitively: if you are connecting two disconnected parts of a MST through a light edge, 
you are safe



Kruskal’s Algorithm

1. Starts with each vertex in its own component.
2. Repeatedly merges two components into one by choosing a 

light edge that connects them (i.e., a light edge crossing the 
cut between them).

3. Scans the set of edges in monotonically increasing order by 
weight.

4. Uses a disjoint-set data structure to determine whether an 
edge connects vertices in different components.

Remember: the lowest weight edge of the graph must be safe

A MST cannot contain cycles!



Example
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We start with each vertex being a component. We add edges start from the lowest weight
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C and f are now merged into one component. From here on, we want to make sure at 
each step that the edge being added connects disconnected components.
Next edge inspected: g-i
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We continue by inspecting the lowest weight edges one by one and making sure we’re safe
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Reject!
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We keep merging components through light edges between them
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Kruskal’s complexity
• Initialize A: 𝑂(1)
• First for loop: |𝑉| MAKE-SETs
• Sort E: 𝑂(𝐸 lg (𝐸))
• 2nd for loop: 𝑂(𝐸) FIND-SETs and UNIONs
Assuming union by size and path compression, 𝒎 find/union 
operations on a set with 𝑛 objects is 𝑂(𝑚 8 𝛼(𝑛)):
⟹𝑂 𝐸 8 𝛼 𝑉 + 𝑂(𝐸 8 log(𝐸))

Moreover, 𝛼 𝑉 𝑖𝑠 𝑂(log 𝑉) 𝑖𝑠 𝑂(log 𝐸) ; ( 𝐸 ≥ 𝑉 − 1)

⟹ 𝑂 𝐸 8 log 𝐸 + 𝑂(𝐸 8 log(𝐸)) 𝑖𝑠 𝑂(𝐸 8 log(𝐸))

Since, 𝐸 ≤ 𝑉 ! ⟹ log 𝐸 𝑖𝑠 𝑂(2 log 𝑉) 𝑖𝑠 𝑂(log 𝑉)

⟹ 𝑶(𝑬 8 𝒍𝒐𝒈(𝑬)) 𝑖𝑠 𝑶(𝑬 8 𝐥𝐨𝐠(𝑽))

Define all vertices as disjoint sets 

Sort all edges to determine order of visits

~E find and union operations

See disjoint sets
lecture!

Both expressions are correct!



Prim’s Algorithm

1. Builds one tree, so A is always a tree.
2. Starts from an arbitrary “root” r .
3. At each step, adds a light edge crossing cut (VA, V - VA) to A.
– Where VA = vertices that A is incident on.

Kruskal was building the MST by assembling an acyclic set of edges

Prim’s is actually directly building a tree
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Intuition behind Prim’s Algorithm
• Consider the set of vertices S currently part of the tree, 

and its complement (V-S).  We have a cut of the graph 
and the current set of tree edges A is respected by this 
cut.

• Which edge should we add next?  Light edge!
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Basics of Prim ’s Algorithm
• It works by adding leaves one at a time to the current 

tree.  
– Start with the root vertex r (it can be any vertex). At any time, 

the subset of edges A forms a single tree.  S = vertices of A.
– At each step, a light edge connecting a vertex in S to a vertex in 

V- S is added to the tree.
– The tree grows until it spans all the vertices in V.

• Implementation Issues:
– How to update the cut efficiently?
– How to determine the light edge quickly?



Finding a light edge

1. Uses a priority queue 𝑸 to find a  light edge quickly.
2. Each object in 𝑄 is a vertex in V − 𝑉".
3. Key of 𝑣 has minimum weight of any edge (𝑢, 𝑣), where 𝑢 ∈ 𝑉". 

Key of 𝑣 is ∞ if 𝑣 is not adjacent to any vertex in 𝑉".
4. Then the vertex returned by Extract-Min is 𝑣 such that there 

exists 𝑢 ∈ 𝑉" and (𝑢, 𝑣) is a light edge crossing (𝑉", 𝑉 − 𝑉").

Intuition: we store all the vertices that have not been added to the MST in the 
queue. At each step, we use the priority queue to extract the node that has the 
light edge for the cut between the “resolved” region and the “unresolved” region, 
we add it to the tree via that edge, then we continue until the “resolved” region 
covers the whole graph.

