
COMP251: Greedy algorithms

Jérôme Waldispühl & Giulia Alberini
School of Computer Science

McGill University
Based on (Cormen et al., 2002)

Based on slides from D. Plaisted (UNC) & (goodrich & Tamassia, 2009)

Overview

• Algorithm design technique to solve optimization
problems.

• Problems exhibit optimal substructure.
• Idea (the greedy choice):
–When we have a choice to make, make the one

that looks best right now.
–Make a locally optimal choice in hope of

getting a globally optimal solution.

Outline

• Definition of the activity selection problem
• Greedy choice & optimal sub-structure

• Greedy algorithm for the activity selection
problem

• Text compression & Huffman encoding

Greedy Strategy

The choice that seems best at the moment is the
one we go with.

– Prove that when there is a choice to make, one of
the optimal choices is the greedy choice. Therefore,
it is always safe to make the greedy choice.

– Show that all but one of the sub-problems resulting
from the greedy choice are empty.

Activity-selection Problem
• Input: Set S of n activities, a1, a2, …, an.
– si = start time of activity i.
– fi = finish time of activity i.

• Output: Subset A of maximum number of compatible
activities.
– 2 activities are compatible, if their intervals do not overlap.

Example:
Activities in each line
are compatible.

0 1 2 3 4 5 6 7 8 9 10

Activity-selection Problem

0 1 2 3 4 5 6 7 8 9 10

s6
a6

a5

a4

a3

a2

a1 a7
s1

s2

s3

s4

s5

s7f1

f2

f3

f4

f5

f6

f7

i 1 2 3 4 5 6 7
si 0 1 2 4 5 6 8
fi 2 3 5 6 9 9 10

Activities sorted by finishing time.

Optimal compatible set: { a1 , a3 , a5 }

Optimal Substructure
• Assume activities are sorted by finishing times.

• Suppose an optimal solution includes activity ak. This
solution is obtained from:
– An optimal selection of a1, …, ak-1 activities compatible with

one another, and that finish before ak starts.
– An optimal solution of ak+1, …, an activities compatible with

one another, and that start after ak finishes.

0 1 2 3 4 5 6 7 8 9 10

Optimal Substructure

• Let Sij = subset of activities in S that start after ai
finishes and finish before aj starts.

• Aij = optimal solution to Sij

• Aij = Aik U { ak } U Akj

Sij = ak ∈ S :∀i, j fi ≤ sk < fk ≤ sj{ }

Recursive Solution

• Subproblem: Selecting the maximum number of
mutually compatible activities from Sij.

• Let c[i, j] = size of maximum-size subset of mutually
compatible activities in Sij.

c[i, j]=
0 if Sij =Ø

max{c[i,k]+ c[k, j]+1}
i<k< j and ak∈Sij

if Sij ≠Ø

#

$
%

&
%

Recursive solution:

Note: We do not know (yet) which k to use for the optimal solution.

k

Analysis of complexity

Naïve approach
subproblems in
optimal solution

2

choices to consider j-i-1

In other words, we have a linear number of decompositions to
process (i.e., the choice of ak) and each of these choice makes
two recursivecalls (exponential growth).

Aij = Aik U { ak } U Akj

Greedy choice

Theorem:
Let Sij ≠ ∅, and let am be the activity in Sij with the
earliest finish time fm = min{ fk : ak ∈Sij}. Then:

1. am is used in some maximum-size subset of
mutually compatible activities of Sij.

2. Sim = ∅, so that choosing am leaves Smj as the only
nonempty subproblem.

Greedy choice
Proof:
(1) am is used in some maximum-size subset of mutually
compatible activities of Sij.

• Let Aij be a maximum-size subset of mutually compatible
activities in Sij (i.e. an optimal solution of Sij).

• Order activities in Aij in monotonically increasing order of finish
time, and let ak be the first activity in Aij.

• If ak = am ⇒ done.
• Otherwise, let A’ij = Aij - { ak } U { am }
• A’ij is valid because am finishes before ak

• Since |Aij|=|A’ij| and Aij maximal ⇒ A’ij maximal too.

Greedy choice
Proof:
(2) Sim = ∅, so that choosing am leaves Smj as the only nonempty
subproblem.

If there is ak∈Sim then fi ≤ sk < fk ≤ sm < fm⇒ fk < fm which contradicts
the hypothesis that am has the earliest finishing time.

Greedy choice

Before theorem After theorem
subproblems in
optimal solution

2 1

choices to consider j-i-1 1

We can now solve the problem Sij top-down:

• Choose am∈Sij with the earliest finish time (greedy choice).

• Solve Smj.

Aij = Aik U { ak } U Akj Aij = { am } U Amj

Activity-selection Problem

0 1 2 3 4 5 6 7 8 9 10

s6
a6

a5

a4

a3

a2

a1 a7
s1

s2

s3

s4

s5

s7f1

f2

f3

f4

f5

f6

f7

i 1 2 3 4 5 6 7
si 0 1 2 4 5 6 8
fi 2 3 5 6 9 9 10

Activities sorted by finishing time.

