COMP251: Greedy algorithms

Jérôme Waldispühl & Giulia Alberini
School of Computer Science
McGill University

Based on (Cormen et al., 2002)

Based on slides from D. Plaisted (UNC) & (Goodrich & Tamassia, 2009)
Overview

- Algorithm design technique to solve optimization problems.
- Problems exhibit optimal substructure.
- Idea (the greedy choice):
 - When we have a choice to make, make the one that looks best right now.
 - Make a locally optimal choice in hope of getting a globally optimal solution.
Outline

• Definition of the activity selection problem
• Greedy choice & optimal sub-structure
• Greedy algorithm for the activity selection problem
• Text compression & Huffman encoding
Greedy Strategy

The choice that seems best at the moment is the one we go with.

– Prove that when there is a choice to make, one of the optimal choices is the greedy choice. Therefore, it is always safe to make the greedy choice.

– Show that all but one of the sub-problems resulting from the greedy choice are empty.
Activity-selection Problem

- **Input:** Set S of n activities, a_1, a_2, \ldots, a_n.
 - $s_i = \text{start time of activity } i$.
 - $f_i = \text{finish time of activity } i$.

- **Output:** Subset A of maximum number of compatible activities.
 - 2 activities are compatible, if their intervals do not overlap.

Example:

![Activities in each line are compatible.](image-url)
Activity-selection Problem

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s_i)</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>(f_i)</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

Activities sorted by finishing time.

Optimal compatible set: \(\{ a_1, a_3, a_5 \} \)
Optimal Substructure

• Assume activities are sorted by finishing times.

• Suppose an optimal solution includes activity a_k. This solution is obtained from:

 – An optimal selection of a_1, \ldots, a_{k-1} activities compatible with one another, and that finish before a_k starts.

 – An optimal solution of a_{k+1}, \ldots, a_n activities compatible with one another, and that start after a_k finishes.
Optimal Substructure

• Let $S_{ij} =$ subset of activities in S that start after a_i finishes and finish before a_j starts.

$$S_{ij} = \{ a_k \in S : \forall i, j \quad f_i \leq s_k < f_k \leq s_j \}$$

• $A_{ij} =$ optimal solution to S_{ij}

• $A_{ij} = A_{ik} \cup \{ a_k \} \cup A_{kj}$
Recursive Solution

• Subproblem: Selecting the maximum number of mutually compatible activities from S_{ij}.
• Let $c[i, j] =$ size of maximum-size subset of mutually compatible activities in S_{ij}.

Recursive solution:

$$c[i, j] = \begin{cases}
0 & \text{if } S_{ij} = \emptyset \\
\max \{c[i, k] + c[k, j] + 1 \} & \text{if } S_{ij} \neq \emptyset \text{ and } i < k < j \text{ and } a_k \in S_{ij}
\end{cases}$$

Note: We do not know (yet) which k to use for the optimal solution.
Analysis of complexity

<table>
<thead>
<tr>
<th>Naïve approach</th>
</tr>
</thead>
<tbody>
<tr>
<td># subproblems in optimal solution</td>
</tr>
<tr>
<td># choices to consider</td>
</tr>
</tbody>
</table>

\[A_{ij} = A_{ik} \cup \{ a_k \} \cup A_{kj} \]

In other words, we have a linear number of decompositions to process (i.e., the choice of \(a_k \)) and each of these choice makes two recursive calls (exponential growth).
Greedy choice

Theorem:
Let \(S_{ij} \neq \emptyset \), and let \(a_m \) be the activity in \(S_{ij} \) with the earliest finish time \(f_m = \min \{ f_k : a_k \in S_{ij} \} \). Then:

1. \(a_m \) is used in some maximum-size subset of mutually compatible activities of \(S_{ij} \).
2. \(S_{im} = \emptyset \), so that choosing \(a_m \) leaves \(S_{mj} \) as the only nonempty subproblem.
Greedy choice

Proof:

(1) \(a_m \) is used in some maximum-size subset of mutually compatible activities of \(S_{ij} \).

- Let \(A_{ij} \) be a maximum-size subset of mutually compatible activities in \(S_{ij} \) (i.e. an optimal solution of \(S_{ij} \)).
- Order activities in \(A_{ij} \) in monotonically increasing order of finish time, and let \(a_k \) be the first activity in \(A_{ij} \).
- If \(a_k = a_m \) \(\Rightarrow \) done.
- Otherwise, let \(A'_{ij} = A_{ij} - \{ a_k \} \cup \{ a_m \} \)
- \(A'_{ij} \) is valid because \(a_m \) finishes before \(a_k \)
- Since \(|A_{ij}| = |A'_{ij}| \) and \(A_{ij} \) maximal \(\Rightarrow A'_{ij} \) maximal too.
Greedy choice

Proof:
(2) $S_{im} = \emptyset$, so that choosing a_m leaves S_{mj} as the only nonempty subproblem.

