COMP251: Binary search trees, AVL trees & AVL sort

Jérôme Waldispühl & Roman Sarrazin-Gendron
School of Computer Science
McGill University

From Lecture notes by E. Demaine (2009)
Outline

• Review of binary search trees
• AVL-trees
• Rotations
• BST & AVL sort
• Exams announcement
Binary search trees (BSTs)

- T is a rooted binary tree
- Key of a node \(x \geq \) keys in its left subtree.
- Key of a node \(x \leq \) keys in its right subtree.
Operations on BSTs

- Search(T,k): $\Theta(h)$
- Insert(T,k): $\Theta(h)$
- Delete(T,k): $\Theta(h)$

Where h is the height of the BST.
Height of a tree

Height(n): length (#edges) of longest downward path from node n to a leaf.

Height(x) = 1 + max(height(left(x)), height(right(x)))
Example

\[h(a) = ? \]

\[= 1 + \max(h(b) , h(g)) \]

\[= 1 + \max(1 + \max(h(c) , h(d)) , 1 + h(h)) \]

\[= 1 + \max(1 + \max(0 , h(d)) , 1 + 0) \]

\[= 1 + \max(1 + \max(0 , 1 + h(e)) , 1) \]

\[= 1 + \max(1 + \max(0 , 1 + (1 + h(f))) , 1) \]

\[= 1 + \max(1 + \max(0 , 1 + (1 + 0)) , 1) \]

\[= 1 + \max(3 , 1) \]

\[= 4 \]
Height vs. Depth

Good vs. Bad BSTs

Balanced
- $h = \Theta (\log n)$

Unbalanced
- $h = \Theta (n)$

This is technically a valid BST but in practice, it’s a sorted linked list 😞
AVL trees (Adelson-Velsky, Landis)

Definition: BST such that the heights of the two child subtrees of any node differ by at most one.

\[|h_{\text{left}} - h_{\text{right}}| \leq 1 \]

- AVL trees are self-balanced binary search trees.
- Insert, Delete & Search take \(O(\log n) \) in average and worst cases.
- To satisfy the definition, the height of an empty subtree is -1
Height of a AVL tree

\[N_h = \text{minimum \ #nodes in an AVL tree of height } h. \]

\[N_h > 2^k \cdot N_{(h-2k)} \]

Let \(k = h/2 - 1 \):

\[N_h > 2^{(h/2-1)} \cdot N_1 \]

\[N_h > c \cdot 2^{(h/2-1)} \]

We can generalize this expression by multiplying shorter subtrees by higher exponents of 2.

\[N_h = 1 + N_{h-1} + N_{h-2} \]

\[> 2 \cdot N_{h-2} \]

\[\Rightarrow \quad N_h > \Theta \left(2^{h/2} \right) \]

\[\Rightarrow \quad h < 2 \cdot \log N_h \]

\[\Rightarrow \quad h = O \left(\log n \right) \]

We confirmed the height grows with \(\log N \) in the worst case, unlike BSTs.

(Note: a tighter bound can be found using Fibonacci numbers.)
Balance factor

\[\beta = \begin{cases} \text{Left tree is higher (left-heavy)} & \leftarrow \left< \right. \\ \text{Balanced} & = \left. \right. \\ \text{Right tree is higher (right-heavy)} & \rightarrow \end{cases} \]

\[N_{h-2} \quad N_{h-1} \quad N_{h-1} \quad N_{h-1} \quad N_{h-1} \quad N_{h-2} \]

\[x \]

\[N_{h-2} \quad N_{h-1} \]

\[N_{h-1} \quad N_{h-2} \]

\[N_{h-3} \]

\[N_{h-1} \]

Violates AVL property
Insert in AVL trees

1. Insert as in standard BST
2. Restore AVL tree properties

```
x
insert(y)
x
restoreAVL()
```
Insert in AVL trees

Just like BSTs, the AVL definition is recursive. All children of the root of an AVL tree are the root of an AVL tree.

Insert(T, 15)
Insert in AVL trees

How to restore AVL property?

Insert(T, 15)

Bottom-up!
Rotations change the tree structure & **preserve the BST property**.

Proof: elements in B are $\geq x$ and $\leq y$...

In both cases, everything in $A < x <$ everything in $B < y <$ everything in C
Example (right rotation)
Example: Insert in AVL trees

Right rotation at 27

We call it a rotation AT node 27 because 27 is the root that gets “kicked”
We intervene at the deepest node that breaks AVL rules.
Example: Insert in AVL trees

Insert(T, 50)
RotateRight(T, 57)

How to restore AVL property?

