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Announcements

• Assignment 1: Due tonight (no extension)

• Assignment 2: Released next week.

• Midterm: November 1 at 10am on CrowdMark.

• Final: Dec. 12 at 2pm. In Person!



Outline

• Vocabulary,  definition, and properties of graphs

• Exploring graphs:

- Breadth First Search (BFS)

- Depth First Search (DFS)

• Parenthesis theorem

Why DFS & BFS again?

We will cover many algorithms on graphs based on these 
techniques.



Graphs
• Graph 𝐺 = (𝑉, 𝐸)
– 𝑉 = set of vertices
– 𝐸 = set of edges Í (𝑉´𝑉)

• Types of graphs
– Undirected: edge (𝑢, 𝑣) = (𝑣, 𝑢); for all 𝑣, (𝑣, 𝑣) Ï 𝐸

(No self loops.)
– Directed: (𝑢, 𝑣) is edge from 𝑢 to 𝑣, denoted as 𝑢® 𝑣. 

Self loops are allowed.
– Weighted: each edge has an associated weight, given by 

a weight function 𝑤 ∶ 𝐸® 𝑹.
– Dense: |𝐸| » 𝑉 !.
– Sparse: |𝐸| << 𝑉 !.

• |𝐸| = 𝑂( 𝑉 !)
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Properties

• If (𝑢, 𝑣) Î 𝐸, then vertex 𝑣 is adjacent to vertex 𝑢.
• Adjacency relationship is:
– Symmetric if 𝐺 is undirected.
– Not necessarily so if 𝐺 is directed.

• If 𝐺 is connected:
– There is a path between every pair of vertices.
– |𝐸| � |𝑉| – 1.
– Furthermore, if |𝐸| = |𝑉| – 1, then 𝐺 is a tree.



Vocabulary
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• Ingoing edges of 𝑢: { (𝑣, 𝑢) ∈ 𝐸 }
e.g. 𝑖𝑛(𝑒) = { (𝑏, 𝑒), (𝑑, 𝑒) }

• Outgoing edges of 𝑢: 𝑢, 𝑣 ∈ 𝐸
e.g. 𝑜𝑢𝑡(𝑑) = { (𝑑, 𝑒) }

• In-degree(𝑢): 𝑖𝑛 𝑢

• Out-degree(𝑢): | 𝑜𝑢𝑡(𝑢) |



Representation of Graphs

• Two standard ways.
– Adjacency Lists.

– Adjacency Matrix.
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Adjacency Lists
• Consists of an array Adj of |𝑉| lists.
• One list per vertex.
• For 𝑢 � 𝑉, Adj[u] consists of all vertices adjacent to 𝑢.
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Note: If weighted, store weights 
also in adjacency lists.



Storage Requirement
• For directed graphs:
– Sum of lengths of all adj. lists is

.
"∈$

𝑜𝑢𝑡 − 𝑑𝑒𝑔𝑟𝑒𝑒(𝑣) = |𝐸|

– Total storage:Q(𝑉 + 𝐸)

• For undirected graphs:
– Sum of lengths of all adj. lists is

/
"∈$

𝑑𝑒𝑔𝑟𝑒𝑒(𝑣) = 2|𝐸|

– Total storage:Q(𝑉 + 𝐸)

No. of edges leaving v

No. of edges incident on 𝑣. 
Edge (𝑢, 𝑣) is incident on 
vertices 𝑢 and 𝑣.



Pros and Cons: adj list 

• Pros
– Space-efficient, when a graph is sparse.
– Can be modified to support many graph variants.

• Cons
– Determining if an edge 𝑢, 𝑣 ∈ 𝐸 is not efficient.

• Have to search in 𝑢’s adjacency list. Q(𝑑𝑒𝑔𝑟𝑒𝑒(𝑢)) time.
• Q(𝑉) in the worst case.



Adjacency Matrix
• |𝑉| � |𝑉| matrix 𝐴.
• Number vertices from 1 to |𝑉| in some arbitrary 

manner.
• 𝐴 is then given by:
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A = AT for undirected graphs.



Space and Time

• Space: Q(𝑉2).
– Not memory efficient for large sparse graphs.

• Time: to list all vertices adjacent to 𝑢: Q(𝑉).
• Time: to determine if 𝑢, 𝑣 ∈ 𝐸: Q(1).
• Can store weights instead of bits for weighted graph.
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Graph-searching Algorithms 
(COMP250)

• Searching a graph:
– Systematically follow the edges of a graph 

to visit the vertices of the graph.

• Used to discover the structure of a graph.

• Standard graph-searching algorithms.
– Breadth-first Search (BFS).
– Depth-first Search (DFS).



Breadth-first Search
• Expands the frontier between discovered and 

undiscovered vertices uniformly across the breadth 
of the frontier.
– A vertex is “discovered” the first time it is encountered 

during the search.
– A vertex is “finished” if all vertices adjacent to it have 

been discovered.

• Colors the vertices to keep track of progress.
– White – Undiscovered.
– Gray – Discovered but not finished.
– Black – Finished.

• Colors are required only to reason about the algorithm. Can 
be implemented without colors.



Breadth-first Search

• Input: Graph 𝐺 = (𝑉, 𝐸), either directed or undirected, 
and source vertex 𝑠 ∈ 𝑉.

• Output: 

– 𝑑[𝑣] = distance (smallest # of edges, or shortest path) from 𝑠
to 𝑣, for all 𝑣 � 𝑉. 𝑑[𝑣] = � if 𝑣 is not reachable from 𝑠.

– p[𝑣] = 𝑢 such that (𝑢, 𝑣) is last edge on shortest path 𝑠 𝑣.

