
COMP251: Elementary graph
algorithms

Giulia Alberini & Jérôme Waldispühl
School of Computer Science

McGill University
Based on (Cormen et al., 2002)

Based on slides from D. Plaisted (UNC)

Announcements

• Assignment 1: Due tonight (no extension)

• Assignment 2: Released next week.

• Midterm: November 1 at 10am on CrowdMark.

• Final: Dec. 12 at 2pm. In Person!

Outline

• Vocabulary, definition, and properties of graphs

• Exploring graphs:

- Breadth First Search (BFS)

- Depth First Search (DFS)

• Parenthesis theorem

Why DFS & BFS again?

We will cover many algorithms on graphs based on these
techniques.

Graphs
• Graph 𝐺 = (𝑉, 𝐸)
– 𝑉 = set of vertices
– 𝐸 = set of edges Í (𝑉´𝑉)

• Types of graphs
– Undirected: edge (𝑢, 𝑣) = (𝑣, 𝑢); for all 𝑣, (𝑣, 𝑣) Ï 𝐸

(No self loops.)
– Directed: (𝑢, 𝑣) is edge from 𝑢 to 𝑣, denoted as 𝑢® 𝑣.

Self loops are allowed.
– Weighted: each edge has an associated weight, given by

a weight function 𝑤 ∶ 𝐸® 𝑹.
– Dense: |𝐸| » 𝑉 !.
– Sparse: |𝐸| << 𝑉 !.

• |𝐸| = 𝑂(𝑉 !)

b c

a

d e f

b c

a

d e f

5

11

1

3
1

7

3

2

Properties

• If (𝑢, 𝑣) Î 𝐸, then vertex 𝑣 is adjacent to vertex 𝑢.
• Adjacency relationship is:
– Symmetric if 𝐺 is undirected.
– Not necessarily so if 𝐺 is directed.

• If 𝐺 is connected:
– There is a path between every pair of vertices.
– |𝐸| � |𝑉| – 1.
– Furthermore, if |𝐸| = |𝑉| – 1, then 𝐺 is a tree.

Vocabulary

b c

a

d e f

• Ingoing edges of 𝑢: { (𝑣, 𝑢) ∈ 𝐸 }
e.g. 𝑖𝑛(𝑒) = { (𝑏, 𝑒), (𝑑, 𝑒) }

• Outgoing edges of 𝑢: 𝑢, 𝑣 ∈ 𝐸
e.g. 𝑜𝑢𝑡(𝑑) = { (𝑑, 𝑒) }

• In-degree(𝑢): 𝑖𝑛 𝑢

• Out-degree(𝑢): | 𝑜𝑢𝑡(𝑢) |

Representation of Graphs

• Two standard ways.
– Adjacency Lists.

– Adjacency Matrix.

a

dc

b a

b
c
d

b

a

d

d c

c

a b

a c

a

dc

b
1 2

3 4

1 2 3 4
1 0 1 1 1
2 1 0 1 0
3 1 1 0 1
4 1 0 1 0

Adjacency Lists
• Consists of an array Adj of |𝑉| lists.
• One list per vertex.
• For 𝑢 � 𝑉, Adj[u] consists of all vertices adjacent to 𝑢.

a

dc

b a

b
c
d

b

c

d

d c

a

dc

b a

b
c
d

b

a

d

d c

c

a b

a c

Note: If weighted, store weights
also in adjacency lists.

Storage Requirement
• For directed graphs:
– Sum of lengths of all adj. lists is

.
"∈$

𝑜𝑢𝑡 − 𝑑𝑒𝑔𝑟𝑒𝑒(𝑣) = |𝐸|

– Total storage:Q(𝑉 + 𝐸)

• For undirected graphs:
– Sum of lengths of all adj. lists is

/
"∈$

𝑑𝑒𝑔𝑟𝑒𝑒(𝑣) = 2|𝐸|

– Total storage:Q(𝑉 + 𝐸)

No. of edges leaving v

No. of edges incident on 𝑣.
Edge (𝑢, 𝑣) is incident on
vertices 𝑢 and 𝑣.

Pros and Cons: adj list

• Pros
– Space-efficient, when a graph is sparse.
– Can be modified to support many graph variants.

• Cons
– Determining if an edge 𝑢, 𝑣 ∈ 𝐸 is not efficient.

• Have to search in 𝑢’s adjacency list. Q(𝑑𝑒𝑔𝑟𝑒𝑒(𝑢)) time.
• Q(𝑉) in the worst case.

Adjacency Matrix
• |𝑉| � |𝑉| matrix 𝐴.
• Number vertices from 1 to |𝑉| in some arbitrary

manner.
• 𝐴 is then given by:

î
í
ì Î

==
otherwise0

),(if1
],[

Eji
ajiA ij

a

dc

b
1 2

3 4

1 2 3 4
1 0 1 1 1
2 0 0 1 0
3 0 0 0 1
4 0 0 0 0

a

dc

b
1 2

3 4

1 2 3 4
1 0 1 1 1
2 1 0 1 0
3 1 1 0 1
4 1 0 1 0

A = AT for undirected graphs.

