COMP251: Topological Sort &
Strongly Connected Components

Giulia Alberini & Jérome Waldispuhl
School of Computer Science
McGill University

Based on (Cormen et al., 2002)
Based on slides from D. Plaisted (UNC)

Outline

Recap: DFS & BFS

Background material

- Parenthesis theorem
- White-Path theorem
- Edge classification

Direct Acyclic Graphs (DAGSs)
- Definition
- Topological Sort

Strongly Connected Components

Recap: Breadth-first Search

* Input: Graph G = (V,E), either directed or undirected,
and source vertexs € V.

* Output:
— d|v] = distance (smallest # of edges, or shortest path) from s
tov,forallv € V.d|v] = o if vis not reachable from s.

— nt|v] =u such that (u, v) is last edge on shortest path s ~~»v.

* uisv s predecessor.

— Builds breadth-first tree with root s that contains all
reachable vertices.

Recap: BFS Example

7

Predecessor

n[V] v \ W

Distance from source d[V]

Recap: Depth-first Search

* Input: G = (V,E), directed or undirected. No source
vertex given.

* Output:

— 2 timestamps on each vertex. Integers between 1 and 2|V|.

* d[v] =discovery time (v turns from white to gray)
* f [v] = finishing time (v turns from gray to black)

— 7nt|v] : predecessor of v = u, such that v was discovered during
the scan of u’ s adjacency list.

e Uses the same coloring scheme for vertices as BFS.

Recap: DFS Example

Vertices on the DFS

path are descendants of
their predecessors (e.g., u v W
x is a descendant of v)

Predecessor
| Z
. e g
\ B
Discovery time Finishing time Note: The direction of the
d edges on the DFS path have
[x] f[x] been reversed to represent

the predecessor.

Recap: Parenthesis Theorem

Theorem 1:

For all u, v in a depth-first-search forest, exactly one of the
following holds:

1. du] < flu] <d|

and neither u nor
2. dlul <dv]<f
3 dlv] <dlul<f

] < flv]ord|v] < flv] < dlu] < flu]

is a descendant of the other.
< flu] and v is a descendant of wu.
< flv] and u is a descendant of v.

EREIE

* Sod|u] < d|v] < f[u] < f[v] cannot happen.
¢ Like parentheses:

OK: ({}) []
123456

Corollary
v is a proper descendant of u ifand only if d[u] < d|v] < f [v] < f [u].

Not OK: ({) }
1234

White-path Theorem

Theorem 2

v is a descendant of u if and only if at time d|u], there is a path
u~~ v consisting of only white vertices (Except for u, which was
just colored gray).

Notation: the arrow ~™> represents a path of any length (i.e., sequence of
one or more consecutive edges).

Example (white-path theorem)

u
(v)—

v, y, and x are descendants of u.

Edge classification with DFS

I Tree edge

Cross edge

Forward edge

Back edge

The red edges show the edges used by the DFS algorithm (i.e., tree edges)

Classification of Edges

* Tree edge: (u, v) in the depth-first forest. v is a
descendant of u and the edge was used by DFS.

* Back edge: (u,v), where u is a descendant of v (in the
depth-first tree).

* Forward edge: (u, v), where v is a descendant of u, but
not a tree edge.

* Cross edge: any other edge. Can go between vertices in
same depth-first tree or in different depth-first trees. It's a
(u, v) such that the subtrees rooted at u and v are distinct

Theorem 3

In DFS of a connected undirected graph, we get only tree and
back edges. No forward or cross edges.

Proof left as an exercise...

|dentification of Edges

* Edge type for edge (u, v) can be identified when it is
first explored by DFS.

* |dentification is based on the color of v.
— White — tree edge.
— Gray — back edge.
— Black — forward or cross edge.

Directed Acyclic Graph

DAG — Directed graph with no cycles.

Good for modeling processes and structures that have a
partial order:

—a > bandb > c=>a > c.
— But may have g and b such that neithera > bnorb > a.

Can always make a total order (eithera > borb > a for
all a # b) from a partial order.

Example

DAG of dependencies for putting on goalie equipment.
v
hose (EEEEEEEE}

\ 4
skates <Ei%
Iegr;;;;\ ////’—

Characterizing a DAG

Lemmal
A directed graph G is acyclic iff a DFS of G yields no back edges.

Proof:
* (=) Show that back edge = cycle.

