
COMP251: Topological Sort &
Strongly Connected Components

Giulia Alberini & Jérôme Waldispühl
School of Computer Science

McGill University
Based on (Cormen et al., 2002)

Based on slides from D. Plaisted (UNC)

Outline

• Recap: DFS & BFS

• Background material
- Parenthesis theorem
- White-Path theorem
- Edge classification

• Direct Acyclic Graphs (DAGs)
- Definition
- Topological Sort

• Strongly Connected Components

Recap: Breadth-first Search

• Input: Graph 𝐺 = (𝑉, 𝐸), either directed or undirected,
and source vertex 𝑠 ∈ 𝑉.

• Output:
– 𝑑[𝑣] = distance (smallest # of edges, or shortest path) from 𝑠

to 𝑣, for all 𝑣 ∈ 𝑉. 𝑑[𝑣] = ∞ if 𝑣 is not reachable from 𝑠.
– p[𝑣] = 𝑢 such that (𝑢, 𝑣) is last edge on shortest path 𝑠 𝑣.
• 𝑢 is 𝑣’s predecessor.

– Builds breadth-first tree with root 𝑠 that contains all
reachable vertices.

Recap: BFS Example

1 0

1 2 3

2 3

2

r s t u

v w x y

Distance from source 𝑑[𝑣]

Predecessor
p[𝑣]

Recap: Depth-first Search

• Input: 𝐺 = (𝑉, 𝐸), directed or undirected. No source
vertex given.

• Output:
– 2 timestamps on each vertex. Integers between 1 and 2|𝑉|.

• 𝑑[𝑣] = discovery time (𝑣 turns from white to gray)
• 𝑓 [𝑣] = finishing time (𝑣 turns from gray to black)

– p[𝑣] : predecessor of 𝑣 = 𝑢, such that 𝑣 was discovered during
the scan of 𝑢’s adjacency list.

• Uses the same coloring scheme for vertices as BFS.

Recap: DFS Example

1/8

4/5 3/6 10/11

2/7 9/12

u v w

x y z

BF C

B

Discovery time
𝑑[𝑥]

Finishing time
𝑓[𝑥]

Predecessor
p[𝑧]

Note: The direction of the
edges on the DFS path have
been reversed to represent
the predecessor.

Vertices on the DFS
path are descendants of
their predecessors (e.g.,
𝑥 is a descendant of 𝑣)

Recap: Parenthesis Theorem

w So 𝑑[𝑢] < 𝑑[𝑣] < 𝑓[𝑢] < 𝑓[𝑣] cannot happen.
w Like parentheses:

OK: ({ }) [] Not OK: ({) }
1 2 3 4 5 6 1 2 3 4

Corollary
𝑣 is a proper descendant of 𝑢 if and only if 𝑑 𝑢 < 𝑑 𝑣 < 𝑓 𝑣 < 𝑓 [𝑢].

Theorem 1:
For all 𝑢, 𝑣 in a depth-first-search forest, exactly one of the

following holds:
1. 𝑑[𝑢] < 𝑓[𝑢] < 𝑑[𝑣] < 𝑓[𝑣] or 𝑑 𝑣 < 𝑓 𝑣 < 𝑑 𝑢 < 𝑓 𝑢

and neither 𝑢 nor 𝑣 is a descendant of the other.
2. 𝑑[𝑢] < 𝑑[𝑣] < 𝑓[𝑣] < 𝑓[𝑢] and 𝑣 is a descendant of 𝑢.
3. 𝑑[𝑣] < 𝑑[𝑢] < 𝑓[𝑢] < 𝑓[𝑣] and 𝑢 is a descendant of 𝑣.

White-path Theorem

Theorem 2
𝑣 is a descendant of 𝑢 if and only if at time 𝑑[𝑢], there is a path
𝑢 𝑣 consisting of only white vertices (Except for 𝑢, which was
just colored gray).

