Comp 251 (Fall 2022): Assignment 2

Answers must be submitted online by November 10th (11:59 pm), 2022.

General instructions (Read carefully!)

Important: All of the work you submit must be done by only you, and your work must not be
submitted by someone else. Plagiarism is academic fraud and is taken very seriously.

To some extent, collaborations are allowed. These collaborations should not go as far as sharing
code or giving away the answer. You must indicate on your assignments the names of the
people with whom you collaborated or discussed your assignments (including members of
the course staff). If you did not collaborate with anyone, write ‘“No collaborators”. If asked,
you should be able to orally explain your solution to a member of the course staff.

It is your responsibility to guarantee that your assignment is submitted on time. We do not cover
technical issues or unexpected difficulties you may encounter. Last minute submissions are at your
own risk.

Multiple submissions are allowed before the deadline. We will only grade the last submitted file.
Therefore, we encourage you to submit as early as possible a preliminary version of your solution
to avoid any last minute issue.

Late submissions can be submitted for 24 hours after the deadline, and will receive a flat penalty
of 20%. We will not accept any submission more than 24 hours after the deadline. The submission
site will be closed, and there will be no exceptions, except medical.

In exceptional circumstances, we can grant a small extension of the deadline (e.g. 24h) for medical
reasons only. However, such request must be submitted before the deadline, justified and approved
by the instructors.

Violation of any of the rules above may result in penalties or even absence of grading. If anything
is unclear, it is up to you to clarify it by asking either directly the course staff during office hours,
by email at (cs251@cs.mcgill.ca) oron the discussion board on Ed (recommended). Please,
note that we reserve the right to make specific/targeted announcements affecting/extending these
rules in class and/or on the website. It is your responsibility to monitor Ed for announcements.

The course staff will answer questions about the assignment during office hours or in the online
forum. We urge you to ask your questions as early as possible. We cannot guarantee that questions
asked less than 24h before the submission deadline will be answered in time. In particular, we will
not answer individual emails about the assignment that are sent sent the day of the deadline.

Unless specified, all answers must be justified!


cs251@cs.mcgill.ca

Least common multiple

. This problem aims to study an algorithm that computes, for an integer n € N, the least common
multiple (LCM) of all integers < n.

For a given integer n € N, let P, = pi'p5® - - - p.*, where pq, po, - - -, py is a strictly increasing
sequence of prime numbers between 2 and n and for each ¢ € {1,-- -k}, x; is the integer such that
pit <n < p/*!. Forexample, Py = 2%-3%2.5-7.

More precisely, we’re going to compute all P;, j € {1,---,n} and store pairs of integers
(p®, p) in a heap, a binary tree where the element stored in the parent node is strictly smaller than
those stored in children nodes. For two given pairs of integers (a,b) and (d/, V'), (a,b) < (a/, V') if
and only if a < a’. Let h denotes the tree height, we admit that » = O(logn). All levels of the
binary tree are filled with data except for the level i, where elements are stored from the left to the
right. After computing P;, all pairs (p®, p) are stored in the heap such that p is a prime number
smaller or equal to j and « is the smallest integer such that j < p“. For instance, after computing
Py, we store (16, 2), (27, 3), (25,5), and (49, 7) in the heap.

The algorithm is iterative. We store in the variable LCM the least common multiple computed
so far. At first, LCM= 2 is the LCM of integers smaller than 2 and the heap is constructed with only
one node with value (4, 2). After finish the (j — 1)-th step, we compute the j-th step as follows:

1. If j is a prime number, multiply LCM by ; and insert a new node (2, j) in the heap.

2. Otherwise, if the root (p®, p) satisfies j = p®, then we multiply LCM by p, change the root’s
value by (p®*!, p), and reconstruct the heap.

We’re going to prove, step by step, that the time complexity of this algorithm is O(n+/n).

(a) (5 points) In operation 1, a new node is inserted. What is the complexity of this operation?
There will be no partial credit for this question.

(b) (5 points) In operation 2, the heap is reconstructed. What is the time complexity of this opera-
tion? There will be no partial credit for this question.

(¢) (20 points) The number of prime numbers smaller than n concerned in the operation 2 is less
than y/n. Prove that the number of times N we need to execute operation 2 to compute P, is
asymptotically negligible compared to n. Tip: you can prove this by proving N is o(n), where
o (little o) denotes a strict upper bound.

(d) (20 points) Assume the complexity of assessing whether an integer is a prime number is \/n
and suppose multiplication has a time complexity of 1. Prove that the algorithm’s complexity

is O(ny/n).
(e) (5 points) Prove that, for a given heap of height 4 with n nodes, we have h = O(logn). No
partial credit will be awarded.

Page 2



Change-making problem

. In this problem, we aim to answer the question: “How to return a given amount of change using the
minimum number of coins (including bills) for a given coin system.” For example, the best way to
return 7 dollars is returning a 5 dollars and a 2 dollars.

First, let us define formally the problem. A coin system is a m-tuplet ¢ = (¢, ¢g, . . ., ¢,) such
that c; > co > --- > ¢, = 1. For a given coin system c and a positive integer x, we want to find a
solution (a m-tuple of non-negative integers) k = (ky, ko, ..., ky,) such that x = >_7" | k;c; so as to
minimize Y ;" | k;.

In general, the problem is NP-complete. However, there exists a greedy algorithm to find the
optimal solution for some coin systems. The algorithm is simple. For a given z, we select the largest
coin ¢; < x. Then we repeat it for x — ¢;. The procedure halts when x becomes 0. For instance, with
the coin system (10, 5,2, 1), the algorithm decomposes 2 = 27 into 10, 10, 5, and 2.

From now, we say a coin system is canonical if and only if the solution given by the greedy
function above is optimal for any positive integer z. For example, all systems (a, 1) with a > 1 are
canonical. For any positive integer x, we can write it in the form of Euclidean division, z = aq + r
with 7 < a. The solution returned by the greedy algorithm described above is then g = (¢, 7). To
prove that the solution is optimal, we consider ¢’ = (¢/,7’) different than g such that x = aq’ + .
We have ¢’ < ¢, otherwise ¢’ = ¢g. Since (¢ +1') — (¢+71) = (¢ +x—aq) — (¢+x — aq) =
(a —1)(¢ — ¢') > 0, the solution g is optimal. Therefore, the system (a, 1) is canonical.

(a) (5 points) Design a non-canonical system of 3 — tuple ¢ = (c1, 2, ¢3) and justify it.

(b) (20 points) Let ¢ and n be two integers > 2. Prove that the system ¢ = (¢",¢",...,q, 1) is
canonical.

(c) (20 points) Prove that the Euro system ¢ = (200, 100, 50, 20, 10, 5,2, 1) is canonical.

Further reading, for those who are interested, there exists an algorithm to verify if a system is
canonical (Kozen and Zaks, 1994).

Page 3



