COMP251: Greedy algorithms

Jérôme Waldispühl
School of Computer Science
McGill University

Based on (Cormen et al., 2002)

Based on slides from D. Plaisted (UNC) & (goodrich & Tamassia, 2009)
Announces

• Assignment 1
 ▪ Extension to Oct 18 at 11h59
 ▪ No answer to questions about assignment 1 after Oct 15
 ▪ We will not accept any submission after Oct 8 (Oct 15-18 is late submission but without penalty)
• Release of Assignment 2 as scheduled
• Extended proof about Union by Size in slides of Lecture 9
Overview

• Algorithm design technique to solve optimization problems.
• Problems exhibit optimal substructure.
• Idea (the greedy choice):
 – When we have a choice to make, make the one that looks best right now.
 – Make a locally optimal choice in hope of getting a globally optimal solution.
Outline

• Definition of the activity selection problem
• Greedy choice & optimal sub-structure
• Greedy algorithm for the activity selection problem
• Text compression & Huffman encoding
Greedy Strategy

The choice that seems best at the moment is the one we go with.

– Prove that when there is a choice to make, one of the optimal choices is the greedy choice. Therefore, it is always safe to make the greedy choice.

– Show that all but one of the sub-problems resulting from the greedy choice are empty.
Activity-selection Problem

- **Input:** Set S of n activities, a_1, a_2, \ldots, a_n.
 - $s_i = \text{start time of activity } i$.
 - $f_i = \text{finish time of activity } i$.

- **Output:** Subset A of maximum number of compatible activities.
 - 2 activities are compatible, if their intervals do not overlap.

Example:

Activities in each line are compatible.
Activity-selection Problem

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>f_i</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

Activities sorted by finishing time.

Optimal compatible set: $\{ a_1, a_3, a_5 \}$
Optimal Substructure

• Assume activities are sorted by finishing times.

• Suppose an optimal solution includes activity a_k. This solution is obtained from:
 – An optimal selection of a_1, \ldots, a_{k-1} activities compatible with one another, and that finish before a_k starts.
 – An optimal solution of a_{k+1}, \ldots, a_n activities compatible with one another, and that start after a_k finishes.
Optimal Substructure

• Let $S_{ij} =$ subset of activities in S that start after a_i finishes and finish before a_j starts.

$$S_{ij} = \left\{ a_k \in S : \forall i, j \quad f_i \leq s_k < f_k \leq s_j \right\}$$

• $A_{ij} =$ optimal solution to S_{ij}

• $A_{ij} = A_{ik} \cup \{ a_k \} \cup A_{kj}$
Recursive Solution

- Subproblem: Selecting the maximum number of mutually compatible activities from S_{ij}.
- Let $c[i, j] = \text{size of maximum-size subset of mutually compatible activities in } S_{ij}$.

Recursive solution:

$$c[i, j] = \begin{cases}
0 & \text{if } S_{ij} = \emptyset \\
\max_{k} \{c[i, k] + c[k, j] + 1\} & \text{if } S_{ij} \neq \emptyset \text{ and } \forall k, a_k \in S_{ij}
\end{cases}$$

Note: We do not know (yet) which k to use for the optimal solution.
Theorem:
Let $S_{ij} \neq \emptyset$, and let a_m be the activity in S_{ij} with the earliest finish time $f_m = \min\{f_k : a_k \in S_{ij}\}$. Then:

1. a_m is used in some maximum-size subset of mutually compatible activities of S_{ij}.
2. $S_{im} = \emptyset$, so that choosing a_m leaves S_{mj} as the only nonempty subproblem.
Greedy choice

Proof:

(1) a_m is used in some maximum-size subset of mutually compatible activities of S_{ij}.

- Let A_{ij} be a maximum-size subset of mutually compatible activities in S_{ij} (i.e. an optimal solution of S_{ij}).
- Order activities in A_{ij} in monotonically increasing order of finish time, and let a_k be the first activity in A_{ij}.
- If $a_k = a_m$ ⇒ done.
- Otherwise, let $A'_{ij} = A_{ij} - \{a_k\} U \{a_m\}$
- A'_{ij} is valid because a_m finishes before a_k
- Since $|A_{ij}| = |A'_{ij}|$ and A_{ij} maximal ⇒ A'_{ij} maximal too.
Greedy choice

Proof:
(2) $S_{im} = \emptyset$, so that choosing a_m leaves S_{mj} as the only nonempty subproblem.

If there is $a_k \in S_{im}$ then $f_i \leq s_k < f_k \leq s_m < f_m \Rightarrow f_k < f_m$ which contradicts the hypothesis that a_m has the earliest finishing time.
Greedy choice

We can now solve the problem S_{ij} top-down:

- Choose $a_m \in S_{ij}$ with the earliest finish time (greedy choice).
- Solve S_{mj}.
Activity-selection Problem

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>f_i</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

Activities sorted by finishing time.
Activity-selection Problem

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>f_i</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Activities sorted by finishing time.
Activity-selection Problem

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>f_i</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

Activities sorted by finishing time.
Activity-selection Problem

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>f_i</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

Activities sorted by finishing time.
Recursive Algorithm

```
Recursive-Activity-Selector (s, f, i, n)
1. \( m \leftarrow i + 1 \)
2. \textbf{while} \( m \leq n \) and \( s_m < f_i \) \hspace{1cm} // \text{Find first activity in } S_{i,n+1}
3. \hspace{1cm} \textbf{do} \hspace{0.5cm} m \leftarrow m + 1
4. \hspace{1cm} \textbf{if} \hspace{0.5cm} m \leq n
5. \hspace{1cm} \hspace{1cm} \textbf{then return} \{a_m\} \cup \hspace{1cm}\text{Recursive-Activity-Selector}(s, f, m, n)
6. \hspace{1cm} \hspace{1cm} \text{else return } \emptyset
```

Initial Call: Recursive-Activity-Selector \((s, f, 0, n+1)\)

Complexity: \(\Theta(n) \)

Note 1: We assume activities are already ordered by finishing time.

