COMP251: Topological Sort & Strongly Connected Components

Giulia Alberini & Jérôme Waldispühl
School of Computer Science
McGill University

Based on (Cormen et al., 2002)
Based on slides from D. Plaisted (UNC)
Outline

• Recap: DFS & BFS
• Background material
 - Parenthesis theorem
 - White-Path theorem
 - Edge classification
• Direct Acyclic Graphs (DAGs)
 - Definition
 - Topological Sort
• Strongly Connected Components
Recap: Breadth-first Search

- **Input:** Graph $G = (V, E)$, either directed or undirected, and source vertex $s \in V$.
- **Output:**
 - $d[v] =$ distance (smallest # of edges, or shortest path) from s to v, for all $v \in V$. $d[v] = \infty$ if v is not reachable from s.
 - $\pi[v] = u$ such that (u, v) is last edge on shortest path $s \leadsto v$.
 - u is v’s predecessor.
 - Builds breadth-first tree with root s that contains all reachable vertices.
Recap: BFS Example

Distance from source $d[v]$
Predecessor $\pi[v]$
Recap: Depth-first Search

• **Input:** $G = (V, E)$, directed or undirected. No source vertex given.

• **Output:**

 – 2 timestamps on each vertex. Integers between 1 and $2|V|$.

 • $d[v]$ = *discovery time* (v turns from white to gray)

 • $f[v]$ = *finishing time* (v turns from gray to black)

 – $\pi[v]$: predecessor of $v = u$, such that v was discovered during the scan of u’s adjacency list.

• Uses the same coloring scheme for vertices as BFS.
Recap: DFS Example

Vertices on the DFS path are descendants of their predecessors (e.g., \(x \) is a descendant of \(v \)).

Discovery time \(d[x] \)

Finishing time \(f[x] \)

Note: The direction of the edges on the DFS path have been reversed to represent the predecessor.
Recap: Parenthesis Theorem

Theorem 1:
For all \(u, v \) in a depth-first-search forest, exactly one of the following holds:

1. \(d[u] < f[u] < d[v] < f[v] \) or \(d[v] < f[v] < d[u] < f[u] \) and neither \(u \) nor \(v \) is a descendant of the other.
2. \(d[u] < d[v] < f[v] < f[u] \) and \(v \) is a descendant of \(u \).
3. \(d[v] < d[u] < f[u] < f[v] \) and \(u \) is a descendant of \(v \).

- Like parentheses:
 - OK: ({ }) []
 - Not OK: ({ }) }

 \[
 1 \ 2 \ 3 \ 4 \ 5 \ 6
 \]

Corollary

\(v \) is a proper descendant of \(u \) if and only if \(d[u] < d[v] < f[u] < f[v] \).
White-path Theorem

Theorem 2

v is a descendant of u if and only if at time $d[u]$, there is a path $u \rightsquigarrow v$ consisting of only white vertices (Except for u, which was just colored gray).

Notation: the arrow \rightsquigarrow represents a path of any length (i.e., sequence of one or more consecutive edges).
Example (white-path theorem)

v, y, and x are descendants of u.
Edge classification with DFS

- **Forward edge**
- **Back edge**
- **Cross edge**
- **Tree edge**

The red edges show the edges used by the DFS algorithm (i.e., tree edges)
Classification of Edges

• **Tree edge**: \((u, v)\) in the depth-first forest. \(v\) is a descendant of \(u\) and the edge was used by DFS.

• **Back edge**: \((u, v)\), where \(u\) is a descendant of \(v\) (in the depth-first tree).

• **Forward edge**: \((u, v)\), where \(v\) is a descendant of \(u\), but not a tree edge.

• **Cross edge**: any other edge. Can go between vertices in same depth-first tree or in different depth-first trees. It's a \((u, v)\) such that the subtrees rooted at \(u\) and \(v\) are distinct.

Theorem 3
In DFS of a connected undirected graph, we get only tree and back edges. No forward or cross edges.

Proof left as an exercise...
Identification of Edges

• Edge type for edge \((u, v)\) can be identified when it is first explored by DFS.

• Identification is based on the color of \(v\).
 – White – tree edge.
 – Gray – back edge.
 – Black – forward or cross edge.
Directed Acyclic Graph

• DAG – Directed graph with no cycles.

• Good for modeling processes and structures that have a **partial order:**
 – $a > b$ and $b > c \Rightarrow a > c$.
 – But may have a and b such that neither $a > b$ nor $b > a$.

• Can always make a **total order** (either $a > b$ or $b > a$ for all $a \neq b$) from a partial order.
Example

DAG of dependencies for putting on goalie equipment.
Characterizing a DAG

Lemma 1
A directed graph G is acyclic if and only if a DFS of G yields no back edges.

Proof:
• (\Rightarrow) Show that back edge \Rightarrow cycle.