Notation: the arrow represents a path of any length (i.e., sequence of
one or more consecutive edges).

Example (white-path theorem)

1/

u v w

x y z

v, y, and x are descendants of u.

Edge classification with DFS

1/8

4/5 3/6 10/11

2/7 9/12

u v w

x y z

BF C

B

Back edge Cross edge

Forward edge Tree edge

The red edges show the edges used by the DFS algorithm (i.e., tree edges)

Classification of Edges
• Tree edge: (𝑢, 𝑣) in the depth-first forest. 𝑣 is a

descendant of 𝑢 and the edge was used by DFS.
• Back edge: (𝑢, 𝑣), where 𝑢 is a descendant of 𝑣 (in the

depth-first tree).
• Forward edge: (𝑢, 𝑣), where 𝑣 is a descendant of 𝑢, but

not a tree edge.
• Cross edge: any other edge. Can go between vertices in

same depth-first tree or in different depth-first trees. It's a
(𝑢, 𝑣) such that the subtrees rooted at 𝑢 and 𝑣 are distinct

Theorem 3
In DFS of a connected undirected graph, we get only tree and
back edges. No forward or cross edges.

Proof left as an exercise…

Identification of Edges

• Edge type for edge (𝑢, 𝑣) can be identified when it is
first explored by DFS.

• Identification is based on the color of v.
– White – tree edge.
– Gray – back edge.
– Black – forward or cross edge.

Directed Acyclic Graph

• DAG – Directed graph with no cycles.

• Good for modeling processes and structures that have a
partial order:
– 𝑎 > 𝑏 and 𝑏 > 𝑐Þ 𝑎 > 𝑐.
– But may have a and b such that neither 𝑎 > 𝑏 nor 𝑏 > 𝑎.

• Can always make a total order (either 𝑎 > 𝑏 or 𝑏 > 𝑎 for
all a ¹ b) from a partial order.

Example
DAG of dependencies for putting on goalie equipment.

socks shorts

hose

pants

skates

leg pads

T-shirt

chest pad

sweater

mask

catch glove

blocker

batting glove

Characterizing a DAG

Proof:
• (Þ) Show that back edge Þ cycle.

– Suppose there is a back edge (𝑢, 𝑣). Then 𝑣 is ancestor of
𝑢 in depth-first forest (by definition of a back edge).

– Therefore, there is a path 𝑣 𝑢, so 𝑣 𝑢 𝑣 is a cycle.

Lemma 1
A directed graph 𝐺 is acyclic iff a DFS of 𝐺 yields no back edges.

v u
T T T

B

Characterizing a DAG

Proof (Contd.):
• (Ü) Show that a cycle implies a back edge.
– 𝑐 : cycle in 𝐺; 𝑣 : first vertex discovered in 𝑐;
(𝑢, 𝑣) : preceding edge in 𝑐.

– At time 𝑑[𝑣], vertices of 𝑐 form a white path 𝑣 𝑢.
– By white-path theorem, 𝑢 is a descendent of 𝑣 in

depth-first forest.
– Therefore, (𝑢, 𝑣) is a back edge.

v u
T T T

B

Lemma 1
A directed graph 𝐺 is acyclic iff a DFS of 𝐺 yields no back edges.

Topological Sort
Want to “sort” a directed acyclic graph (DAG).

B

E

D

C

A

C EDA B

Think of original DAG as a partial order.

We want a total order that extends this partial order.

You may have several
valid total orders

Topological Sort

• Performed on a DAG.
• Linear ordering of the vertices of 𝐺 such that if
(𝑢, 𝑣) � 𝐸, then 𝑢 appears somewhere before 𝑣.

Topological-Sort (𝐺)
1. call 𝐷𝐹𝑆(𝐺) to compute finishing times 𝑓 [𝑣] for all 𝑣 � 𝑉
2. as each vertex is finished, insert it onto the front of a linked list
3. return the linked list of vertices

Time: Q(𝑉 + 𝐸).