• 𝑢 is 𝑣’s predecessor.

– Builds breadth-first tree with root s that contains all reachable 
vertices.



Example (BFS)
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v w x y

Q: s
0

We use a priority queue to 
determine the next vertices 
to visit. 

The first vertex we add in the 
queue is the source.

Priority = distance from the source. 
Lower the distance, higher the priority. 



Example (BFS)
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Q: w  r
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Color code:
• White: not visited yet
• Gray: visited but neighborhood not fully explored
• Black: Complete

We store in the queue the 
vertices in the neighborhood 
of the current vertex. 

The vertices are indexed with 
the number of edges from 
the source. 



Example (BFS)
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Example (BFS)
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Example (BFS)
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Example (BFS)
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Example (BFS)
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Example (BFS)
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Example (BFS)
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Example (BFS)
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BF Tree
The index of each vertex 
stores the length of the 
shortest path to reach them
(Note: unweighted graph!).



Analysis of BFS

• Initialization takes 𝑂(𝑉).
• Traversal Loop
– After initialization, each vertex is enqueued and dequeued

at most once, and each operation takes 𝑂(1). So, total 
time for queuing is 𝑂(𝑉).

– The adjacency list of each vertex is scanned at most once.  
The sum of lengths of all adjacency lists is Q(𝐸).

• Summing up over all vertices ⇒ total running time of 
BFS is 𝑂(𝑉 + 𝐸), linear in the size of the adjacency 
list representation of graph. 



Depth-first Search (DFS)
• Explore edges out of the most recently discovered 

vertex 𝑣.
• When all edges of 𝑣 have been explored, backtrack to 

explore other edges leaving the vertex from which 𝑣
was discovered (its predecessor).

• “Search as deep as possible first.”
• Continue until all vertices reachable from the original 

source are discovered.
• If any undiscovered vertices remain, then one of them 

is chosen as a new source and search is repeated from 
that source.



Depth-first Search

• Input: 𝐺 = (𝑉, 𝐸), directed or undirected. No source 
vertex given.

• Output:
– 2 timestamps on each vertex. Integers between 1 and 2|𝑉|.

• 𝑑[𝑣] = discovery time (𝑣 turns from white to gray)
• 𝑓 [𝑣] = finishing time (𝑣 turns from gray to black)

– p[𝑣] : predecessor of 𝑣 = 𝑢, such that 𝑣 was discovered during 
the scan of 𝑢’s adjacency list.

• Uses the same coloring scheme for vertices as BFS.



Pseudo-code

DFS(G)
1.  for each vertex u Î V[G]
2.       do color[u] ¬ white
3.            p[u] ¬ NIL
4.  time ¬ 0
5.  for each vertex u Î V[G]
6.        do if color[u] = white
7.                 then DFS-Visit(u)

Uses a global timestamp time.

DFS-Visit(u)
1. color[u] ¬ GRAY  # White vertex u has 

been discovered
2. time ¬ time + 1
3. d[u] ¬ time
4. for each v Î Adj[u]
5. do if color[v] = WHITE
6. then p[v] ¬ u
7. DFS-Visit(v)
8. color[u] ¬ BLACK     # Blacken u;  it is 

finished.
9. f[u] ¬ time ¬ time + 1



Example (DFS)

1/

u v w

x y z

Starting time
𝑑[𝑢]



Example (DFS)
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Example (DFS)
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Example (DFS)
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Example (DFS)
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Example (DFS)
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Starting time
𝑑[𝑥]

Finishing time
𝑓[𝑥]



Example (DFS)

1/

4/5 3/6

2/

u v w

x y z

B



Example (DFS)
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Example (DFS)
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Example (DFS)
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Example (DFS)
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Example (DFS)
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Example (DFS)
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Example (DFS)
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Example (DFS)
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Example (DFS)
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Analysis of DFS

• Loops on lines 1-2 & 5-7 take Q(𝑉) time, excluding time 
to execute DFS-Visit.

• DFS-Visit is called once for each white vertex 𝑣Î𝑉 when 
it’s painted gray the first time. Lines 3-6 of DFS-Visit is 
executed |𝐴𝑑𝑗[𝑣]| times. The total cost of executing 
DFS-Visit is å𝑣Î𝑉|𝐴𝑑𝑗[𝑣]| = Q(𝐸)

• Total running time of DFS is Q(𝑉 + 𝐸).



Parenthesis Theorem
Theorem 1:
For all 𝑢, 𝑣, exactly one of the following holds:
1. 𝑑[𝑢] < 𝑓[𝑢] < 𝑑[𝑣] < 𝑓[𝑣] or 𝑑 𝑣 < 𝑓 𝑣 < 𝑑 𝑢 < 𝑓 𝑢

and neither 𝑢 nor 𝑣 is a descendant of the other.
2. 𝑑[𝑢] < 𝑑[𝑣] < 𝑓[𝑣] < 𝑓[𝑢] and 𝑣 is a descendant of 𝑢.
3. 𝑑[𝑣] < 𝑑[𝑢] < 𝑓[𝑢] < 𝑓[𝑣] and 𝑢 is a descendant of 𝑣.

w So 𝑑[𝑢] < 𝑑[𝑣] < 𝑓[𝑢] < 𝑓[𝑣] cannot happen.
w Like parentheses:

w OK: ( ) [ ] ( [ ] ) [ ( ) ]
w Not OK: ( [ ) ] [ ( ] )

Corollary
𝑣 is a proper descendant of 𝑢 if and only if 𝑑[𝑢] < 𝑑[𝑣] < 𝑓[𝑣] < 𝑓[𝑢].



Example (Parenthesis Theorem)
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