COMP251: Elementary graph algorithms

Jérôme Waldispühül
School of Computer Science
McGill University

Based on (Cormen et al., 2002)

Based on slides from D. Plaisted (UNC)
Announces

• Assignment 1: Due on Oct. 18 at 11h59pm (no extension)
• Assignment 2: Released today due on Oct. 29.
• Midterm: November 2 at 10am on CrowdMark.
• Final: Dec. 13 at 9am. **In Person!**
Outline

- Vocabulary, definition, and properties of graphs
- Exploring graphs:
 - Breadth First Search (BFS)
 - Depth First Search (DFS)

Why?
We will cover many algorithms on graphs based on these techniques.
Graphs

• **Graph G = (V, E)**
 - V = set of vertices
 - E = set of edges $\subseteq (V \times V)$

• Types of graphs
 - Undirected: edge $(u, v) = (v, u)$; for all v, $(v, v) \notin E$ (No self loops.)
 - Directed: (u, v) is edge from u to v, denoted as $u \to v$. Self loops are allowed.
 - Weighted: each edge has an associated weight, given by a weight function $w : E \to \mathbb{R}$.
 - Dense: $|E| \approx |V|^2$.
 - Sparse: $|E| \ll |V|^2$.

• $|E| = O(|V|^2)$
Properties

• If \((u, v) \in E\), then vertex \(v\) is adjacent to vertex \(u\).

• Adjacency relationship is:
 – Symmetric if \(G\) is undirected.
 – Not necessarily so if \(G\) is directed.

• If \(G\) is connected:
 – There is a path between every pair of vertices.
 – \(|E| \geq |V| - 1\).
 – Furthermore, if \(|E| = |V| - 1\), then \(G\) is a tree.
Ingoing edges of u: $\{ (v,u) \in E \}$ (e.g. $\text{in}(e) = \{ (b,e), (d,e) \}$)
Outgoing edges of u: $\{ (u,v) \in E \}$ (e.g. $\text{out}(d) = \{ (d,e) \}$)
In-degree(u): $| \text{in}(u) |$
Out-degree(u): $| \text{out}(u) |$
Representation of Graphs

• Two standard ways.
 – Adjacency Lists.

 a
 ├── b
 │ ├── c
 │ └── d
 └── c
 ├── b
 │ └── d
 └── d

 a
 ├── b
 │ └── d
 └── c
 ├── d
 └── a

 a
 ├── b
 │ └── c
 └── d

 a
 ├── b
 ├── c
 └── d

– Adjacency Matrix.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Adjacency Lists

- Consists of an array Adj of $|V|$ lists.
- One list per vertex.
- For $u \in V$, $Adj[u]$ consists of all vertices adjacent to u.

Note: If weighted, store weights also in adjacency lists.
Storage Requirement

• For directed graphs:
 – Sum of lengths of all adj. lists is
 \[\sum_{v \in V} \text{out-degree}(v) = |E| \]
 – Total storage: \(\Theta(V+E) \)

• For undirected graphs:
 – Sum of lengths of all adj. lists is
 \[\sum_{v \in V} \text{degree}(v) = 2|E| \]
 – Total storage: \(\Theta(V+E) \)
Pros and Cons: adj list

• Pros
 – Space-efficient, when a graph is sparse.
 – Can be modified to support many graph variants.

• Cons
 – Determining if an edge \((u,v) \in E\) is not efficient.
 • Have to search in \(u\)'s adjacency list. \(\Theta(\text{degree}(u))\) time.
 • \(\Theta(V)\) in the worst case.
Adjacency Matrix

• $|V| \times |V|$ matrix A.

• Number vertices from 1 to $|V|$ in some arbitrary manner.

• A is then given by:

$$A[i, j] = a_{ij} = \begin{cases} 1 & \text{if } (i, j) \in E \\ 0 & \text{otherwise} \end{cases}$$

$$A = A^T$$ for undirected graphs.
Space and Time

• **Space:** $\Theta(V^2)$.
 - Not memory efficient for large sparse graphs.

• **Time:** to list all vertices adjacent to u: $\Theta(V)$.

• **Time:** to determine if $(u, v) \in E$: $\Theta(1)$.

• Can store weights instead of bits for weighted graph.
Graph-searching Algorithms (COMP250)

- Searching a graph:
 - Systematically follow the edges of a graph to visit the vertices of the graph.
- Used to discover the structure of a graph.
- Standard graph-searching algorithms.
 - Breadth-first Search (BFS).
 - Depth-first Search (DFS).
Breadth-first Search

• Expands the frontier between discovered and undiscovered vertices uniformly across the breadth of the frontier.
 – A vertex is “discovered” the first time it is encountered during the search.
 – A vertex is “finished” if all vertices adjacent to it have been discovered.

• Colors the vertices to keep track of progress.
 – White – Undiscovered.
 – Gray – Discovered but not finished.
 – Black – Finished.
 • Colors are required only to reason about the algorithm. Can be implemented without colors.
Breadth-first Search

- **Input:** Graph $G = (V, E)$, either directed or undirected, and source vertex $s \in V$.

