
COMP251: Minimum Spanning
Trees

Giulia Alberini & Jérôme Waldispühl
School of Computer Science

McGill University
Based on (Cormen et al., 2002)

Based on slides from D. Plaisted (UNC)

Announcements

• A2 has been posted.
– Due on Nov. 10

• Midterm:
– Where: Crowdmark (online)
– When: Nov. 1st, 1h20min long starting at 10:05am

(written to be completed in 1h10)
– Format: 50% multiple choice/short answers + 50%

long answer (with 1 small proof)

Minimum Spanning Tree (Example)

• A town has a set of houses and a set of roads.
• A road connects 2 and only 2 houses.
• A road connecting houses u and v has a repair cost w(u, v).

Goal: Repair enough (and no more) roads such that:

1. everyone stays connected: can reach every house from all
other houses, and

2. total repair cost is minimum.

Model as graph

a

b

c

e

d

f h

g

i

10

12

9

8

7

3 3

1

8

5

6

2

11

9

• Undirected graph G = (V, E).
• Weight w(u, v) on each edge (u, v) ∈ E.
• Find T ⊆ E such that:

1. T connects all vertices (T is a spanning tree),
2. is minimized.w(T) = w(u,v)

(u,v)∈T
∑

Minimum Spanning Tree (MST)

a

b

c

e

d

f h

g

i

10

12

9

8

7

3 3

1

8

5

6

2

11

9

• It has |V | − 1 edges.
• It has no cycles.
• It might not be unique.

Generic Algorithm

A ßÆ;
while A is not a spanning tree do

find a edge (u, v) that is safe for A;
A ß A È {(u, v)}

return A

• Initialization: The empty set trivially satisfies the loop invariant.
• Maintenance: We add only safe edges, A remains a subset of

some MST.
• Termination: All edges added to A are in an MST, so when we

stop, A is a spanning tree that is also an MST.

• Initially, A has no edges.
• Add edges to A and maintain the loop invariant:

“A is a subset of some MST”.

Safe: can be
added without
breaking the
property

Definitions

a

b

c

e

d

f h

g

i

10

12

9

8

7

3 3

1

8

5

6

2

11

9

cut partitions vertices into
disjoint sets, S and V – S.

S V - S

This edge crosses the cut.
(one endpoint is in S and
the other is in V – S.)

A light edge crossing
cut (may not be unique)

A cut respects A if
and only if no
edge in A crosses
the cut.

b

a

c

e

A is a set of edges

Light = least heavy

What is a safe edge?

a

b

c

e

d

f h

g

i

10

12

9

8

7

3 3

1

8

5

6

2

11

9

Intuitively: Is (𝑐, 𝑓) safe when 𝐴 = �?
• Let 𝑆 be any set of vertices including 𝑐 but not 𝑓.
• There has to be one edge (at least) that connects 𝑆 with 𝑉 − 𝑆.
• Why not choosing the one with the minimum weight?

S V - S

Proof:
Let 𝑇 be a MST that includes 𝐴.
Case 1: (𝑢, 𝑣) in 𝑇. We’re done.
Case 2: (𝑢, 𝑣) not in 𝑇. Let's assume (𝑥, 𝑦) is the crossing edge in T.

u y

x

v

edge in A

cut

We show
edges in T

Safe edge
Theorem 1: Let (𝑆, 𝑉 − 𝑆) be any cut that respects 𝐴, and let (𝑢, 𝑣)
be a light edge crossing (𝑆, 𝑉 − 𝑆). Then, (𝑢, 𝑣) is safe for 𝐴.

Let 𝑇′ = 𝑇 − {(𝑥, 𝑦)} ∪ {(𝑢, 𝑣)}.

Because (𝑢, 𝑣) is light for the cut,
𝑤(𝑢, 𝑣) £ 𝑤(𝑥, 𝑦). Thus,

𝑤 𝑇´ = 𝑤 𝑇 − 𝑤 𝑥, 𝑦 + 𝑤 𝑢, 𝑣
£𝑤(𝑇)

Hence, 𝑇′ is also a MST. So, (𝒖, 𝒗) is
safe for 𝑨.