 – Suppose there is a back edge (u, v). Then v is ancestor of u in depth-first forest (by definition of a back edge).
 – Therefore, there is a path $v \leadsto u$, so $v \leadsto u \leadsto u$ is a cycle.
Lemma 1
A directed graph \(G \) is acyclic iff a DFS of \(G \) yields no back edges.

Proof (Contd.):

• \((\Leftarrow) \) Show that a cycle implies a back edge.
 – \(c \) : cycle in \(G \); \(v \) : first vertex discovered in \(c \);
 \((u, v)\) : preceding edge in \(c \).
 – At time \(d[v] \), vertices of \(c \) form a white path \(v \leadsto u \).
 – By **white-path theorem**, \(u \) is a descendent of \(v \) in depth-first forest.
 – Therefore, \((u, v)\) is a back edge.
Topological Sort

Want to “sort” a directed acyclic graph (DAG).

Think of original DAG as a partial order.

We want a total order that extends this partial order.
Topological Sort

• Performed on a DAG.
• Linear ordering of the vertices of G such that if $(u, v) \in E$, then u appears somewhere before v.

Topological-Sort (G)
1. call $DFS(G)$ to compute finishing times $f[v]$ for all $v \in V$
2. as each vertex is finished, insert it onto the front of a linked list
3. return the linked list of vertices

Time: $\Theta(V + E)$.
Example 1

Linked List:
Example 1

Linked List:
Example 1

Linked List:

A

B

C

D

E

1/

2/3

2/3
Example 1

Linked List:

- A
- B
- C

- D: 1/4
- E: 2/3

D → 1/4
1/4 → 2/3
2/3 → E
Example 1

Linked List:

A → B → C → D → E

Linked List:

1/4 → 2/3
Example 1

Linked List:

A → B → C

Linked List:

D → E
Example 1

Linked List:

A → B → D

C → B

D → E

6/7 → 5/6

1/4 → 2/3
Example 1

Linked List:

A → B → C → D → E
Example 1

Linked List:
Example 1

Note: The output may change if the choices of vertices is different, but the result remains valid.
Example 2

- 26 socks
- 24 shorts
- 23 hose
- 22 pants
- 21 skates
- 20 leg pads
- 14 t-shirt
- 13 chest pad
- 12 sweater
- 11 mask
- 6 batting glove
- 5 catch glove
- 4 blocker
Correctness (1)

We want to prove: “Linear ordering of the vertices of G such that if $(u, v) \in E$, then u appears somewhere before v.”

\Rightarrow We need to show $\text{if } (u, v) \in E, \text{ then } f[v] < f[u]$.

When we explore (u, v), what are the colors of u and v?

Assume we just discovered u, which is thus gray.

Then, what are the possible colors of v?

– Can v be gray?

– Can v be white?

– Can v be black?
Correctness (2)

When we explore \((u, v)\), what are the colors of \(u\) and \(v\)?

– Assume \(u\) is gray (by hypothesis, we just discovered it).

– Is \(v\) gray, too?

 \(\text{No, because then } v \text{ would be ancestor of } u.\)

 \(\Rightarrow (u, v) \text{ is a back edge (by definition of a back edge).}\)

 \(\Rightarrow\) contradiction of \textbf{Lemma 1} (DAG has no back edges).

– Is \(v\) white?

 • Then becomes descendant of \(u\).

 • By \textit{parenthesis theorem}, \(d[u] < d[v] < f[v] < f[u]\).

– Is \(v\) black?

 • Then \(v\) is already finished.

 • Since we are exploring \((u, v)\), we have not yet finished \(u\).

 • Therefore, \(f[v] < f[u]\).
Strongly Connected Components

- G is strongly connected if every pair (u, v) of vertices in G is reachable from one another.

- A strongly connected component (SCC) of G is a maximal set of vertices $C \in V$ such that for all $u, v \in C$, both $u \sim v$ and $v \sim u$ exist.
Component Graph

- \(G^{SCC} = (V^{SCC}, E^{SCC}) \).
- \(V^{SCC} \) has one vertex for each \(SCC \) in \(G \).
- \(E^{SCC} \) has an edge if there is an edge between the corresponding \(SCC \)’s in \(G \).

Example:
\(G^{SCC}\) is a DAG

Lemma 2
Let \(C\) and \(C'\) be distinct SCC’s in \(G\), let \(u, v \in C\) & \(u', v' \in C'\), and suppose there is a path \(u \leadsto v\) in \(G\). Then there cannot also be a path \(v' \leadsto v\) in \(G\).

Proof (by contradiction):

- Assume there is a path \(v' \leadsto v\) in \(G\).
- Then, there are paths \(u \leadsto u' \leadsto v'\) and \(v' \leadsto v \leadsto u\) in \(G\).
- Therefore, \(u\) and \(v'\) are reachable from each other, so they are not in separate SCC’s.
Transpose of a Directed Graph

- \(G^T \) = **transpose** of directed \(G \).
 - \(G^T = (V, ET) \), \(ET = \{(u, v): (v, u) \in E\} \).
 - \(G^T \) is \(G \) with all edges reversed.