Rotating right didn’t fix the problem?! Let’s try something else.
Example: Insert in AVL trees

Left rotation at 43

We remove the zig-zag pattern

RotateLeft(T, 43)
Example: Insert in AVL trees

Right rotation at 57

AVL property restored!

RotateRight(T,57)

We needed to get rid of the « zig-zag » before doing the right rotation!
Algorithm: Insert in AVL trees

1. Suppose x is lowest node violating AVL
2. If x is right-heavy:
 • If x’s right child is right-heavy or balanced (no zig-zag): Left rotation (case A)
 • Else: Right followed by left rotation (case B)
3. If x is left-heavy:
 • If x’s left child is left-heavy or balanced (no zig-zag): Right rotation (symmetric of case A)
 • Else: Left followed by right rotation (sym. of case B)
4. then continue up to x’s ancestors. (bottom-up approach)

Proving cases A and B is sufficient because all AVL operations are symmetric
Proof: Case A

Two cases:
The right child is
a) right-heavy or
b) balanced
Proof: Case B

The right child is left-heavy (zig zag)

Right rotation at y & Left rotation at x

Intuition: here, notice that node z looks like it « belongs » in the center, and does end up as the root!
Proof: Case B

Right rotation at y

The first right rotation brings us back to case A

Left rotation at x
Running time AVL insertion

- Insertion in $O(h)$
- At most 2 rotations in $O(1)$
- Running time is $O(h) + O(1) = O(h) = O(\log n)$ in AVL trees.

Remember we already proved h asymptotically grows with $\log n$ in the worst case.
Sorting with BSTs

1. BST sort
 • Simple method using BSTs
 • Problem: Worst case $O(n^2)$

2. AVL sort
 • Use AVL trees to get $O(n \cdot \log n)$

 AVL tree operations are guaranteed to be $O(\log n)$

This happens because the BST worst case is basically a diagonal linked list
In-order traversal & BST

inorderTraversal(treeNode x)
 inorderTraversal(x.leftChild);
 print x.value;
 inorderTraversal(x.rightChild);

• Print the nodes in the left subtree (A), then node x, and then the nodes in the right subtree (B)
• In a BST, keys in A ≤ x, and keys in B ≥ x.
• In a BST, it prints first keys ≤ x, then x, and then keys ≥ x.
In-order traversal & BST

8, 12, 15, 20, 27, 36, 43, 57

All keys come out sorted!
BST sort

1. Build a BST from the list of keys (unsorted)

2. Use in-order traversal on the BST to print the keys.

Running time of BST sort: insertion of n keys + tree traversal.
Running time of BST sort

- In-order traversal is $\Theta(n)$
- Running time of insertion is $O(h)$

Best case: The BST is always balanced for every insertion.

$$\Omega(n \log(n))$$
In the best case, a BST always respects AVL properties without being « forced » to do so

Worst case: The BST is always un-balanced. All insertions on same side.

$$\sum_{i=1}^{n} i = \frac{n \cdot (n-1)}{2} = O(n^2)$$
The BST worst case is basically a diagonal linked list

Insertion is (n-1)/2 because at worst you’re always inserting in the middle of the « list »
AVL sort

Same as BST sort but use AVL trees and AVL insertion instead.

- Worst case running time can be brought to $O(n \log n)$ if the tree is always balanced.
- Use AVL trees (trees are balanced).
- Insertion in AVL trees are $O(h) = O(\log n)$ for balanced trees.
Midterm

- Tuesday, November 2 (tentative)
- When? During class time (tentative)
- How? We will use crowdmark.
- We will send a list of problems and will implement a practice question on crowdmark to allow you to test the platform.
- Reminder: if you need extra time, you can sign up at the Office for Students with Disabilities (OSD) to get accommodations
- More info coming next week as we are figuring out the detailed Faculty of Science rules for administering exams
- Will cover all the material seen in class until one or two lectures before the midterm.
Final Exam

• Final exam is administered by McGill
 – They control the schedule and all the rules
 – https://www.mcgill.ca/exams
• December 13th, 9AM (tentative)
• In person!
• Three hours
• Cumulative
• More details to come later
Office hours

• They started yesterday!
• The calendar is here: https://www.cs.mcgill.ca/~jeromew/comp251.html
• The Zoom links are on MyCourses (content)
• There is a waiting room, don’t worry if you are not immediately let in.
• Monitor the chat!