
COMP251: Algorithms and Data
Structures

Giulia Alberini, Jérôme Waldispühl
School of Computer Science

McGill University

About Me

• Jérôme Waldispühl
• Associate Professor of Computer Science
• Bioinformatics, Human-Computer Interactions &

Video games!
• How to reach me?

o Office hours (TBA; See online schedule)
o By appointment (email me to schedule a meeting)
o Email: cs251@cs.mcgill.ca
(Note: This will be the only email address you should use
and from which you can expect an answer)

mailto:cs251@cs.mcgill.ca

About (2)

• Giulia Alberini

• Lecturer in Computer Science

• Cryptography and CS Education

• How to reach Giulia?
o Office hours (TBA; See online schedule)
o By appointment (email me to schedule a meeting)
o Email: cs251@cs.mcgill.ca
(Note: This will be the only email address you should use
and from which you can expect an answer)

mailto:cs251@cs.mcgill.ca

Objectives
• Classical tree & graph algorithms
• Techniques to efficiently solve

computational problems
• Estimate the efficiency of an algorithm

• Prove the correctness of an algorithm

THIS IS NOT A PROGRAMMING CLASS!

(But you will learn a LOT of techniques that will make you a
better programmer)

Course Material

Course web page:
• http://www.cs.mcgill.ca/~jeromew/comp251.html
• Slides of lectures
• General information & rules
• Schedule
• Announces

MyCourses:
• Grades
• Video recording of the lectures
• Access to discussion forum (Ed)

http://www.cs.mcgill.ca/~jeromew/comp251.html

Communication

General inquiries:
Use the forum (https://edstem.org/us/). The answer may be
help to your peers too!

Private matters:
Email us at cs251@cs.mcgill.ca
• Both instructors receive the email simultaneously.
• If the question is a general request, we will ask you to post it

on Ed to answer it publicly.
• If the question has been answered on the forum, we will

redirect you there.

https://edstem.org/us/
mailto:cs251@cs.mcgill.ca

Evaluation Scheme

• 30% for 3 assignments (10% each)
• 20% for 1 mid-term exams
• 50% for the final exam

Notes:
• There will be no modification of this scheme
• The mid-term is NOT optional (as well as the final…)

Schedule
• Classes start… Today and end on Dec 1.

• Assignments:

Assignments are released 2 weeks before the due date. This is much
more that needed. It will allow you arrange you schedule. Start early!

• Midterm: November 1 (in-person during regular class hours)

• Final: Exam week

Assignment Released Due on

1 Sep. 20 Oct. 6

2 Oct. 18 Nov, 8

3 Nov. 15 Nov. 29

Lecture

• Lectures are recorded and available for streaming but cannot
be downloaded.

• When possible, the slides will be available on the course
webpage shortly before the lecture.

• Questions are encouraged!

Office hours

• Check schedule on the course webpage for the instructors and
TA’s office hours (OHs).

• By defaults OHs are in-person, but occasionally we will also
organize Zoom sessions.

• The instructors will give priority to questions about the course
material and administration.

• Question about assignments should be ask in priority to Tas

• How to reach us? cs251@cs.mcgill.ca

mailto:cs251@cs.mcgill.ca

Pandemic

• Wearing a mask is no longer mandatory but
still recommended

• Back to the normal mode (i.e., pre-pandemic),
yet if the situation should change, we will
adjust.

Outline

• Sep 6 - 15: Background & COMP 250 Review

• Sep 20 - 29: Dictionaries (Tree ADT & Hash tables)

• Oct 4 - Oct 6: Intro to Algorithm design (Greedy algorithm)

• Oct 11 – Oct 27: Graph algorithms

• Nov 3 - Nov 24: Algorithm design & Algorithm analysis

• Nov 29 - Dec 1: Advanced topics (subject to change)

Prerequisites
COMP 250:
• Data structures
• Recursive algorithms

MATH 240:
• Graph theory
• Combinatorial methods
• Basic proof techniques

What will useful too?
• Basic understanding of probabilities

Textboooks

[CLRS2009] Cormen, Leiserson, Rivest, & Stein, Introduction to
Algorithms.
(Available as E-book at the McGill library)

[KT2006] Kleinberg & Tardos, Algorithm Design.

Textbooks are recommended but not mandatory.

Assignments
• Mostly proofs and theoretical problems
• Relatively short, but start as early as possible
• Read carefully and strictly follow the formatting guidelines.
• Submitted on MyCourses using Crowdmark
• Discuss but do not share/copy solutions (this is plagiarism).
• Write down the name(s) of person(s) with whom you

discussed the answers (including teaching staff).
• We cannot guarantee to answer any question sent or posted

less than 24h from the deadline (but we will try to).
• 20% late submission penalty if less than 24 after the deadline.

Refused otherwise. This is a strict policy.