Activity-selection Problem

0 1 2 3 4 5 6 7 8 9 10

s6
a6

a5

a4

a3

a2

a1 a7
s1

s2

s3

s4

s5

s7f1

f2

f3

f4

f5

f6

f7

i 1 2 3 4 5 6 7
si 0 1 2 4 5 6 8
fi 2 3 5 6 9 9 10

Activities sorted by finishing time.

Activity-selection Problem

0 1 2 3 4 5 6 7 8 9 10

s6
a6

a5

a4

a3

a2

a1 a7
s1

s2

s3

s4

s5

s7f1

f2

f3

f4

f5

f6

f7

i 1 2 3 4 5 6 7
si 0 1 2 4 5 6 8
fi 2 3 5 6 9 9 10

Activities sorted by finishing time.

Activity-selection Problem

0 1 2 3 4 5 6 7 8 9 10

s6
a6

a5

a4

a3

a2

a1 a7
s1

s2

s3

s4

s5

s7f1

f2

f3

f4

f5

f6

f7

i 1 2 3 4 5 6 7
si 0 1 2 4 5 6 8
fi 2 3 5 6 9 9 10

Activities sorted by finishing time.

Recursive Algorithm
Recursive-Activity-Selector (s, f, i, n)
1. m ¬ i+1
2. while m ≤ n and sm < fi

3. do m ¬ m+1
4. if m ≤ n
5. then return {am} È

Recursive-Activity-Selector(s, f, m, n)
6. else return ∅

Initial Call: Recursive-Activity-Selector (s, f, 0, n+1)
Complexity: Q(n)

Note 1: We assume activities are already ordered by finishing time.
Note 2: Straightforward to convert the algorithm to an iterative one.

// Find first activity in Si,n+1

Typical Steps
• Cast the optimization problem as one in which we

make a choice and are left with one subproblem to
solve.

• Prove that there is always an optimal solution that
makes the greedy choice (greedy choice is safe).

• Show that greedy choice and optimal solution to
subproblem Þ optimal solution to the problem.

• Make the greedy choice and solve top-down.
• You may have to preprocess input to put it into

greedy order (e.g. sorting activities by finish time).

Elements of Greedy Algorithms

No general way to tell if a greedy algorithm is optimal,
but two key ingredients are:
• Greedy-choice Property.

– We can build a globally optimal solution by
making a locally optimal (greedy) choice.

• Optimal Substructure.

Text Compression
• Given a string X, efficiently encode X into a smaller

string Y (Saves memory and/or bandwidth)

A ➝ 0; B ➝ 10; C ➝ 110; D ➝ 1110
DDCB ➝ 1110 1110 110 10 (13 bits)

A ➝ 1110; B ➝ 110; C ➝ 10; D ➝ 0
DDCB ➝ 0 0 10 110 (7 bits)

• A good approach: Huffman encoding
– Compute frequency f(c) for each character c.
– Encode high-frequency characters with short code words
– No code word is a prefix for another code
– Use an optimal encoding tree to determine the code words

Encoding Tree Example
• A code is a mapping of each character of an alphabet to a binary

code-word
• A prefix code is a binary code such that no code-word is the prefix

of another code-word
• An encoding tree represents a prefix code

– Each external node (leaf) stores a character
– The code word of a character is given by the path from the root to the

external node storing the character (0 for a left child and 1 for a right child)

a

b c

d e

00 010 011 10 11
a b c d e

0

0

0

0

1

11

1

Encoding Example

a

b c

d e

0

0

0

0

1

11

1

Initial string: X = acda
Encoded string: Y = 00 011 10 00

Encoding Tree Optimization
• Given a text string X, we want to find a prefix code for the

characters of X that yields a small encoding for X
– Rare characters should have long code-words
– Frequent characters should have short code-words

• Example
– X = abracadabra
– T1 encodes X into 29 bits
– T2 encodes X into 24 bits

c

a r

d b a

c d

b r

T1 T2

Example

a b c d r
5 2 1 1 2

X = abracadabra

Frequencies

ca rdb
5 2 1 1 2

ca rdb

2

5 2 2
ca bd r

2

5

4

ca bd r

2

5

4

6
c

a

bd r

2 4

6

11

Extended Huffman Tree Example

Huffman’s Algorithm

• Given a string X,
Huffman’s algorithm
construct a prefix code
the minimizes the size
of the encoding of X

• It runs in time
O(n + d log d), where n
is the size of X and d is
the number of distinct
characters of X

• A heap-based priority
queue is used as an
auxiliary structure

Algorithm HuffmanEncoding(X)
Input string X of size n
Output optimal encoding trie for X
C ¬ distinctCharacters(X)
computeFrequencies(C, X)
Q ¬ new empty heap
for all c Î C

T ¬ new single-node tree storing c
Q.insert(getFrequency(c), T)

while Q.size() > 1
f1¬ Q.minKey()
T1¬ Q.removeMin()
f2¬ Q.minKey()
T2¬ Q.removeMin()
T ¬ join(T1, T2)
Q.insert(f1 + f2, T)

return Q.removeMin()

