COMP251: Red-black trees

Jérôme Waldispühl
School of Computer Science
McGill University

Based on (Cormen et al., 2002)
Based on slides from D. Plaisted (UNC)
Red-black trees: Overview

• Red-black trees are a variation of binary search trees to ensure that the tree is \textbf{balanced}.
 – Height is $O(\lg n)$, where n is the number of nodes.
• Operations take $O(\lg n)$ time in the worst case.
• Invented by R. Bayer (1972).
Red-black Tree

• Binary search tree + 1 bit per node: the attribute color, which is either red or black.

• All other attributes of BSTs are inherited:
 – key, left, right, and parent.

• All empty trees (leaves) are colored black.
 – Note: We can use a single sentinel, nil, for all the leaves of red-black tree T, with color[nil] = black. The root’s parent is also nil[T].
Red-black (RB) Properties

1. Every node is either red or black.
2. The root is black.
3. All leaves (nil) are black.
4. If a node is red, then its children are black (i.e. no 2 consecutive red nodes).
5. For each node, all paths from the node to descendant leaves contain the same number of black nodes (i.e. same black height).
Red-black Tree – Example

Note: every internal node has two children, even though *nil leaves are not usually shown.*
Height of a Red-black Tree

• Height of a node:
 – \(h(x) = \) number of edges in the longest path to a leaf.

• Black-height of a node \(x \), \(bh(x) \):
 – \(bh(x) = \) number of black nodes (including \(nil[T] \)) on the path from \(x \) to leaf, not counting \(x \).

• Black-height of a red-black tree is the black-height of its root.
 – By RB Property 5, black height is well defined.
Height of a Red-black Tree

• Height $h(x)$:
 #edges in a longest path to a leaf.

• Black-height $bh(x)$:
 # black nodes on path from x to leaf, not counting x.

• Property: $bh(x) \leq h(x) \leq 2 \times bh(x)$
Bound on RB Tree Height

Lemma 1: Any node x with height $h(x)$ has a black-height $bh(x) \geq h(x)/2$.

Proof: By RB property 4, $\leq h/2$ nodes on the path from the node to a leaf are red. Hence $\geq h/2$ are black.
Bound on RB Tree Height

Lemma 2: The subtree rooted at any node x contains $\geq 2^{bh(x)} - 1$ internal nodes.

Proof: By induction on height of x.

• Base Case: Height $h(x) = 0 \Rightarrow x$ is a leaf $\Rightarrow bh(x) = 0$. Subtree has $\geq 2^0 - 1 = 0$ nodes.

• Induction Step:
 – Each child of x has height $h(x) - 1$ and black-height either $bh(x)$ (child is red) or $bh(x) - 1$ (child is black).
 – By ind. hyp., each child has $\geq 2^{bh(x) - 1} - 1$ internal nodes.
 – Subtree rooted at x has $\geq 2 \cdot (2^{bh(x) - 1} - 1) + 1 = 2^{bh(x)} - 1$ internal nodes. ■
Bound on RB Tree Height

Lemma 1: Any node x with height $h(x)$ has a black-height $bh(x) \geq h(x)/2$.

Lemma 2: The subtree rooted at any node x has $\geq 2^{bh(x)} - 1$ internal nodes.

Lemma 3: A red-black tree with n internal nodes has height at most $2 \lg(n+1)$.

Proof:

- By lemma 2, $n \geq 2^{bh} - 1$,
- By lemma 1, $bh \geq h/2$, thus $n \geq 2^{h/2} - 1$.
- $\Rightarrow h \leq 2 \lg(n + 1)$.
Insertion in RB Trees

• Insertion must preserve all red-black properties.
• Should an inserted node be colored Red? Black?
• Basic steps:
 – Use BST Tree-Insert to insert a node x into T.
 • Procedure \texttt{RB-Insert}(x).
 – Color the node x red.
 – Fix the new tree by (1) re-coloring nodes, and (2) performing rotation to preserve RB tree property.
 • Procedure \texttt{RB-Insert-Fixup}.
Insertion

RB-Insert\((T, z)\)

1. \(y \leftarrow \text{nil}[T]\)
2. \(x \leftarrow \text{root}[T]\)
3. while \(x \neq \text{nil}[T]\) do
 4. \(y \leftarrow x\)
 5. if key[\(z\)] < key[\(x\)] then \(x \leftarrow \text{left}[x]\)
 6. else \(x \leftarrow \text{right}[x]\)
7. \(p[z] \leftarrow y\)
8. if \(y = \text{nil}[T]\) then \(\text{root}[T] \leftarrow z\)
9. else if key[\(z\)] < key[\(y\)] then \(\text{left}[y] \leftarrow z\)
10. else \(\text{right}[y] \leftarrow z\)

RB-Insert\((T, z)\) Contd.

