COMP251: Elementary graph algorithms

Giulia Alberini & Jérôme Waldispühl
School of Computer Science
McGill University

Based on (Cormen et al., 2002)
Based on slides from D. Plaisted (UNC)
Announcements

- Assignment 1: Due tonight (no extension)
- Assignment 2: Released next week.
- Midterm: November 1 at 10am on CrowdMark.
- Final: Dec. 12 at 2pm. **In Person!**
Outline

- Vocabulary, definition, and properties of graphs
- Exploring graphs:
 - Breadth First Search (BFS)
 - Depth First Search (DFS)
- Parenthesis theorem

Why DFS & BFS again?

We will cover many algorithms on graphs based on these techniques.
Graphs

- **Graph** $G = (V, E)$
 - V = set of vertices
 - E = set of edges $\subseteq (V \times V)$
- Types of graphs
 - Undirected: edge $(u, v) = (v, u)$; for all v, $(v, v) \notin E$ (No self loops.)
 - Directed: (u, v) is edge from u to v, denoted as $u \rightarrow v$. Self loops are allowed.
 - Weighted: each edge has an associated weight, given by a weight function $w : E \rightarrow R$.
 - Dense: $|E| \approx |V|^2$.
 - Sparse: $|E| \ll |V|^2$.
- $|E| = O(|V|^2)$
Properties

• If \((u, v) \in E\), then vertex \(v\) is adjacent to vertex \(u\).
• Adjacency relationship is:
 – Symmetric if \(G\) is undirected.
 – Not necessarily so if \(G\) is directed.
• If \(G\) is connected:
 – There is a path between every pair of vertices.
 – \(|E| = |V| - 1\).
 – Furthermore, if \(|E| = |V| - 1\), then \(G\) is a tree.
• Ingoing edges of u: $\{(v, u) \in E\}$
 e.g. $in(e) = \{(b, e), (d, e)\}$

• Outgoing edges of u: $\{(u, v) \in E\}$
 e.g. $out(d) = \{(d, e)\}$

• In-degree(u): $| in(u) |$

• Out-degree(u): $| out(u) |$
Representation of Graphs

• Two standard ways.
 – Adjacency Lists.
 ![Adjacency Lists Diagram](image)
 – Adjacency Matrix.
 ![Adjacency Matrix Table]

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Adjacency Lists

• Consists of an array Adj of $|V|$ lists.
• One list per vertex.
• For $u \in V$, $Adj[u]$ consists of all vertices adjacent to u.

Note: If weighted, store weights also in adjacency lists.
Storage Requirement

- For directed graphs:
 - Sum of lengths of all adj. lists is
 \[\sum_{v \in V} \text{out} - \text{degree}(v) = |E| \]
 - Total storage: \(\Theta(V + E) \)

- For undirected graphs:
 - Sum of lengths of all adj. lists is
 \[\sum_{v \in V} \text{degree}(v) = 2|E| \]
 - Total storage: \(\Theta(V + E) \)
Pros and Cons: adj list

• Pros
 – Space-efficient, when a graph is sparse.
 – Can be modified to support many graph variants.

• Cons
 – Determining if an edge \((u, v) \in E\) is not efficient.
 • Have to search in \(u\)’s adjacency list. \(\Theta(\text{degree}(u))\) time.
 • \(\Theta(V)\) in the worst case.
Adjacency Matrix

- $|V| \times |V|$ matrix A.
- Number vertices from 1 to $|V|$ in some arbitrary manner.
- A is then given by: $A[i, j] = a_{ij} = \begin{cases} 1 & \text{if } (i, j) \in E \\ 0 & \text{otherwise} \end{cases}$

$A = A^T$ for undirected graphs.
Space and Time

- **Space:** $\Theta(V^2)$.
 - Not memory efficient for large sparse graphs.
- **Time:** to list all vertices adjacent to u: $\Theta(V)$.
- **Time:** to determine if $(u, v) \in E$: $\Theta(1)$.
- Can store weights instead of bits for weighted graph.

```
  a   b   c   d   e   f
  a  0   5   0  11  0   0
  b  0   0   7  0   3   0
  c  0   0   0  0   0   3
  d  0   0   0  0   1   0
  e  0   0   1  0   0   2
  f  0   0   0  0   0   0
```
Graph-searching Algorithms (COMP250)

- Searching a graph:
 - Systematically follow the edges of a graph to visit the vertices of the graph.

- Used to discover the structure of a graph.

- Standard graph-searching algorithms.
 - Breadth-first Search (BFS).
 - Depth-first Search (DFS).
Breadth-first Search

• Expands the frontier between discovered and undiscovered vertices uniformly across the breadth of the frontier.
 – A vertex is “discovered” the first time it is encountered during the search.
 – A vertex is “finished” if all vertices adjacent to it have been discovered.

• Colors the vertices to keep track of progress.
 – White – Undiscovered.
 – Gray – Discovered but not finished.
 – Black – Finished.
 • Colors are required only to reason about the algorithm. Can be implemented without colors.
Breadth-first Search

- **Input:** Graph $G = (V, E)$, either directed or undirected, and *source vertex* $s \in V$.