Space and Time

• Space: Q(𝑉2).
– Not memory efficient for large sparse graphs.

• Time: to list all vertices adjacent to 𝑢: Q(𝑉).
• Time: to determine if 𝑢, 𝑣 ∈ 𝐸: Q(1).
• Can store weights instead of bits for weighted graph.

b c

a

d e f

5

11

1

3
1

7

3

2

a b c d e f
a 0 5 0 11 0 0
b 0 0 7 0 3 0
c 0 0 0 0 0 3
d 0 0 0 0 1 0
e 0 0 1 0 0 2
f 0 0 0 0 0 0

Graph-searching Algorithms
(COMP250)

• Searching a graph:
– Systematically follow the edges of a graph

to visit the vertices of the graph.

• Used to discover the structure of a graph.

• Standard graph-searching algorithms.
– Breadth-first Search (BFS).
– Depth-first Search (DFS).

Breadth-first Search
• Expands the frontier between discovered and

undiscovered vertices uniformly across the breadth
of the frontier.
– A vertex is “discovered” the first time it is encountered

during the search.
– A vertex is “finished” if all vertices adjacent to it have

been discovered.

• Colors the vertices to keep track of progress.
– White – Undiscovered.
– Gray – Discovered but not finished.
– Black – Finished.

• Colors are required only to reason about the algorithm. Can
be implemented without colors.

Breadth-first Search

• Input: Graph 𝐺 = (𝑉, 𝐸), either directed or undirected,
and source vertex 𝑠 ∈ 𝑉.

• Output:

– 𝑑[𝑣] = distance (smallest # of edges, or shortest path) from 𝑠
to 𝑣, for all 𝑣 � 𝑉. 𝑑[𝑣] = � if 𝑣 is not reachable from 𝑠.

– p[𝑣] = 𝑢 such that (𝑢, 𝑣) is last edge on shortest path 𝑠 𝑣.

• 𝑢 is 𝑣’s predecessor.

– Builds breadth-first tree with root s that contains all reachable
vertices.

Example (BFS)

¥ 0

¥ ¥ ¥

¥ ¥

¥

r s t u

v w x y

Q: s
0

We use a priority queue to
determine the next vertices
to visit.

The first vertex we add in the
queue is the source.

Priority = distance from the source.
Lower the distance, higher the priority.

Example (BFS)

1 0

1 ¥ ¥

¥ ¥

¥

r s t u

v w x y

Q: w r
1 1

Color code:
• White: not visited yet
• Gray: visited but neighborhood not fully explored
• Black: Complete

We store in the queue the
vertices in the neighborhood
of the current vertex.

The vertices are indexed with
the number of edges from
the source.

Example (BFS)

1 0

1 2 ¥

2 ¥

¥

r s t u

v w x y

Q: r t x
1 2 2

Example (BFS)

1 0

1 2 ¥

2 ¥

2

r s t u

v w x y

Q: t x v
2 2 2

Example (BFS)

1 0

1 2 ¥

2 3

2

r s t u

v w x y

Q: x v u
2 2 3

Example (BFS)

1 0

1 2 3

2 3

2

r s t u

v w x y

Q: v u y
2 3 3

Example (BFS)

1 0

1 2 3

2 3

2

r s t u

v w x y

Q: u y
3 3

Example (BFS)

1 0

1 2 3

2 3

2

r s t u

v w x y

Q: y
3

Example (BFS)

1 0

1 2 3

2 3

2

r s t u

v w x y

Q: Æ

Example (BFS)

1 0

1 2 3

2 3

2

r s t u

v w x y

BF Tree
The index of each vertex
stores the length of the
shortest path to reach them
(Note: unweighted graph!).

Analysis of BFS

• Initialization takes 𝑂(𝑉).
• Traversal Loop
– After initialization, each vertex is enqueued and dequeued

at most once, and each operation takes 𝑂(1). So, total
time for queuing is 𝑂(𝑉).

– The adjacency list of each vertex is scanned at most once.
The sum of lengths of all adjacency lists is Q(𝐸).

• Summing up over all vertices ⇒ total running time of
BFS is 𝑂(𝑉 + 𝐸), linear in the size of the adjacency
list representation of graph.

Depth-first Search (DFS)
• Explore edges out of the most recently discovered

vertex 𝑣.
• When all edges of 𝑣 have been explored, backtrack to

explore other edges leaving the vertex from which 𝑣
was discovered (its predecessor).

• “Search as deep as possible first.”
• Continue until all vertices reachable from the original

source are discovered.
• If any undiscovered vertices remain, then one of them

is chosen as a new source and search is repeated from
that source.