Additional Material

• We will release programming assignments that will help you
to practice the implementation of the algorithms covered in
class

• Optional and Not graded

• You can visit the TA to check your solution

Academic integrity

• If we identify a case of plagiarism, we will report it directly to
a disciplinary officer and send email notifications after.

• For all other rules and processes, you can consult
https://www.mcgill.ca/deanofstudents/students/student-
rights-responsibilities/code

https://www.mcgill.ca/deanofstudents/students/student-rights-responsibilities/code

Midterm

• What? Quizzes, application of algorithms, and proofs.

• When? During the regular class hours.
§ Designed to be fully completed in 1h15
§ You are not expected to have any conflict with another

midterm or class
§ November 1

• Where? In our regular classroom.

Final Examination

• What? Same format as the mid-term but it covers all topics
(including advanced topics!)
§ Same format as the mid-term but it covers all topics

(including advanced topics!)

• When?
§ Designed to be fully completed in 3h00
§ Exam week

• Where?
§ In-Person!

Next (four) classes

• Review of COMP 250 material
• Reccurences
• Proofs
• Big Oh notations
• Trees and graphs

• Basic probability (expectation, indicator)
• Binary numbers

Prerequisite from COMP 250:
Data Structures

• Array
running time for insert, delete, find...

• Single-linked list
Better than arrays:

Easier to insert and delete
No need to know size in advance

Worse than arrays:
finding the n-th element is slow (so binarySearch is hard)
Require more memory (for the "next" member)

• Doubly-linked list
Allow to move backward
Makes deleting elements easier

• Stacks and queues
You should understand all applications we saw

Recursions

• Definition (recursive case & base case)
• Binary search
• Fibonacci
• Merge Sort
• How to write a function describing the running

time of a recursive algorithms.
• Estimate the number of recursive calls.
• Dividing original problem into roughly equal size

subproblems usually gives better running times.

Running time and big-Oh

• Running time:
o Counting primitive operations
o Dealing with loops: Sn

i=1 i = n (n+1)/2 is O(n2)
o Worst-case vs average-case vs best-case

• Big-Oh notation:
o Mathematical definition
o Big-Oh is relevant only for large inputs. For small inputs, big-Oh

may be irrelevant (remember integer multiplications)
• Big-Theta, Big-Omega
• Unless mentioned otherwise, big-Oh running time is for

worst-case.
• You need to know and understand the big-Oh running time

of all algorithms seen in class and in homeworks.

ADT (Abstract Data Structure)

What it is?
Description of the interface of a data structure. It
specifies:
• What type of data can be stored
• What kind of operations can be performed
• Hides the details of implementation

Why it is important?
Simplifies the way we think of large programs

Trees

• treeNode representation
• Vocabulary: node, leaf, root, parent, sibling,

descendants, ancestors, subtree rooted at x,
internal and external nodes, ordered, binary,
proper binary

• Depth and height
– Definition
– How to compute it.

• Tree traversal
– Pre-order, In-order, Post-order

Dictionary ADTs

• Stores pairs (key, info)
• Operations: find(key), insert(key, info),

remove(key)
• Cases where array implementation is bad

(with complexity)
• Cases where linked-list implementation is bad

(with complexity)

Dictionary ADTs with Binary Search
trees (BST)

• Property: for any node x,
– keys in the left subtree of x have keys smaller or equal to

key(x) and
– keys in the right subtree of x have keys larger or equal to

key(x)
• Algorithm to find a key and its running time O(h) =

O(log n) if the tree is balanced.
• Inserting a new key. Running time O(h). Sequence of

insertion that can lead to bad running times.
• Removing a key.
• You need to be able to execute these algorithms by

hand on examples.

Dictionary ADTs with Hash Tables
• Implements a dictionary
• Idea:

– map keys to buckets
– Each bucket is itself a dictionary

• Hash functions:
– Goal: minimize collisions
– Easy to compute

• Best case:
– keys are distributed uniformly among the buckets. Each bucket

contains few keys
• Worst case:

– All keys end-up in the same bucket

Priority queues
• Heap property:
– key(x) is smaller or equal to the keys of children of x.
– All h-1 first levels are full, and in the last level, nodes are

packed to the left
• Operations:
– findMin(). Algorithm. O(1)
– insert(key). Bubbling-up. O(log n)
– removeMin(). Bubbling-down. O(log n)

• Array representation of heaps
• HeapSort
– insert keys one by one
– removeMin() one by one

Graphs
• All the terminology
• Data structures for representing graphs:

– Adjacency-list
– Adjacency-matrix
– Running time of basic operations with each data structure

• Graph traversal
– Depth-first search

• Recursive
• Iterative using a stack

– Breadth-first search
• Iterative using a queue

• IMPORTANT:
Applications of DFS and BFS