If there is $a_k \in S_{im}$ then $f_i \leq s_k < f_k \leq s_m < f_m \Rightarrow f_k < f_m$ which contradicts the hypothesis that a_m has the earliest finishing time.
Greedy choice

<table>
<thead>
<tr>
<th></th>
<th>Before theorem</th>
<th>After theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td># subproblems in optimal solution</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td># choices to consider</td>
<td>j-i-1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(A_{ij} = A_{ik} \cup { a_k } \cup A_{kj})</td>
<td>(A_{ij} = { a_m } \cup A_{mj})</td>
</tr>
</tbody>
</table>

We can now solve the problem \(S_{ij} \) top-down:

- Choose \(a_m \in S_{ij} \) with the earliest finish time (greedy choice).
- Solve \(S_{mj} \).
Activity-selection Problem

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>f_i</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

Activities sorted by finishing time.
Activity-selection Problem

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>f_i</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

Activities sorted by finishing time.
Activity-selection Problem

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>f_i</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

Activities sorted by finishing time.
Activity-selection Problem

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>f_i</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

Activities sorted by finishing time.
Recursive Algorithm

Recursive-Activity-Selector \((s, f, i, n)\)

1. \(m \leftarrow i+1\)
2. \(\textbf{while } m \leq n \text { and } s_m < f_i \quad \text{// Find first activity in } S_{i,n+1}\)
3. \(\textbf{do } m \leftarrow m+1\)
4. \(\textbf{if } m \leq n\)
5. \(\textbf{then return } \{a_m\} \cup\)
 \[
 \text{Recursive-Activity-Selector}(s, f, m, n)\]
6. \(\textbf{else return } \emptyset\)

Initial Call: Recursive-Activity-Selector \((s, f, 0, n+1)\)

Complexity: \(\Theta(n)\)

Note 1: We assume activities are already ordered by finishing time.
Note 2: Straightforward to convert the algorithm to an iterative one.
Typical Steps

- Cast the optimization problem as one in which we make a choice and are left with one subproblem to solve.

- Prove that there is always an optimal solution that makes the greedy choice (greedy choice is safe).

- Show that greedy choice and optimal solution to subproblem \Rightarrow optimal solution to the problem.

- Make the greedy choice and **solve top-down**.

- You may have to preprocess input to put it into greedy order (e.g. sorting activities by finish time).
Elements of Greedy Algorithms

No general way to tell if a greedy algorithm is optimal, but two key ingredients are:

• Greedy-choice Property.
 – We can build a globally optimal solution by making a locally optimal (greedy) choice.

• Optimal Substructure.
Text Compression

• Given a string X, efficiently encode X into a smaller string Y (Saves memory and/or bandwidth)

 A \rightarrow 0; \ B \rightarrow 10; \ C \rightarrow 110; \ D \rightarrow 1110
 \ DDCB \rightarrow 1110\ 1110\ 110\ 10\ (13\ \text{bits})

 A \rightarrow 1110; \ B \rightarrow 110; \ C \rightarrow 10; \ D \rightarrow 0
 \ DDCB \rightarrow 0\ 0\ 10\ 110\ (7\ \text{bits})

• A good approach: \textbf{Huffman encoding}
 – Compute frequency \(f(c) \) for each character \(c \).
 – Encode high-frequency characters with short code words
 – No code word is a prefix for another code
 – Use an optimal encoding tree to determine the code words
Encoding Tree Example

- A **code** is a mapping of each character of an alphabet to a binary code-word.
- A **prefix code** is a binary code such that no code-word is the prefix of another code-word.
- An **encoding tree** represents a prefix code.
 - Each external node (leaf) stores a character.
 - The code word of a character is given by the path from the root to the external node storing the character (0 for a left child and 1 for a right child).

```
<table>
<thead>
<tr>
<th></th>
<th>00</th>
<th>010</th>
<th>011</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td></td>
</tr>
</tbody>
</table>
```
Encoding Example

Initial string: $X = \text{acda}$

Encoded string: $Y = 00 \ 011 \ 10 \ 00$
Encoding Tree Optimization

• Given a text string \(X \), we want to find a prefix code for the characters of \(X \) that yields a small encoding for \(X \)
 – Rare characters should have long code-words
 – Frequent characters should have short code-words

• Example
 – \(X = \text{abracadabra} \)
 – \(T_1 \) encodes \(X \) into 29 bits
 – \(T_2 \) encodes \(X \) into 24 bits
Example

$X = \text{abracadabra}$

Frequencies

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Diagram of a binary tree representing the frequencies of each letter.
Extended Huffman Tree Example

String: a fast runner need never be afraid of the dark

<table>
<thead>
<tr>
<th>Character</th>
<th>a</th>
<th>b</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>h</th>
<th>i</th>
<th>k</th>
<th>n</th>
<th>o</th>
<th>r</th>
<th>s</th>
<th>t</th>
<th>u</th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>9</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>7</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Huffman tree
Huffman’s Algorithm

- Given a string X, Huffman’s algorithm constructs a prefix code that minimizes the size of the encoding of X.
- It runs in time $O(n + d \log d)$, where n is the size of X and d is the number of distinct characters of X.
- A heap-based priority queue is used as an auxiliary structure.

Algorithm $\text{HuffmanEncoding}(X)$

Input string X of size n

Output optimal encoding trie for X

1. $C \leftarrow \text{distinctCharacters}(X)$
2. $\text{computeFrequencies}(C, X)$
3. $Q \leftarrow$ new empty heap
4. for all $c \in C$
 - $T \leftarrow$ new single-node tree storing c
 - Q.insert($\text{getFrequency}(c)$, T)
5. while Q.size() > 1
 - $f_1 \leftarrow Q$.minKey()
 - $T_1 \leftarrow Q$.removeMin()
 - $f_2 \leftarrow Q$.minKey()
 - $T_2 \leftarrow Q$.removeMin()
 - $T \leftarrow \text{join}(T_1, T_2)$
 - Q.insert($f_1 + f_2$, T)
6. return Q.removeMin()