Note 2: Straightforward to convert the algorithm to an iterative one.
Typical Steps

• Cast the optimization problem as one in which we make a choice and are left with one subproblem to solve.

• Prove that there is always an optimal solution that makes the greedy choice (greedy choice is safe).

• Show that greedy choice and optimal solution to subproblem \Rightarrow optimal solution to the problem.

• Make the greedy choice and solve top-down.

• You may have to preprocess input to put it into greedy order (e.g. sorting activities by finish time).
Elements of Greedy Algorithms

No general way to tell if a greedy algorithm is optimal, but two key ingredients are:

• Greedy-choice Property.
 – We can build a globally optimal solution by making a locally optimal (greedy) choice.

• Optimal Substructure.
Text Compression

• Given a string X, efficiently encode X into a smaller string Y (Saves memory and/or bandwidth)

 \[
 \begin{align*}
 A & \rightarrow 0; \ B \rightarrow 10; \ C \rightarrow 110; \ D \rightarrow 1110 \\
 DDCB & \rightarrow 1110 \ 1110 \ 110 \ 10 \ (13 \text{ bits}) \\
 A & \rightarrow 1110; \ B \rightarrow 110; \ C \rightarrow 10; \ D \rightarrow 0 \\
 DDCB & \rightarrow 0 \ 0 \ 10 \ 110 \ (7 \text{ bits})
 \end{align*}
 \]

• A good approach: **Huffman encoding**
 – Compute frequency \(f(c) \) for each character \(c \).
 – Encode high-frequency characters with short code words
 – No code word is a prefix for another code
 – Use an optimal encoding tree to determine the code words
Encoding Tree Example

- A **code** is a mapping of each character of an alphabet to a binary code-word.
- A **prefix code** is a binary code such that no code-word is the prefix of another code-word.
- An **encoding tree** represents a prefix code:
 - Each external node (leaf) stores a character.
 - The code word of a character is given by the path from the root to the external node storing the character (0 for a left child and 1 for a right child).

<table>
<thead>
<tr>
<th>00</th>
<th>010</th>
<th>011</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
</tr>
</tbody>
</table>
Encoding Example

Initial string: $X = \text{acda}$

Encoded string: $Y = 00 \ 011 \ 10 \ 00$
Encoding Tree Optimization

• Given a text string X, we want to find a prefix code for the characters of X that yields a small encoding for X
 – Rare characters should have long code-words
 – Frequent characters should have short code-words

• Example
 – $X =$ abracadabra
 – T_1 encodes X into 29 bits
 – T_2 encodes X into 24 bits
Example

\[X = \text{abracadabra} \]

Frequencies

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

\[
\begin{array}{c}
\downarrow \\
2 \\
\downarrow \\
2 \\
\downarrow \\
11
\end{array}
\]

\[
\begin{array}{c}
\downarrow \\
2 \\
\downarrow \\
4 \\
\downarrow \\
6
\end{array}
\]

\[
\begin{array}{c}
\downarrow \\
2 \\
\downarrow \\
4 \\
\downarrow \\
6
\end{array}
\]

\[
\begin{array}{c}
\downarrow \\
5
\end{array}
\]
Extended Huffman Tree Example

String: a fast runner need never be afraid of the dark

<table>
<thead>
<tr>
<th>Character</th>
<th>a</th>
<th>b</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>h</th>
<th>i</th>
<th>k</th>
<th>n</th>
<th>o</th>
<th>r</th>
<th>s</th>
<th>t</th>
<th>u</th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>9</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>7</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Huffman tree
Huffman’s Algorithm

- Given a string X, Huffman’s algorithm constructs a prefix code that minimizes the size of the encoding of X.
- It runs in time $O(n + d \log d)$, where n is the size of X and d is the number of distinct characters of X.
- A heap-based priority queue is used as an auxiliary structure.

```plaintext
Algorithm HuffmanEncoding($X$)
Input string $X$ of size $n$
Output optimal encoding trie for $X$
$C \leftarrow$ distinctCharacters($X$)
computeFrequencies($C$, $X$)
$Q \leftarrow$ new empty heap
for all $c \in C$
    $T \leftarrow$ new single-node tree storing $c$
    $Q$.insert(getFrequency($c$), $T$)
while $Q$.size() > 1
    $f_1 \leftarrow Q$.minKey()
    $T_1 \leftarrow Q$.removeMin()
    $f_2 \leftarrow Q$.minKey()
    $T_2 \leftarrow Q$.removeMin()
    $T \leftarrow$ join($T_1$, $T_2$)
    $Q$.insert($f_1 + f_2$, $T$)
return $Q$.removeMin()
```