COMP251: Elementary graph
algorithms

Giulia Alberini & Jérome Waldispuhl
School of Computer Science
McGill University

Based on (Cormen et al., 2002)
Based on slides from D. Plaisted (UNC)

Announcements

Assignment 1: Due tonight (no extension)
Assignment 2: Released next week.
Midterm: November 1 at 10am on CrowdMark.

Final: Dec. 12 at 2pm. In Person!

Outline

* Vocabulary, definition, and properties of graphs
* Exploring graphs:

- Breadth First Search (BFS)

- Depth First Search (DFS)

e Parenthesis theorem

Why DFS & BFS again?

We will cover many algorithms on graphs based on these
techniques.

Graphs

* GraphG = (V,E) ;
— V =set of vertices a
— E =set of edges < (VxV)

* Types of graphs (@) f

— Undirected: edge (u,v) = (v,u);forallv, (v,v) ¢ E
(No self loops.)

— Directed: (u, v) is edge from u to v, denoted as u — v.
Self loops are allowed.

— Weighted: each edge has an associated weight, given by
a weight functionw : E — R.

— Dense: |[E| = |V]?.
— Sparse: |[E| << |V|?.
* |E] = o([VI*)

Properties

* If (u,v) € E, then vertex v is adjacent to vertex u.
* Adjacency relationship is:
— Symmetric if G is undirected.
— Not necessarily so if G is directed.
* If G is connected:
— There is a path between every pair of vertices.
—|E| & |V]- 1.
— Furthermore, if |[E| = V|- 1, then G is a tree.

Vocabulary

* Ingoing edgesof u: { (v,u) € E} * In-degree(u): | in(u)|

e.g.in(e) = {(b,e),(d,e)}

e Qutgoingedgesofu:{ (u,v) € E} <+ Out-degree(u): | out(u) |

e.g.out(d) = {(d,e)}

Representation of Graphs

* Two standard ways.
— Adjacency Lists.

v@
3
=

<

123 4
QVO 10 1 1 1

211010
O‘ 30110 1
3 4 41010

Adjacency Lists

* Consists of an array Ad7j of |V] lists.

* One list per vertex.
e Foru@V, Adj[u] consists of all vertices adjacent to u.

1 b 1d | fc |/

» C /
1d |/

Note: If weighted, store weights
also in adjacency lists.

v@
e

/
9 0 a b d =c|/
e
0‘0 C " d —T—| a =b|
d a —+—c | /

Storage Requirement

* For directed graphs:
— Sum of lengths of all adj. lists is

2 out — degree(v) = |E|

vevV

— Total storage: O(V + L) No. of edges leaving v

* For undirected graphs:
— Sum of lengths of all adj. lists is

z degree(v) = 2|E|

vEV No. of edges incident on v.
— Total storage: ®(V + E) Edge (u, v) is incident on

vertices u and v.

Pros and Cons: adj list

* Pros

— Space-efficient, when a graph is sparse.
— Can be modified to support many graph variants.

e Cons

— Determining if an edge (u, v) € E is not efficient.
* Have to search in u’ s adjacency list. ®(degree(u)) time.
* O(V) in the worst case.

Adjacency Matrix
o |V]|B|V]| matrix A.
* Number vertices from 1 to |V | in some arbitrary

manner. N | if(i,j)eE
» Aisthengivenby: Ali,j]l=a; = .
0 otherwise

1
1234
9’0 110 1 11
200 01 0
O‘O 300 0 1
3 4 410 0 0 0
1 2
1234
9'@ 110 1 11 _
' 211 010 A = AT for undirected graphs.
0‘0 311 1 01
3 4 41010

Space and Time

Space: O(V?).
— Not memory efficient for large sparse graphs.
Time: to list all vertices adjacent to u: ©(V).
Time: to determine if (u,v) € E: ©(1).
Can store weights instead of bits for weighted graph.

o

[N
[N

O|O0|O0(|O0O|O0|0O|wV
O[Ol O|OC|O|U0N|T
ORI O(O|IN|[O|O0
OO Rr[([O|lW|(O| D
O[N|IO[W|IO|O|—

-~ M Q O T WD
O|lO0O| OO O

Graph-searching Algorithms
(COMP250)

e Searching a graph:

— Systematically follow the edges of a graph
to visit the vertices of the graph.

e Used to discover the structure of a graph.

e Standard graph-searching algorithms.
— Breadth-first Search (BFS).
— Depth-first Search (DFS).

Breadth-first Search

Expands the frontier between discovered and
undiscovered vertices uniformly across the breadth
of the frontier.

— Avertex is “discovered” the first time it is encountered
during the search.

— A vertex is “finished” if all vertices adjacent to it have
been discovered.

Colors the vertices to keep track of progress.
— White — Undiscovered.
— Gray — Discovered but not finished.

— Black — Finished.

» Colors are required only to reason about the algorithm. Can
be implemented without colors.

