COMP251: Algorithms and Data
Structures

Giulia Alberini, Jérome Waldispuhl
School of Computer Science
McGill University



About Me

Jérdme Waldispuhl
Associate Professor of Computer Science

Bioinformatics, Human-Computer Interactions &
Video games!

How to reach me?

o Office hours (TBA; See online schedule)

o By appointment (email me to schedule a meeting)
o Email: cs251@cs.mcgill.ca

(Note: This will be the only email address you should use
and from which you can expect an answer)



mailto:cs251@cs.mcgill.ca

About (2)

Giulia Alberini

Lecturer in Computer Science
Cryptography and CS Education

How to reach Giulia?

o Office hours (TBA; See online schedule)

o By appointment (email me to schedule a meeting)
o Email: cs251@cs.mcgill.ca

(Note: This will be the only email address you should use
and from which you can expect an answer)


mailto:cs251@cs.mcgill.ca

Objectives

* C(Classical tree & graph algorithms

* Techniques to efficiently solve
computational problems

* Estimate the efficiency of an algorithm

* Prove the correctness of an algorithm

THIS IS NOT A PROGRAMMING CLASS!

(But you will learn a LOT of techniques that will make you a
better programmer)



Course Material

Course web page:
e http://www.cs.mcgill.ca/~jeromew/comp251.html

» Slides of lectures
 General information & rules
* Schedule

* Announces

MyCourses:

* Grades

* Video recording of the lectures
e Access to discussion forum (Ed)


http://www.cs.mcgill.ca/~jeromew/comp251.html

Communication

General inquiries:

Use the forum (https://edstem.org/us/). The answer may be
help to your peers too!

Private matters:
Email us at cs251@cs.mcgill.ca

* Both instructors receive the email simultaneously.

* If the question is a general request, we will ask you to post it
on Ed to answer it publicly.

* If the question has been answered on the forum, we will
redirect you there.


https://edstem.org/us/
mailto:cs251@cs.mcgill.ca

Evaluation Scheme

* 30% for 3 assignments (10% each)
e 20% for 1 mid-term exams
e 50% for the final exam

Notes:
e There will be no modification of this scheme
 The mid-term is NOT optional (as well as the final...)



Schedule

* C(Classes start... Today and end on Dec 1.

* Assignments:

Assignment Released Due on
1 Sep. 20 Oct. 6
2 Oct. 18 Nov, 8
3 Nov. 15 Nov. 29

Assignments are released 2 weeks before the due date. This is much
more that needed. It will allow you arrange you schedule. Start early!

 Midterm: November 1 (in-person during regular class hours)

 Final: Exam week



Lecture

Lectures are recorded and available for streaming but cannot
be downloaded.

When possible, the slides will be available on the course
webpage shortly before the lecture.

Questions are encouraged!



Office hours

Check schedule on the course webpage for the instructors and
TA's office hours (OHs).

By defaults OHs are in-person, but occasionally we will also
organize Zoom sessions.

The instructors will give priority to questions about the course
material and administration.

Question about assignments should be ask in priority to Tas

How to reach us? cs251@cs.mcgill.ca



mailto:cs251@cs.mcgill.ca

Pandemic

 Wearing a mask is no longer mandatory but
still recommended

e Back to the normal mode (i.e., pre-pandemic),
yet if the situation should change, we will
adjust.



Outline

Sep 6 - 15: Background & COMP 250 Review

Sep 20 - 29: Dictionaries (Tree ADT & Hash tables)

Oct 4 - Oct 6: Intro to Algorithm design (Greedy algorithm)
Oct 11 — Oct 27: Graph algorithms

Nov 3 - Nov 24: Algorithm design & Algorithm analysis

Nov 29 - Dec 1: Advanced topics (subject to change)



Prerequisites

COMP 250:
* Data structures
* Recursive algorithms

MATH 240:

* Graph theory
 Combinatorial methods
e Basic proof techniques

What will useful too?

* Basic understanding of probabilities



Textboooks

[CLRS2009] Cormen, Leiserson, Rivest, & Stein, Introduction to
Algorithms.

(Available as E-book at the McGill library)
[KT2006] Kleinberg & Tardos, Algorithm Design.

Textbooks are recommended but not mandatory.



Assignments

Mostly proofs and theoretical problems

Relatively short, but start as early as possible

Read carefully and strictly follow the formatting guidelines.
Submitted on MyCourses using Crowdmark

Discuss but do not share/copy solutions (this is plagiarism).

Write down the name(s) of person(s) with whom you
discussed the answers (including teaching staff).

We cannot guarantee to answer any question sent or posted
less than 24h from the deadline (but we will try to).