- Can create \(G^T \) in \(\Theta(V + E) \) time if using adjacency lists.

- \(G \) and \(G^T \) have the same SCC’s. (\(u \) and \(v \) are reachable from each other in \(G \) if and only if they are reachable from each other in \(G^T \).)
Algorithm to determine SCCs

SCC(G)

1. call DFS(G) to compute finishing times \(f[u] \) for all \(u \)
2. compute \(G^T \)
3. call DFS(\(G^T \)), but in the main loop, consider vertices in order of decreasing \(f[u] \) (as computed in first DFS)
4. output the vertices in each tree of the depth-first forest formed in second DFS as a separate SCC

Time: \(\Theta(V + E) \).
Example

\[G \]

\[a \rightarrow b \rightarrow c \rightarrow d \]
\[e \rightarrow f \rightarrow g \rightarrow h \]
After the first DFS. We computed all finishing times in G.
Then, we compute the transpose G^T of G and sort the vertices with the finishing time calculated in G.
Example

\(G^T \)

\[(b \ (a \ (e \ e) \ a) \ b) \ (c \ (d \ d) \ c) \ (g \ (f \ f) \ g) \ (h)\]
How does it work?

• **Idea:**
 – By considering vertices in second DFS in decreasing order of finishing times from first DFS, we are visiting vertices of the **component graph** in topologically sorted order.
 – Because we are running DFS on G^T, we will not be visiting any v from a u, where v and u are in different components.

 Recall: the component graph is a DAG!

• **Notation:**
 – $d[u]$ and $f[u]$ always refer to **first DFS**.
 – Extend notation for d and f to sets of vertices $U \subseteq V$:
 – $d(U) = \min_{u \in U} \{d[u]\}$ (earliest discovery time)
 – $f(U) = \max_{u \in U} \{f[u]\}$ (latest finishing time)
SCCs and DFS finishing times

Lemma 3
Let C and C' be distinct SCC’s in $G = (V, E)$. Suppose there is an edge $(u, v) \in E$ such that $u \in C$ and $v \in C'$. Then, $f(C) > f(C')$.

Proof:
• Case 1: $d(C) < d(C')$
 – Let x be the first vertex discovered in C.
 – At time $d[x]$, all vertices in C and C' are white. Thus, there exist paths of white vertices from x to all vertices in C and C'.
 – By the white-path theorem, all vertices in C and C' are descendants of x in depth-first tree.
 – By the parenthesis theorem, $f[x] = f(C) > f(C')$.

![Diagram](image-url)
SCCs and DFS finishing times

Lemma 3
Let C and C' be distinct SCC’s in $G = (V, E)$. Suppose there is an edge $(u, v) \in E$ such that $u \in C$ and $v \in C'$. Then, $f(C) > f(C')$.

Proof:
• Case 2: $d(C) > d(C')$
 – Let y be the first vertex discovered in C'.
 – At $d[y]$, all vertices in C' are white and there is a white path from y to each vertex in $C' \Rightarrow$ all vertices in C' become descendants of y. Again, $f[y] = f(C')$.
 – At $d[y]$, all vertices in C are also white.
 – By lemma 2, since there is an edge (u, v), we cannot have a path from C' to C.
 – So, no vertex in C is reachable from y.
 – Therefore, at time $f[y]$, all vertices in C are still white.
 – Therefore, for all $w \in C$, $f[w] > f[y]$, which implies that $f(C) > f(C')$.
SCCs and DFS finishing times

Corollary 1
Let C and C' be distinct SCC’s in $G = (V, E)$. Suppose there is an edge $(u, v) \in E^T$, where $u \in C$ and $v \in C'$. Then, $f(C) < f(C')$.

Proof:
1. $(u, v) \in E^T \Rightarrow (v, u) \in E$.
2. Since SCC’s of G and G^T are the same, $f(C') > f(C)$, by Lemma 3.
Correctness of SCC

1) At beginning, DFS visits only vertices in the first SCC

• When we do the second DFS on G^T, we start with the SCC C such that $f(C)$ is maximum.

• This second DFS starts from some $x \in C$, and it visits all vertices in C.

• Corollary 1 says that since $f(C) > f(C')$ for all $C \neq C'$, there are no edges from C to C' in G^T.

• Therefore, **DFS will visit only vertices in C.**

• Which means that the depth-first tree rooted at x contains *exactly* the vertices of C.
Correctness of SCC

2) *DFS does not visit more than one new SCC at the time*

- The next root in the second DFS is in SCC C' such that $f(C')$ is maximum over all SCC’s other than C.
 - DFS visits all vertices in C', but *the only edges out of C' go to C, which we have already visited.*
 - Therefore, the only tree edges will be to vertices in C'.
- Iterate the process.
- Each time we choose a root, it can reach only:
 - vertices in its SCC—get tree edges to these,
 - vertices in SCC’s already visited in second DFS—get no tree edges to these.