In general, A will consist of several connected components.

Corollary

Corollary: If (𝑢, 𝑣) is a light edge connecting one CC in (𝑉, 𝐴) to
another CC in (𝑉, 𝐴), then (𝑢, 𝑣) is safe for A.

Intuitively: if you are connecting two disconnected parts of a MST through a light edge,
you are safe

Kruskal’s Algorithm

1. Starts with each vertex in its own component.
2. Repeatedly merges two components into one by choosing a

light edge that connects them (i.e., a light edge crossing the
cut between them).

3. Scans the set of edges in monotonically increasing order by
weight.

4. Uses a disjoint-set data structure to determine whether an
edge connects vertices in different components.

Remember: the lowest weight edge of the graph must be safe

A MST cannot contain cycles!

Example

a

b

c

e

d

f h

g

i

10

12

9

8

7

3 3

1

8

5

6

2

11

9

We start with each vertex being a component. We add edges start from the lowest weight

Example

a

b

c

e

d

f h

g

i

10

12

9

8

7

3 3

1

8

5

6

2

11

9

C and f are now merged into one component. From here on, we want to make sure at
each step that the edge being added connects disconnected components.
Next edge inspected: g-i

Example

a

b

c

e

d

f h

g

i

10

12

9

8

7

3 3

1

8

5

6

2

11

9

We continue by inspecting the lowest weight edges one by one and making sure we’re safe

Example

a

b

c

e

d

f h

g

i

10

12

9

8

7

3 3

1

8

5

6

2

11

9

Example

a

b

c

e

d

f h

g

i

10

12

9

8

7

3 3

1

8

5

6

2

11

9

Reject!

Example

a

b

c

e

d

f h

g

i

10

12

9

8

7

3 3

1

8

5

6

2

11

9

Example

a

b

c

e

d

f h

g

i

10

12

9

8

7

3 3

1

8

5

6

2

11

9

We keep merging components through light edges between them

Example

a

b

c

e

d

f h

g

i

10

12

9

8

7

3 3

1

8

5

6

2

11

9

Example

a

b

c

e

d

f h

g

i

10

12

9

8

7

3 3

1

8

5

6

2

11

9

Example

a

b

c

e

d

f h

g

i

10

12

9

8

7

3 3

1

8

5

6

2

11

9

Example

a

b

c

e

d

f h

g

i

10

12

9

8

7

3 3

1

8

5

6

2

11

9

Example

a

b

c

e

d

f h

g

i

10

12

9

8

7

3 3

1

8

5

6

2

11

9

Example

a

b

c

e

d

f h

g

i

10

12

9

8

7

3 3

1

8

5

6

2

11

9

Example

a

b

c

e

d

f h

g

i

10

12

9

8

7

3 3

1

8

5

6

2

11

9

Kruskal’s complexity
• Initialize A: 𝑂(1)
• First for loop: |𝑉| MAKE-SETs
• Sort E: 𝑂(𝐸 lg (𝐸))
• 2nd for loop: 𝑂(𝐸) FIND-SETs and UNIONs
Assuming union by size and path compression, 𝒎 find/union
operations on a set with 𝑛 objects is 𝑂(𝑚 8 𝛼(𝑛)):
⟹𝑂 𝐸 8 𝛼 𝑉 + 𝑂(𝐸 8 log(𝐸))

Moreover, 𝛼 𝑉 𝑖𝑠 𝑂(log 𝑉) 𝑖𝑠 𝑂(log 𝐸) ; (𝐸 ≥ 𝑉 − 1)

⟹ 𝑂 𝐸 8 log 𝐸 + 𝑂(𝐸 8 log(𝐸)) 𝑖𝑠 𝑂(𝐸 8 log(𝐸))

Since, 𝐸 ≤ 𝑉 ! ⟹ log 𝐸 𝑖𝑠 𝑂(2 log 𝑉) 𝑖𝑠 𝑂(log 𝑉)

⟹ 𝑶(𝑬 8 𝒍𝒐𝒈(𝑬)) 𝑖𝑠 𝑶(𝑬 8 𝐥𝐨𝐠(𝑽))

Define all vertices as disjoint sets

Sort all edges to determine order of visits

~E find and union operations

See disjoint sets
lecture!