— Suppose there is a back edge (u, v). Then v is ancestor of
u in depth-first forest (by definition of a back edge).

— Therefore, there is a path v ~~u, so v ~u ~is a cycle.

T‘/\T‘ T
QW O—0—0

Characterizing a DAG

Lemmal
A directed graph G is acyclic iff a DFS of G yields no back edges.

Proof (Contd.):
* («=) Show that a cycle implies a back edge.
— c :cyclein G; v : first vertex discovered in c;
(u, v) : preceding edge in c.
— At time d|[v], vertices of ¢ form a white path v~~u.

— By white-path theorem, u is a descendent of v in
depth-first forest.

— Therefore, (u, v) is a back edge.

OO

Topological Sort

Want to “sort” a directed acyclic graph (DAG).
You may have several

valid total orders

OGS

Think of original DAG as a partial order.

We want a total order that extends this partial order.

Topological Sort

* Performed on a DAG.

* Linear ordering of the vertices of G such that if
(u,v) B E, then u appears somewhere before v.

Topological-Sort (&)

1. call DFS(G) to compute finishing times f [v] forallv BV

2. as each vertex is finished, insert it onto the front of a linked list
3. return the linked list of vertices

Time: O(V + E).

Example 1

.

Linked List:

Example 1

.

Linked List:

Example 1

A B D
C E
Linked List:

E

Example 1

A B D
C E
Linked List:

@ ©

D E

Example 1

A B D
C E
Linked List:

@ ©

D E

Example 1

A B D
C E
Linked List:

@ ©

D E

Example 1

A B D
C E
Linked List:

o

C D E

Example 1

A B D
C E
Linked List:

A A A

Example 1

A B D
C E
Linked List:

A A A

Example 1

Note: The output may
Linked List: change if the choices of
vertices is different, but

‘ ‘ ‘ "4" the result remains valid.
A B C D E

Example 2

25/26 15/24 7/14 1/6
. 26 socks
@ @ @ 24 shorts
E") 23 hose
16/23 (_hose 8/13 (¢ es@ 22 pants
v v 9/12 21 Skates
17/22 @r@ @@ 20 leg pads
\ v 14 t-shirt
18/21 @@ 10/11 @Sk 13 chest pad
| , 12 sweater
19/20 @ (catch glove) 2/5 11 mask
\ 6 batting glove

3/4 @ 5 catch glove
4 blocker

In the sequence

of vertices given CO 're Ctn ess (1)

by the total order.

We want to prove: “Linear ordering of the vertices of G such that

if (u,v) € E, then u appears somewhere before v.” |
Vertices are

inserted at
the head of
the list as
soon as they

are finished.
When we explore (u, v), what are the colors of u and v?

Assume we just discovered u, which is thus gray.

= We need to show if (i, v) € E, then f [v] < f [u].

Then, what are the possible colors of v ?
— Can v be gray?

— Can v be white?

— Can v be black?

Correctness (2)

When we explore (u, v), what are the colors of u and v?

— Assume u is gray (by hypothesis, we just discovered it).
— Is v gray, too?

No, because then v would be ancestor of u.

= (u, v) is a back edge (by definition of a back edge).

—> contradiction of Lemma 1 (DAG has no back edges).
— Is v white?

* Then becomes descendant of wu.

* By parenthesis theorem, d|u| < d|v]| < f [v] < f [u].
— |Is v black?

 Then v is already finished.

* Since we are exploring (u, v), we have not yet finished wu.
* Therefore, f [v] < f [u].

Strongly Connected Components

* (is strongly connected if every pair (u, v) of vertices in
(: is reachable from one another.

* A strongly connected component (SCC) of G is a
maximal set of vertices C € V such thatforallu,v € C,
both u~~v and v ~a exist.

o)

Component Graph

. GSCC = (VSCC,ESCC).
e I/5¢C has one vertex for each SCC in G.

o E5CC has an edge if there is an edge between
the corresponding SCC’s in G.

Example:

: : O——0) =
Sz L

G°CCis a DAG

Lemma 2

Let C and C' be distinct SCC'sin G, letu,v € C &u',v' € C’, and
suppose there is a path u~~u'in G. Then there cannot also be a
path v'~~vinG.

Proof (by contradiction):
 Assume there is a path v'~»v in G.
* Then, there are paths u~=u'~~»v" and v'~~v~~u in G.