20% late submission penalty if less than 24 after the deadline.
Refused otherwise. This is a strict policy.



Additional Material

We will release programming assignments that will help you
to practice the implementation of the algorithms covered in
class

Optional and Not graded

You can visit the TA to check your solution



Academic integrity

If we identify a case of plagiarism, we will report it directly to
a disciplinary officer and send email notifications after.

For all other rules and processes, you can consult
https://www.mcgill.ca/deanofstudents/students/student-
rights-responsibilities/code



https://www.mcgill.ca/deanofstudents/students/student-rights-responsibilities/code

Midterm

 What? Quizzes, application of algorithms, and proofs.

* When? During the regular class hours.
= Designed to be fully completed in 1h15
" You are not expected to have any conflict with another
midterm or class
= November1l

* Where? In our regular classroom.



Final Examination

* What? Same format as the mid-term but it covers all topics
(including advanced topics!)
= Same format as the mid-term but it covers all topics
(including advanced topics!)

e When?
= Designed to be fully completed in 3h00
= Exam week

e Where?
" |n-Person!



Next (four) classes

 Review of COMP 250 material
* Reccurences
* Proofs
* Big Oh notations
* Trees and graphs

e Basic probability (expectation, indicator)
* Binary numbers



Prerequisite from COMP 250:

Data Structures
Array

running time for insert, delete, find...
Single-linked list
Better than arrays:

Easier to insert and delete
No need to know size in advance

Worse than arrays:

finding the n-th element is slow (so binarySearch is hard)
Require more memory (for the "next" member)

Doubly-linked list
Allow to move backward
Makes deleting elements easier

Stacks and queues
You should understand all applications we saw



Recursions

Definition (recursive case & base case)
Binary search

Fibonacci

Merge Sort

How to write a function describing the running
time of a recursive algorithms.

Estimate the number of recursive calls.

Dividing original problem into roughly equal size
subproblems usually gives better running times.



Running time and big-Oh

Running time:
o Counting primitive operations
o Dealing with loops: 2", i =n (n+1)/2is O(n?)
o Worst-case vs average-case vs best-case
Big-Oh notation:
o Mathematical definition

o Big-Oh is relevant only for large inputs. For small inputs, big-Oh
may be irrelevant (remember integer multiplications)

Big-Theta, Big-Omega
Unless mentioned otherwise, big-Oh running time is for
worst-case.

You need to know and understand the big-Oh running time
of all algorithms seen in class and in homeworks.



ADT (Abstract Data Structure)

What it is?
Description of the interface of a data structure. It
specifies:
 What type of data can be stored
 What kind of operations can be performed
* Hides the details of implementation
Why it is important?
Simplifies the way we think of large programs



Trees

treeNode representation

Vocabulary: node, leaf, root, parent, sibling,

descendants, ancestors, subtree rooted at x,
internal and external nodes, ordered, binary,
proper binary

Depth and height

— Definition

— How to compute it.

Tree traversal

— Pre-order, In-order, Post-order



Dictionary ADTs

e Stores pairs (key, info)

e Operations: find(key), insert(key, info),
remove(key)

e Cases where array implementation is bad
(with complexity)

e Cases where linked-list implementation is bad
(with complexity)



Dictionary ADTs with Binary Search
trees (BST)

Property: for any node x,

— keys in the left subtree of x have keys smaller or equal to
key(x) and

— keys in the right subtree of x have keys larger or equal to
key(x)

Algorithm to find a key and its running time O(h) =
O(log n) if the tree is balanced.

Inserting a new key. Running time O(h). Sequence of
insertion that can lead to bad running times.

Removing a key.

You need to be able to execute these algorithms by
hand on examples.



Dictionary ADTs with Hash Tables

Implements a dictionary

ldea:

— map keys to buckets

— Each bucket is itself a dictionary
Hash functions:

— Goal: minimize collisions

— Easy to compute

Best case:

— keys are distributed uniformly among the buckets. Each bucket
contains few keys

Worst case:
— All keys end-up in the same bucket



Priority queues

Heap property:
— key(x) is smaller or equal to the keys of children of x.

— All h-1 first levels are full, and in the last level, nodes are
packed to the left

Operations:

— findMin(). Algorithm. O(1)

— insert(key). Bubbling-up. O(log n)

— removeMin(). Bubbling-down. O(log n)
Array representation of heaps
HeapSort

— insert keys one by one

— removeMin() one by one



Graphs

All the terminology

Data structures for representing graphs:

— Adjacency-list

— Adjacency-matrix

— Running time of basic operations with each data structure
Graph traversal

— Depth-first search
* Recursive
* |terative using a stack

— Breadth-first search
* |terative using a queue

IMPORTANT:
Applications of DFS and BFS