Example 1

Linked List:

A B D

C E

1/

Example 1

Linked List:

A B D

C E

1/

2/

Example 1

Linked List:

A B D

C E

1/

2/3

E

2/3

Example 1

Linked List:

A B D

C E

1/4

2/3

E

2/31/4

D

Example 1

Linked List:

A B D

C E

1/4

2/3

E

2/31/4

D

5/

Example 1

Linked List:

A B D

C E

1/4

2/3

E

2/31/4

D

5/

6/

Example 1

Linked List:

A B D

C E

1/4

2/3

E

2/31/4

D

5/

6/7

6/7

C

Example 1

Linked List:

A B D

C E

1/4

2/3

E

2/31/4

D

5/8

6/7

6/7

C

5/8

B

Example 1

Linked List:

A B D

C E

1/4

2/3

E

2/31/4

D

5/8

6/7

6/7

C

5/8

B

9/

Example 1

Linked List:

A B D

C E

1/4

2/3

E

2/31/4

D

5/8

6/7

6/7

C

5/8

B

9/10

9/10

A

Note: The output may
change if the choices of
vertices is different, but
the result remains valid.

Example 2

socks shorts

hose

pants

skates

leg pads

T-shirt

chest pad

sweater

mask

catch glove

blocker

batting glove
26 socks
24 shorts
23 hose
22 pants
21 skates
20 leg pads
14 t-shirt
13 chest pad
12 sweater
11 mask
6 batting glove
5 catch glove
4 blocker

25/26 15/24

16/23

17/22

18/21

19/20

7/14 1/6

8/13

2/5

10/11

3/4

9/12

Correctness (1)
We want to prove: “Linear ordering of the vertices of G such that
if 𝑢, 𝑣 ∈ 𝐸, then 𝑢 appears somewhere before 𝑣.”

⇒ We need to show if 𝒖, 𝒗 ∈ 𝑬, then 𝒇 [𝒗] < 𝒇 [𝒖].

When we explore (𝑢, 𝑣), what are the colors of 𝑢 and 𝑣?
Assume we just discovered 𝑢, which is thus gray.
Then, what are the possible colors of 𝑣 ?
– Can 𝑣 be gray?
– Can 𝑣 be white?
– Can 𝑣 be black?

In the sequence
of vertices given
by the total order.

Vertices are
inserted at
the head of
the list as
soon as they
are finished.

Correctness (2)
When we explore (𝑢, 𝑣), what are the colors of 𝑢 and 𝑣?
– Assume u is gray (by hypothesis, we just discovered it).
– Is 𝑣 gray, too?

No, because then 𝑣 would be ancestor of 𝑢.
Þ (𝑢, 𝑣) is a back edge (by definition of a back edge).
Þ contradiction of Lemma 1 (DAG has no back edges).

– Is 𝑣 white?
• Then becomes descendant of 𝑢.
• By parenthesis theorem, 𝑑[𝑢] < 𝑑[𝑣] < 𝒇 [𝒗] < 𝒇 [𝒖].

– Is 𝑣 black?
• Then 𝑣 is already finished.
• Since we are exploring (𝑢, 𝑣), we have not yet finished 𝑢.
• Therefore, 𝑓 𝑣 < 𝑓 [𝑢].

• 𝐺 is strongly connected if every pair (𝑢, 𝑣) of vertices in
𝐺 is reachable from one another.

• A strongly connected component (SCC) of 𝐺 is a
maximal set of vertices 𝐶 ∈ 𝑉 such that for all 𝑢, 𝑣 ∈ 𝐶,
both 𝑢 𝑣 and 𝑣 𝑢 exist.

Strongly Connected Components

Component Graph

• 𝐺𝑆𝐶𝐶 = (𝑉𝑆𝐶𝐶, 𝐸𝑆𝐶𝐶).
• 𝑉𝑆𝐶𝐶 has one vertex for each 𝑆𝐶𝐶 in 𝐺.
• 𝐸𝑆𝐶𝐶 has an edge if there is an edge between

the corresponding 𝑆𝐶𝐶’s in 𝐺.