 Therefore, u and v’ are reachable from each other, so
they are not in separate SCC’ s.

Transpose of a Directed Graph

* GT =transpose of directed G.
— G'=(V,ET), E" = {(u,v): (v,u) € E}.
— G"is G with all edges reversed.

* Cancreate G in O(V + E) time if using adjacency
lists.

e G and GT have the same SCC’ s. (u and v are
reachable from each other in G if and only if they
are reachable from each other in G'.)

Algorithm to determine SCCs

SCC(G)
1. call DFS(G) to compute finishing times f|[u] for all u
2. compute G

3. call DFS(GT), but in the main loop, consider vertices in
order of decreasing f[u] (as computed in first DFS)

4. output the vertices in each tree of the depth-first forest
formed in second DFS as a separate SCC

Time: O(V + E).

Example

Example

After the first DFS. We computed all finishing times in G.

Example

Then, we compute the transpose G' of G and sort the vertices
with the finishing time calculated in G.

Example

(b(a(ee)a)b)(c(dd)c)(g(ff)g)

How does it work?

 |dea:

— By considering vertices in second DFS in decreasing order of
finishing times from first DFS, we are visiting vertices of the
component graph in topologically sorted order.

— Because we are running DFS on G', we will not be visiting
any v from a u, where v and u are in different components.

Recall: the component graph is a DAG!
* Notation:
— d|u] and f [u] always refer to first DFS.
— Extend notation for d and f to sets of verticesU < V:
— d(U) = min,_y{d|u]} (earliest discovery time)
— f (U) = max,_y{ f [u]} (latest finishing time)

SCCs and DEFS finishing times

Lemma 3
Let C and C’ be distinct SCC'sin G = (V, E). Suppose there is an
edge (u,v) € E suchthatu € Candv € C'. Then, f (C) > f (C").

Proof:
* Casel:d(C) < d(C"

— Let x be the first vertex discovered

in C. C
— At time d|[x], all vertices in C and ("

are white. Thus, there exist paths of

white vertices from x to all vertices

in C and C'. —-Q

— By the white-path theorem, all
vertices in C and C' are descendants
of x in depth-first tree.

— By the parenthesis theorem,

flx] = f£©)> f(C).

SCCs and DEFS finishing times

Lemma 3
Let C and C’ be distinct SCC'sin G = (V, E). Suppose there is an
edge (u,v) € E suchthatu € Candv € C'.Then, f (C) > f (C").

Proof:
e Case2:d(C)>d(C)
— Lety be the first vertex discovered in C'.

— Atd|y], all vertices in C' are white and there
is a white path from y to each vertex in ' =
all vertices in C' become descendants of y. C

Again, f [y] = f (C").
— At d[y], all vertices in C are also white.

— By lemma 2, since there is an edge (u, v), U
we cannot have a path from C' to C.

— So, no vertex in C is reachable from y.

— Therefore, at time f [y], all vertices in C are
still white.

— Therefore, forallw € C, f [w] > f [y],
which implies that f (C) > f (C").

SCCs and DEFS finishing times

Corollary 1
Let C and C’ be distinct SCC'sin G = (V, E). Suppose there is an
edge (u,v) € ET,whereu € Candv € C'. Then, f(C) < f(C).

Proof:
 (u,v) € ET= (v,u) € E.
* Since SCC’s of G and G' are the same, f(C") > f (C), by Lemma 3.

Correctness of SCC

1) At beginning, DFS visits only vertices in the first SCC
* When we do the second DFS on G, we start with the
SCC C such that f(C) is maximum.

* This second DFS starts from some x € C, and it visits
all vertices in C.

e Corollary 1 says that since f(C) > f (C') forall C= C,
there are no edges from Cto C' in G".

* Therefore, DFS will visit only vertices in C.

 Which means that the depth-first tree rooted at x
contains exactly the vertices of C.

Correctness of SCC

2) DFS does not visit more than one new SCC at the time

e The next root in the second DFS is in SCC C' such that
f (C') is maximum over all SCC’s other than C.

— DFS visits all vertices in C', but the only edges out of C' go
to C, which we have already visited.

— Therefore, the only tree edges will be to vertices in C'.

* |terate the process.

* Each time we choose a root, it can reach only:
— vertices in its SCC—get tree edges to these,

— vertices in SCC’ s already visited in second DFS—get no tree
edges to these.