- **Output:**
 - $d[v] = \text{distance (smallest # of edges, or shortest path) from } s \text{ to } v$, for all $v \in V$. $d[v] = \infty$ if v is not reachable from s.
 - $\pi[v] = u$ such that (u, v) is last edge on shortest path $s \sim v$.
 - u is v's predecessor.
 - Builds breadth-first tree with root s that contains all reachable vertices.
We use a priority queue to determine the next vertices to visit.

The first vertex we add in the queue is the source.

Priority = distance from the source. Lower the distance, higher the priority.
Example (BFS)

Color code:
- White: not visited yet
- Gray: visited but neighborhood not fully explored
- Black: Complete

We store in the queue the vertices in the neighborhood of the current vertex.

The vertices are indexed with the number of edges from the source.

Q: w r
 1 1
Example (BFS)

Q: r t x
 1 2 2
Example (BFS)

Q: t x v
2 2 2
Example (BFS)

Q: x v u
 2 2 3
Example (BFS)

Q: v u y
 2 3 3
Example (BFS)

Q: u y
 3 3
Example (BFS)

Q: \emptyset
Example (BFS)

The index of each vertex stores the length of the shortest path to reach them (Note: unweighted graph!).
Analysis of BFS

• Initialization takes $O(V)$.

• Traversal Loop
 – After initialization, each vertex is enqueued and dequeued at most once, and each operation takes $O(1)$. So, total time for queuing is $O(V)$.
 – The adjacency list of each vertex is scanned at most once. The sum of lengths of all adjacency lists is $\Theta(E)$.

• Summing up over all vertices \Rightarrow total running time of BFS is $O(V + E)$, linear in the size of the adjacency list representation of graph.
Depth-first Search (DFS)

- Explore edges out of the most recently discovered vertex v.
- When all edges of v have been explored, backtrack to explore other edges leaving the vertex from which v was discovered (its predecessor).
- “Search as deep as possible first.”
- Continue until all vertices reachable from the original source are discovered.
- If any undiscovered vertices remain, then one of them is chosen as a new source and search is repeated from that source.
Depth-first Search

• **Input:** $G = (V, E)$, directed or undirected. No source vertex given.

• **Output:**
 – 2 timestamps on each vertex. Integers between 1 and $2|V|$.
 • $d[v] = \text{discovery time}$ (v turns from white to gray)
 • $f[v] = \text{finishing time}$ (v turns from gray to black)
 – $\pi[v]$: predecessor of $v = u$, such that v was discovered during the scan of u’s adjacency list.

• Uses the same coloring scheme for vertices as BFS.
Pseudo-code

DFS(G)
1. for each vertex $u \in V[G]$
2. do $\color{[u]} \leftarrow \text{white}$
3. $\pi[u] \leftarrow \text{NIL}$
4. $\text{time} \leftarrow 0$
5. for each vertex $u \in V[G]$
6. do if $\color{[u]} = \text{white}$
7. then DFS-Visit(u)

Uses a global timestamp time.

DFS-Visit(u)
1. $\color{[u]} \leftarrow \text{GRAY}$ \# White vertex u has been discovered
2. $\text{time} \leftarrow \text{time} + 1$
3. $d[u] \leftarrow \text{time}$
4. for each $v \in Adj[u]$
5. do if $\color{[v]} = \text{WHITE}$
6. then $\pi[v] \leftarrow u$
7. DFS-Visit(v)
8. $\color{[u]} \leftarrow \text{BLACK}$ \# Blacken u; it is finished.
9. $f[u] \leftarrow \text{time} \leftarrow \text{time} + 1$
Example (DFS)

Starting time \(d[u]\)
Example (DFS)
Example (DFS)
Example (DFS)
Example (DFS)
Example (DFS)

Starting time \(d[x] \)

Finishing time \(f[x] \)
Example (DFS)
Analysis of DFS

• Loops on lines 1-2 & 5-7 take $\Theta(V)$ time, excluding time to execute DFS-Visit.

• DFS-Visit is called once for each white vertex $v \in V$ when it’s painted gray the first time. Lines 3-6 of DFS-Visit is executed $|\text{Adj}[v]|$ times. The total cost of executing DFS-Visit is $\sum_{v \in V} |\text{Adj}[v]| = \Theta(E)$

• Total running time of DFS is $\Theta(V + E)$.
Parenthesis Theorem

Theorem 1:
For all \(u, v \), exactly one of the following holds:

1. \(d[u] < f[u] < d[v] < f[v] \) or \(d[v] < f[v] < d[u] < f[u] \) and neither \(u \) nor \(v \) is a descendant of the other.
2. \(d[u] < d[v] < f[v] < f[u] \) and \(v \) is a descendant of \(u \).
3. \(d[v] < d[u] < f[u] < f[v] \) and \(u \) is a descendant of \(v \).

- Like parentheses:
 - OK: () [] ([]) [()]
 - Not OK: ([)] [(])

Corollary

\(v \) is a proper descendant of \(u \) if and only if \(d[u] < d[v] < f[v] < f[u] \).
Example (Parenthesis Theorem)

\[(s (z (y (x x) y) (w w) z) s) (t (v v) (u u) t)\]