Example:

𝐺𝑆𝐶𝐶 is a DAG

Proof (by contradiction):
• Assume there is a path 𝑣¢ 𝑣 in G.
• Then, there are paths 𝑢 𝑢¢ 𝑣¢ and 𝑣¢ 𝑣 𝑢 in G.
• Therefore, 𝑢 and 𝑣¢ are reachable from each other, so

they are not in separate SCC’s.

Lemma 2
Let 𝐶 and 𝐶¢ be distinct SCC’s in 𝐺, let 𝑢, 𝑣 ∈ 𝐶 & 𝑢¢, 𝑣¢ Î 𝐶¢, and
suppose there is a path 𝑢 𝑢¢ in 𝐺. Then there cannot also be a
path 𝑣¢ 𝑣 in 𝐺.

Transpose of a Directed Graph

• 𝐺𝑇 = transpose of directed G.
– 𝐺𝑇 = (𝑉, 𝐸𝑇), 𝐸𝑇 = { 𝑢, 𝑣 : 𝑣, 𝑢 ∈ 𝐸}.
– 𝐺𝑇 is 𝐺 with all edges reversed.

• Can create 𝐺𝑇 in Θ(𝑉 + 𝐸) time if using adjacency
lists.

• 𝐺 and 𝐺𝑇 have the same 𝑆𝐶𝐶’s. (𝑢 and 𝑣 are
reachable from each other in 𝐺 if and only if they
are reachable from each other in 𝐺𝑇.)

Algorithm to determine SCCs

SCC(G)
1. call 𝐷𝐹𝑆(𝐺) to compute finishing times 𝑓[𝑢] for all 𝑢
2. compute 𝐺𝑇

3. call 𝐷𝐹𝑆(𝐺𝑇), but in the main loop, consider vertices in
order of decreasing 𝑓[𝑢] (as computed in first DFS)

4. output the vertices in each tree of the depth-first forest
formed in second DFS as a separate SCC

Time: Q(𝑉 + 𝐸).

Example

a b c

e f g h

d
G

Example

13/14

12/15 3/4 2/7

11/16 1/10

a b c

e f g

5/6

8/9

h

d
G

After the first DFS. We computed all finishing times in 𝐺.

Example

13/14

12/15 3/4 2/7

11/16 1/10

a b c

e f g

5/6

8/9

h

d
GT

Then, we compute the transpose 𝐺𝑇 of 𝐺 and sort the vertices
with the finishing time calculated in 𝐺.

Example

a b c

e f g h

d
GT

(b (a (e e) a) b) (c (d d) c) (g (f f) g) (h)

How does it work?

• Idea:
– By considering vertices in second DFS in decreasing order of

finishing times from first DFS, we are visiting vertices of the
component graph in topologically sorted order.

– Because we are running DFS on 𝐺𝑇, we will not be visiting
any 𝑣 from a 𝑢, where 𝑣 and 𝑢 are in different components.

• Notation:
– 𝑑[𝑢] and 𝑓 [𝑢] always refer to first DFS.
– Extend notation for 𝑑 and 𝑓 to sets of vertices 𝑈 ⊆ 𝑉:
– 𝑑(𝑈) = 𝑚𝑖𝑛𝑢Î𝑈{𝑑[𝑢]} (earliest discovery time)
– 𝑓 (𝑈) = 𝑚𝑎𝑥𝑢Î𝑈{ 𝑓 [𝑢]} (latest finishing time)

Recall: the component graph is a DAG!

SCCs and DFS finishing times

Proof:
• Case 1: 𝑑(𝐶) < 𝑑(𝐶¢)

– Let x be the first vertex discovered
in C.