Breadth-first Search

* Input: Graph ¢ = (V,E), either directed or undirected,
and source vertex s € V.

* Output:

— d|v] = distance (smallest # of edges, or shortest path) from s
tov,forallv @ V.d|v] = B if visnotreachable froms.

— nt|v] = wu such that (u, v) is last edge on shortest path s ~~v.
* uis v spredecessor.

— Builds breadth-first tree with root s that contains all reachable
vertices.

Example (BFS)

v Y
We use a priority queue to The first vertex we add in the
determine the next vertices Q: s gueue is the source.
to visit. 0)

Priority = distance from the source.
Lower the distance, higher the priority.

Color code: Example (BFS)

* White: not visited yet

* Gray: visited but neighborhood not fully explored

* Black: Complete

r

We store in the queue the
vertices in the neighborhood
of the current vertex.

The vertices are indexed with
the number of edges from
the source.

Example (BFS)

Q:r tx
122

Example (BFS)

Q: t x v
2 22

Example (BFS)

Q: xvu
223

Example (BFS)

Q vuy
2 33

Example (BFS)

W <<

W c

Example (BFS)

Example (BFS)

Example (BFS)

The index of each vertex

stores the length of the BF Tree
shortest path to reach them

(Note: unweighted graph!).

Analysis of BFS

* Initialization takes O (V).

* Traversal Loop

— After initialization, each vertex is enqueued and dequeued
at most once, and each operation takes O(1). So, total
time for queuing is O(V).

— The adjacency list of each vertex is scanned at most once.
The sum of lengths of all adjacency lists is ©(E).

 Summing up over all vertices = total running time of
BFSis O(V + E), linear in the size of the adjacency
list representation of graph.

Depth-first Search (DFS)

Explore edges out of the most recently discovered
vertex v.

When all edges of v have been explored, backtrack to
explore other edges leaving the vertex from which v
was discovered (its predecessor).

“Search as deep as possible first.”

Continue until all vertices reachable from the original
source are discovered.

If any undiscovered vertices remain, then one of them
is chosen as a new source and search is repeated from
that source.

Depth-first Search

* Input: G = (V,E), directed or undirected. No source
vertex given.

* Output:

— 2 timestamps on each vertex. Integers between 1 and 2|V|.

* d[v] =discovery time (v turns from white to gray)
* f [v] = finishing time (v turns from gray to black)

— 7nt|v] : predecessor of v = u, such that v was discovered during
the scan of u’ s adjacency list.

e Uses the same coloring scheme for vertices as BFS.

Pseudo-code

DFS(G)

1. for each vertex u € V[G]
2. do color[u] <~ white
3. nt[u] < NIL

4. time <0

5. for each vertex u € V[G]
6. do if color[u] = white
7. then DFS-Visit(u)

Uses a global timestamp time.

DFS-Visit(u)

1. color[u] <~ GRAY # White vertex u has
been discovered

2. time < time + 1

3. d[u] < time

4, for each v € Adj[u]

5. do if color[v] = WHITE

6. then t[v] < u

7. DFS-Visit(v)

8. color[u] <~ BLACK # Blacken u; it is

finished.
S. flu] < time < time + 1

Example (DFS)

Starting time
dlu]

\ u Vv W

1/

ample (DFS)
EX

1/

Example (DFS)

u Vv w
D—0 O
X z

y

ample (DFS)
EX

1/

Example (DFS)

Example (DFS)

Starting time Finishing time

d|x] flx]

Example (DFS)

Example (DFS)

Example (DFS)

Example (DFS)

Example (DFS)

Example (DFS)

Example (DFS)

Example (DFS)

Example (DFS)

Example (DFS)

Analysis of DFS

* Loops onlines 1-2 & 5-7 take ®(V) time, excluding time
to execute DFS-Visit.

* DFS-Visit is called once for each white vertex veV when
it's painted gray the first time. Lines 3-6 of DFS-Visit is
executed |Adj[v]| times. The total cost of executing
DFS-Visitis 2.,.y|Adj[v]| = ©(E)

* Total running time of DFSis O(V + E).

Parenthesis Theorem

Theorem 1:
For all u, v, exactly one of the following holds:

1.d[u] < flu] < d[v] < f[v]ord|v] < flv] < d|u] < f|u]
and neither u nor v is a descendant of the other.

2.d[u] <d|v] < f|v] < f[u] and v is a descendant of wu.
3.d[|v] <d[u] < flu] < f|v] and u is a descendant of v.

¢ Sod[u] <d[v] < flu] < f[v] cannot happen.
¢ Like parentheses:

¢« OK:()[ICLDITC)]
¢ Not OK: ([)][(])

Corollary
v is a proper descendant of w if and only if d[u] < d[v] < f|v] < flu].

Example (Parenthesis Theorem)

(s (z (y (xx) y) (ww)2z)s)(t(vv)(uu)t)