- **Output:**
 - $d[v] =$ distance (smallest # of edges, or shortest path) from s to v, for all $v \in V$. $d[v] = \infty$ if v is not reachable from s.
 - $\pi[v] = u$ such that (u, v) is last edge on shortest path $s \leadsto v$.
 - u is v's predecessor.
 - Builds breadth-first tree with root s that contains all reachable vertices.
We use a priority queue to determine the next vertices to visit. The first vertex we add in the queue is the source.
Color code:
- White: not visited yet
- Gray: visited but neighborhood not fully explored
- Black: Complete

We store in the queue the vertices in the neighborhood of the current vertex.

The vertices are indexed with the number of edges from the source.
Example (BFS)

Q: r t x
 1 2 2
Example (BFS)

Q: t x v
 2 2 2
Example (BFS)

Q: x v u
 2 2 3
Example (BFS)

Q: v u y
2 3 3
Example (BFS)

Q: u y 3 3
Example (BFS)
Example (BFS)

Q: Ø
Example (BFS)

The index of each vertex stores the length of the shortest path to reach them (Note: unweighted graph!).
Analysis of BFS

• Initialization takes $O(V)$.

• Traversal Loop
 – After initialization, each vertex is enqueued and dequeued at most once, and each operation takes $O(1)$. So, total time for queuing is $O(V)$.
 – The adjacency list of each vertex is scanned at most once. The sum of lengths of all adjacency lists is $\Theta(E)$.

• Summing up over all vertices \Rightarrow total running time of BFS is $O(V+E)$, linear in the size of the adjacency list representation of graph.
Depth-first Search (DFS)

• Explore edges out of the most recently discovered vertex \(v \).
• When all edges of \(v \) have been explored, backtrack to explore other edges leaving the vertex from which \(v \) was discovered (its predecessor).
• “Search as deep as possible first.”
• Continue until all vertices reachable from the original source are discovered.
• If any undiscovered vertices remain, then one of them is chosen as a new source and search is repeated from that source.
Depth-first Search

• **Input:** $G = (V, E)$, directed or undirected. No source vertex given.

• **Output:**

 – 2 **timestamps** on each vertex. Integers between 1 and 2$|V|$.

 * $d[v] = \textit{discovery time}$ (v turns from white to gray)
 * $f[v] = \textit{finishing time}$ (v turns from gray to black)

 – $\pi[v]$: predecessor of $v = u$, such that v was discovered during the scan of u’s adjacency list.

• Uses the same coloring scheme for vertices as BFS.
Pseudo-code

DFS(G)
1. **for** each vertex $u \in V[G]$
2. \hspace{1em} **do** $\text{color}[u] \leftarrow \text{white}$
3. \hspace{1em} $\pi[u] \leftarrow \text{NIL}$
4. $\text{time} \leftarrow 0$
5. **for** each vertex $u \in V[G]$
6. \hspace{1em} **do** if $\text{color}[u] = \text{white}$
7. \hspace{1em} \hspace{1em} then DFS-Visit(u)

DFS-Visit(u)
1. $\text{color}[u] \leftarrow \text{GRAY}$ \# White vertex u has been discovered
2. $\text{time} \leftarrow \text{time} + 1$
3. $d[u] \leftarrow \text{time}$
4. **for** each $v \in \text{Adj}[u]$
5. \hspace{1em} **do** if $\text{color}[v] = \text{WHITE}$
6. \hspace{1em} \hspace{1em} then $\pi[v] \leftarrow u$
7. \hspace{1em} DFS-Visit(v)
8. $\text{color}[u] \leftarrow \text{BLACK}$ \# Blacken u; it is finished.
9. $f[u] \leftarrow \text{time} \leftarrow \text{time} + 1$

Uses a global timestamp \textit{time}.
Example (DFS)

Starting time $d(x)$

Diagram:

- Node 1/ (grey)
- Nodes u, v, w, x, y, z
- Arrows indicating connections between nodes
Example (DFS)
Example (DFS)
Example (DFS)
Example (DFS)
Example (DFS)

Starting time \(d(x) \)

Finishing time \(f(x) \)
Example (DFS)
Analysis of DFS

• Loops on lines 1-2 & 5-7 take $\Theta(V)$ time, excluding time to execute DFS-Visit.

• DFS-Visit is called once for each white vertex $v \in V$ when it’s painted gray the first time. Lines 3-6 of DFS-Visit is executed $|\text{Adj}[v]|$ times. The total cost of executing DFS-Visit is $\sum_{v \in V} |\text{Adj}[v]| = \Theta(E)$

• Total running time of DFS is $\Theta(V+E)$.
Example (DFS)

Starting time $d(x)$

Finishing time $f(x)$
Parenthesis Theorem

Theorem 1:
For all u, v, exactly one of the following holds:

2. $d[u] < d[v] < f[v] < f[u]$ and v is a descendant of u.

- Like parentheses:
 - OK: () [] ([]) [()]
 - Not OK: ([)] [(])

Corollary
v is a proper descendant of u if and only if $d[u] < d[v] < f[v] < f[u]$.
Example (Parenthesis Theorem)

\[(s \ (z \ (y \ (x \ x) \ y) \ (w \ w) \ z) \ s) \ (t \ (v \ v) \ (u \ u) \ t)\]