Both expressions are correct!

Prim’s Algorithm

1. Builds one tree, so A is always a tree.
2. Starts from an arbitrary “root” r .
3. At each step, adds a light edge crossing cut (VA, V - VA) to A.
– Where VA = vertices that A is incident on.

Kruskal was building the MST by assembling an acyclic set of edges

Prim’s is actually directly building a tree

UNC Chapel Hill Lin/Foskey/Manocha

Intuition behind Prim’s Algorithm
• Consider the set of vertices S currently part of the tree,

and its complement (V-S). We have a cut of the graph
and the current set of tree edges A is respected by this
cut.

• Which edge should we add next? Light edge!

UNC Chapel Hill Lin/Foskey/Manocha

Basics of Prim ’s Algorithm
• It works by adding leaves one at a time to the current

tree.
– Start with the root vertex r (it can be any vertex). At any time,

the subset of edges A forms a single tree. S = vertices of A.
– At each step, a light edge connecting a vertex in S to a vertex in

V- S is added to the tree.
– The tree grows until it spans all the vertices in V.

• Implementation Issues:
– How to update the cut efficiently?
– How to determine the light edge quickly?

Finding a light edge

1. Uses a priority queue 𝑸 to find a light edge quickly.
2. Each object in 𝑄 is a vertex in V − 𝑉".
3. Key of 𝑣 has minimum weight of any edge (𝑢, 𝑣), where 𝑢 ∈ 𝑉".

Key of 𝑣 is ∞ if 𝑣 is not adjacent to any vertex in 𝑉".
4. Then the vertex returned by Extract-Min is 𝑣 such that there

exists 𝑢 ∈ 𝑉" and (𝑢, 𝑣) is a light edge crossing (𝑉", 𝑉 − 𝑉").

Intuition: we store all the vertices that have not been added to the MST in the
queue. At each step, we use the priority queue to extract the node that has the
light edge for the cut between the “resolved” region and the “unresolved” region,
we add it to the tree via that edge, then we continue until the “resolved” region
covers the whole graph.

The non-MST part

UNC Chapel Hill Lin/Foskey/Manocha

Implementation: Priority Queue
• Priority queue implemented using heap can support the

following operations in O(lg n) time:
– Insert (Q, v, key): Insert v with the key value key in Q
– v = Extract_Min(Q): Extract the item with minimum key value in Q
– Decrease_Key(Q, v, new_key): Decrease the value of v’s key value to

new_key

• All the vertices that are not in S (the vertices of the edges in
A) reside in a priority queue Q based on a key field. When
the algorithm terminates, Q is empty.

𝐴 = {(𝑣,�[𝑣]): 𝑣 Î 𝑉 − {𝑟}}

The key is the weight of v’s
edge crossing the cut

Pi represents the parent of v. So this
means that A contains all the edges
between nodes and their parent, except
r which does not have a parent.

Need to update the keys when we update the cut

Q := V[G];
for each u Î Q do

key[u] := ¥
p[u] := Nil;
Insert(Q,u)

Decrease-Key(Q,r,0);
while Q ¹ Æ do

u := Extract-Min(Q);
for each v ÎAdj[u] do
if v Î Q Ù w(u, v) < key[v] :

p[v] := u;
Decrease-Key(Q,v,w(u,v));

Complexity:
Using binary heaps: O(E lg V).

Initialization: O(V).
Building initial queue: O(V).
V Extract-Min: O(V lg V).
E Decrease-Key: O(E lg V).

Using Fibonacci heaps:
O(E + V lg V).

Prim’s Algorithm

Notes: (i) A = {(v, p[v]) : v Î v - {r} - Q}. (ii) r is the root.