Depth-first Search

• Input: 𝐺 = (𝑉, 𝐸), directed or undirected. No source
vertex given.

• Output:
– 2 timestamps on each vertex. Integers between 1 and 2|𝑉|.

• 𝑑[𝑣] = discovery time (𝑣 turns from white to gray)
• 𝑓 [𝑣] = finishing time (𝑣 turns from gray to black)

– p[𝑣] : predecessor of 𝑣 = 𝑢, such that 𝑣 was discovered during
the scan of 𝑢’s adjacency list.

• Uses the same coloring scheme for vertices as BFS.

Pseudo-code

DFS(G)
1. for each vertex u Î V[G]
2. do color[u] ¬ white
3. p[u] ¬ NIL
4. time ¬ 0
5. for each vertex u Î V[G]
6. do if color[u] = white
7. then DFS-Visit(u)

Uses a global timestamp time.

DFS-Visit(u)
1. color[u] ¬ GRAY # White vertex u has

been discovered
2. time ¬ time + 1
3. d[u] ¬ time
4. for each v Î Adj[u]
5. do if color[v] = WHITE
6. then p[v] ¬ u
7. DFS-Visit(v)
8. color[u] ¬ BLACK # Blacken u; it is

finished.
9. f[u] ¬ time ¬ time + 1

Example (DFS)

1/

u v w

x y z

Starting time
𝑑[𝑢]

Example (DFS)

1/ 2/

u v w

x y z

Example (DFS)

1/

3/

2/

u v w

x y z

Example (DFS)

1/

4/ 3/

2/

u v w

x y z

Example (DFS)

1/

4/ 3/

2/

u v w

x y z

B

Example (DFS)

1/

4/5 3/

2/

u v w

x y z

B

Starting time
𝑑[𝑥]

Finishing time
𝑓[𝑥]

Example (DFS)

1/

4/5 3/6

2/

u v w

x y z

B

Example (DFS)

1/

4/5 3/6

2/7

u v w

x y z

B

Example (DFS)

1/

4/5 3/6

2/7

u v w

x y z

BF

Example (DFS)

1/8

4/5 3/6

2/7

u v w

x y z

BF

Example (DFS)

1/8

4/5 3/6

2/7 9/

u v w

x y z

BF

Example (DFS)

1/8

4/5 3/6

2/7 9/

u v w

x y z

BF C

Example (DFS)

1/8

4/5 3/6 10/

2/7 9/

u v w

x y z

BF C

Example (DFS)

1/8

4/5 3/6 10/

2/7 9/

u v w

x y z

BF C

B

Example (DFS)

1/8

4/5 3/6 10/11

2/7 9/

u v w

x y z

BF C

B

Example (DFS)

1/8

4/5 3/6 10/11

2/7 9/12

u v w

x y z

BF C

B

Analysis of DFS

• Loops on lines 1-2 & 5-7 take Q(𝑉) time, excluding time
to execute DFS-Visit.

• DFS-Visit is called once for each white vertex 𝑣Î𝑉 when
it’s painted gray the first time. Lines 3-6 of DFS-Visit is
executed |𝐴𝑑𝑗[𝑣]| times. The total cost of executing
DFS-Visit is å𝑣Î𝑉|𝐴𝑑𝑗[𝑣]| = Q(𝐸)

• Total running time of DFS is Q(𝑉 + 𝐸).

Parenthesis Theorem
Theorem 1:
For all 𝑢, 𝑣, exactly one of the following holds:
1. 𝑑[𝑢] < 𝑓[𝑢] < 𝑑[𝑣] < 𝑓[𝑣] or 𝑑 𝑣 < 𝑓 𝑣 < 𝑑 𝑢 < 𝑓 𝑢

and neither 𝑢 nor 𝑣 is a descendant of the other.
2. 𝑑[𝑢] < 𝑑[𝑣] < 𝑓[𝑣] < 𝑓[𝑢] and 𝑣 is a descendant of 𝑢.
3. 𝑑[𝑣] < 𝑑[𝑢] < 𝑓[𝑢] < 𝑓[𝑣] and 𝑢 is a descendant of 𝑣.

w So 𝑑[𝑢] < 𝑑[𝑣] < 𝑓[𝑢] < 𝑓[𝑣] cannot happen.
w Like parentheses:

w OK: () [] ([]) [()]
w Not OK: ([)] [(])

Corollary
𝑣 is a proper descendant of 𝑢 if and only if 𝑑[𝑢] < 𝑑[𝑣] < 𝑓[𝑣] < 𝑓[𝑢].

Example (Parenthesis Theorem)

3/6

4/5 7/8 12/13

2/9 1/10

y z s

x w v

B F

14/15

11/16

u

t

C C C

C B

(s (z (y (x x) y) (w w) z) s) (t (v v) (u u) t)