The non-MST part
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Implementation: Priority Queue
• Priority queue implemented using heap can support the 

following operations in O(lg n) time:
– Insert (Q, v, key):  Insert v with the key value key in Q
– v = Extract_Min(Q):  Extract the item with minimum key value in Q
– Decrease_Key(Q, v, new_key):  Decrease the value of v’s key value to 

new_key

• All the vertices that are not in S (the vertices of the edges in 
A) reside in a priority queue Q based on a key field.  When 
the algorithm terminates, Q is empty.  

𝐴 = {(𝑣,�[𝑣]): 𝑣 Î 𝑉 − {𝑟}}

The key is the weight of v’s 
edge crossing the cut

Pi represents the parent of v. So this 
means that A contains all the edges 
between nodes and their parent, except 
r which does not have a parent.

Need to update the keys when we update the cut



Q := V[G];
for each u Î Q do

key[u] := ¥
p[u] := Nil;
Insert(Q,u)

Decrease-Key(Q,r,0);
while Q ¹ Æ do

u := Extract-Min(Q);
for each v ÎAdj[u] do
if v Î Q Ù w(u, v) < key[v] :

p[v] := u;
Decrease-Key(Q,v,w(u,v));

Complexity:
Using binary heaps: O(E lg V).

Initialization: O(V).
Building initial queue: O(V).
V Extract-Min: O(V lg V).
E Decrease-Key: O(E lg V).

Using Fibonacci heaps:
O(E + V lg V).

Prim’s Algorithm

Notes: (i) A = {(v, p[v]) : v Î v - {r} - Q}. (ii) r is the root.

Initialize tree by selecting random u

Put every vertex in prioQ
Run min-heapify V times

Run min-heapify ~E times

This is a more advanced method

Each vertex is extracted 
once by extract-min
For DecreaseKey we will 
have to update the value 
of every edge. 



Example of Prim’s Algorithm
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Not in tree

At the start, we determine the root is a. Until we 
add a to the tree, a is adjacent to r with w=0, but 
no other vertex is adjacent to r, so their w= inf



Example of Prim’s Algorithm
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We then add a to the tree, and decrease the key of 
nodes adjacent to a.



Example of Prim’s Algorithm
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We choose the lightest edge available, so extract-
min returns b, then b is added to the tree and we 
reduce the key of the neighbors of b.

We use a dark green arrow to show parentality in 
the the minimum spanning tree.



Example of Prim’s Algorithm
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We choose the lightest edge available, so extract-
min returns e, then e is added to the tree and we 
reduce the key of the neighbours of e



Example of Prim’s Algorithm
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We choose the lightest edge available, so extract-
min returns d, then d is added to the tree and we 
reduce the key of the neighbours of d, but all of d’s 
neighbours have already been added to the tree. 
The priority queue only includes nodes that are not 
in the tree yet.



Example of Prim’s Algorithm
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We choose the lightest edge available, so extract-
min returns c, then c is added to the tree and we 
reduce the key of the neighbors of e based on this 
new information. In this case, this has the result of 
updating the weight of f in the queue, since c-f has 
lower weight than e-f.



Example of Prim’s Algorithm
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Q = Æ

f is added to the tree, the queue is now empty, 
thus the algorithm terminates. The tree spans the 
whole graph; it is a minimum spanning tree.



Example of Prim’s Algorithm
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Correctness of Prim’s

• Again, show that every edge added is a safe edge for A
• Assume (u, v) is next edge to be added to A.
• Consider the cut (A, V-A). 
– This cut respects A
– and (u, v) is the light edge across the cut

• Thus, by the Theorem 1, (u,v) is safe.  

Theorem 1: Let (S, V-S) be any cut that respects A, and let (u, v)  be 
a light edge crossing (S, V-S). Then, (u, v) is safe for A.

We proved this earlier!



Time Complexity of Prim’s

• Initialization: 𝑂(𝑉 + 𝐸)
• Extract the light edge from the queue: O(V log 𝑉)
• Relax the neighbour edges: O(𝐸 log 𝑉)

⟹ 𝑂(𝑉 log 𝑉 + 𝐸 log 𝑉) = 𝑂(𝐸 log 𝑉) // same as Kruskal

Note: Using Fibonacci heaps, we can obtain 𝑂(𝐸 + log𝑉).

See earlier slides

Intuition: there are typically more edges than vertices

We do not cover Fibonacci heaps in this class, but basically you 
should know that while the “traditional” method we show for 
Kruskal and Prim’s is “decently fast”, there exist faster methods, 
namely with Fibonacci heaps.