Initialize tree by selecting random u

Put every vertex in prioQ
Run min-heapify V times

Run min-heapify ~E times

This is a more advanced method

Each vertex is extracted
once by extract-min
For DecreaseKey we will
have to update the value
of every edge.

Example of Prim’s Algorithm

b/¥ c/¥a/0

d/¥ e/¥ f/¥

5

11

0

3 1

7

-3

2

Q = a b c d e f
0 ¥ ¥ ¥ ¥ ¥

Not in tree

At the start, we determine the root is a. Until we
add a to the tree, a is adjacent to r with w=0, but
no other vertex is adjacent to r, so their w= inf

Example of Prim’s Algorithm

b/5 c/¥a/0

d/11 e/¥ f/¥

5

11

0

3 1

7

-3

2

Q = b d c e f
5 11 ¥ ¥ ¥

We then add a to the tree, and decrease the key of
nodes adjacent to a.

Example of Prim’s Algorithm

b/5 c/7a/0

d/11 e/3 f/¥

5

11

0

3 1

7

-3

2

Q = e c d f
3 7 11 ¥

We choose the lightest edge available, so extract-
min returns b, then b is added to the tree and we
reduce the key of the neighbors of b.

We use a dark green arrow to show parentality in
the the minimum spanning tree.

Example of Prim’s Algorithm

b/5 c/1a/0

d/0 e/3 f/2

5

11

0

3 1

7

-3

2

Q = d c f
0 1 2

We choose the lightest edge available, so extract-
min returns e, then e is added to the tree and we
reduce the key of the neighbours of e

Example of Prim’s Algorithm

b/5 c/1a/0

d/0 e/3 f/2

5

11

0

3 1

7

-3

2

Q = c f
1 2

We choose the lightest edge available, so extract-
min returns d, then d is added to the tree and we
reduce the key of the neighbours of d, but all of d’s
neighbours have already been added to the tree.
The priority queue only includes nodes that are not
in the tree yet.

Example of Prim’s Algorithm

b/5 c/1a/0

d/0 e/3 f/-3

5

11

0

3 1

7

-3

2

Q = f
-3

We choose the lightest edge available, so extract-
min returns c, then c is added to the tree and we
reduce the key of the neighbors of e based on this
new information. In this case, this has the result of
updating the weight of f in the queue, since c-f has
lower weight than e-f.

Example of Prim’s Algorithm

b/5 c/1a/0

d/0 e/3 f/-3

5

11

0

3 1

7

-3

2

Q = Æ

f is added to the tree, the queue is now empty,
thus the algorithm terminates. The tree spans the
whole graph; it is a minimum spanning tree.

Example of Prim’s Algorithm

0

b/5 c/1a/0

d/0 e/3 f/-3

5

3 1 -3

UNC Chapel Hill Lin/Foskey/Manocha

Correctness of Prim’s

• Again, show that every edge added is a safe edge for A
• Assume (u, v) is next edge to be added to A.
• Consider the cut (A, V-A).
– This cut respects A
– and (u, v) is the light edge across the cut

• Thus, by the Theorem 1, (u,v) is safe.

Theorem 1: Let (S, V-S) be any cut that respects A, and let (u, v) be
a light edge crossing (S, V-S). Then, (u, v) is safe for A.

We proved this earlier!

Time Complexity of Prim’s

• Initialization: 𝑂(𝑉 + 𝐸)
• Extract the light edge from the queue: O(V log 𝑉)
• Relax the neighbour edges: O(𝐸 log 𝑉)

⟹ 𝑂(𝑉 log 𝑉 + 𝐸 log 𝑉) = 𝑂(𝐸 log 𝑉) // same as Kruskal

Note: Using Fibonacci heaps, we can obtain 𝑂(𝐸 + log𝑉).

See earlier slides

Intuition: there are typically more edges than vertices

We do not cover Fibonacci heaps in this class, but basically you
should know that while the “traditional” method we show for
Kruskal and Prim’s is “decently fast”, there exist faster methods,
namely with Fibonacci heaps.