– At time 𝑑[𝑥], all vertices in 𝐶 and 𝐶¢
are white. Thus, there exist paths of
white vertices from 𝑥 to all vertices
in 𝐶 and 𝐶¢.

– By the white-path theorem, all
vertices in 𝐶 and 𝐶¢ are descendants
of 𝑥 in depth-first tree.

– By the parenthesis theorem,
𝑓 [𝑥] = 𝑓 (𝐶) > 𝑓(𝐶¢).

Lemma 3
Let 𝐶 and 𝐶¢ be distinct SCC’s in 𝐺 = (𝑉, 𝐸). Suppose there is an
edge 𝑢, 𝑣 ∈ 𝐸 such that 𝑢 ∈ 𝐶 and 𝑣 ∈ 𝐶¢. Then, 𝑓 (𝐶) > 𝑓 (𝐶¢).

C C¢

u v

x

SCCs and DFS finishing times

Proof:
• Case 2: d(C) > d(C¢)

– Let y be the first vertex discovered in 𝐶¢.
– At 𝑑[𝑦], all vertices in 𝐶¢ are white and there

is a white path from 𝑦 to each vertex in 𝐶¢ Þ
all vertices in C¢ become descendants of 𝑦.
Again, 𝑓 [𝑦] = 𝑓 (𝐶¢).

– At 𝑑[𝑦], all vertices in C are also white.
– By lemma 2, since there is an edge (𝑢, 𝑣),

we cannot have a path from C¢ to C.
– So, no vertex in 𝐶 is reachable from 𝑦.
– Therefore, at time 𝑓 [𝑦], all vertices in 𝐶 are

still white.
– Therefore, for all 𝑤 ∈ 𝐶, 𝑓 [𝑤] > 𝑓 [𝑦],

which implies that 𝑓 (𝐶) > 𝑓 (𝐶¢).

C C¢

u v

yx

Lemma 3
Let 𝐶 and 𝐶¢ be distinct SCC’s in 𝐺 = (𝑉, 𝐸). Suppose there is an
edge 𝑢, 𝑣 ∈ 𝐸 such that 𝑢 ∈ 𝐶 and 𝑣 ∈ 𝐶¢. Then, 𝑓 (𝐶) > 𝑓 (𝐶¢).

SCCs and DFS finishing times

Proof:
• 𝑢, 𝑣 ∈ 𝐸0Þ 𝑣, 𝑢 ∈ 𝐸.
• Since SCC’s of 𝐺 and 𝐺𝑇 are the same, 𝑓(𝐶¢) > 𝑓 (𝐶), by Lemma 3.

Corollary 1
Let 𝐶 and 𝐶¢ be distinct SCC’s in 𝐺 = (𝑉, 𝐸). Suppose there is an
edge 𝑢, 𝑣 ∈ 𝐸0, where 𝑢 ∈ 𝐶 and 𝑣 ∈ 𝐶¢. Then, 𝑓(𝐶) < 𝑓(𝐶¢).

Correctness of SCC

1) At beginning, DFS visits only vertices in the first SCC

• When we do the second DFS on GT, we start with the
SCC C such that f(C) is maximum.

• This second DFS starts from some x Î C, and it visits
all vertices in C.

• Corollary 1 says that since f(C) > f (C¢) for all C ¹ C¢,
there are no edges from C to C¢ in GT.

• Therefore, DFS will visit only vertices in C.
• Which means that the depth-first tree rooted at x

contains exactly the vertices of C.

Correctness of SCC
2) DFS does not visit more than one new SCC at the time

• The next root in the second DFS is in SCC C¢ such that
f (C¢) is maximum over all SCC’s other than C.
– DFS visits all vertices in C¢, but the only edges out of C¢ go

to C, which we have already visited.
– Therefore, the only tree edges will be to vertices in C¢.

• Iterate the process.
• Each time we choose a root, it can reach only:
– vertices in its SCC—get tree edges to these,
– vertices in SCC’s already visited in second DFS—get no tree

edges to these.