14. \(\text{left}[z] \leftarrow \text{nil}[T]\)
15. \(\text{right}[z] \leftarrow \text{nil}[T]\)
16. \(\text{color}[z] \leftarrow \text{RED}\)
17. \(\text{RB-Insert-Fixup} (T, z)\)

Regular BST insert + color assignment + fixup.
Insert RB Tree – Example
Insert RB Tree – Example

Insert(T, 15)
Insert RB Tree – Example

Recolor 10, 8 & 11
Insert RB Tree – Example

Right rotate at 18
Parent & child with conflict are now aligned with the root.
Insert RB Tree – Example

Left rotate at 7
Insert RB Tree – Example
Insert RB Tree – Example

Recolor 10 & 7 (root must be black!)
Insertion – Fixup

RB-Insert-Fixup \((T, z)\)

1. while \(\text{color}[p[z]] = \text{RED} \)
2. do if \(p[z] = left[p[p[z]]] \)
3. then \(y \leftarrow right[p[p[z]]] \)
4. if \(\text{color}[y] = \text{RED} \)
5. then \(\text{color}[p[z]] \leftarrow \text{BLACK} \) // Case 1
6. \(\text{color}[y] \leftarrow \text{BLACK} \) // Case 1
7. \(\text{color}[p[p[z]]] \leftarrow \text{RED} \) // Case 1
8. \(z \leftarrow p[p[z]] \) // Case 1
Insertion – Fixup

RB-Insert-Fixup(T, z) (Contd.)

9. \textbf{else if }$z = right[p[z]]$ \textbf{// color}[y] \neq \text{RED}
10. \textbf{then }$z \leftarrow p[z] \textbf{// Case 2}$
11. \text{LEFT-ROTATE}(T, z) \textbf{// Case 2}$
12. color[p[z]] \leftarrow \text{BLACK} \textbf{// Case 3}$
13. color[p[p[z]]] \leftarrow \text{RED} \textbf{// Case 3}$
14. \text{RIGHT-ROTATE}(T, $p[p[z]]$) \textbf{// Case 3}$
15. \textbf{else (if }p[z] = right[p[p[z]]])(\text{same as 10-14}$
16. with “right” and “left” exchanged)$
17. color[root[T]] \leftarrow \text{BLACK}$
Case 1 – uncle y is red

- $p[p[z]]$ (z’s grandparent) must be black, since z and $p[z]$ are both red and there are no other violations of property 4.
- Make $p[z]$ and y black \Rightarrow now z and $p[z]$ are not both red. But property 5 might now be violated.
- Make $p[p[z]]$ red \Rightarrow restores property 5.
- The next iteration has $p[p[z]]$ as the new z (i.e., z moves up 2 levels).
Case 2 – y is black, z is a right child

- Left rotate around $p[z]$, $p[z]$ and z switch roles \Rightarrow now z is a left child, and both z and $p[z]$ are red.
- Takes us immediately to case 3.
Case 3 – y is black, z is a left child

• Make $p[z]$ black and $p[p[z]]$ red.
• Then right rotate right on $p[p[z]]$ (in order to maintain property 4).
• No longer have 2 reds in a row.
• $p[z]$ is now black \Rightarrow no more iterations.
Algorithm Analysis

- \(O(\lg n) \) time to get through RB-Insert up to the call of RB-Insert-Fixup.

- **Within RB-Insert-Fixup:**
 - Each iteration takes \(O(1) \) time.
 - Each iteration but the last moves \(z \) up 2 levels.
 - \(O(\lg n) \) levels \(\Rightarrow \) \(O(\lg n) \) time.
 - Thus, insertion in a red-black tree takes \(O(\lg n) \) time.
 - Note: there are at most 2 rotations overall.
Correctness

Loop invariant:

- At the start of each iteration of the while loop,
 - z is red.
 - There is at most one red-black violation:
 - Property 2: z is a red root, or
 - Property 4: z and $p[z]$ are both red.
Correctness – Contd.

• **Initialization:** ✓

• **Termination:** The loop terminates only if $p[z]$ is black. Hence, property 4 is OK. The last line ensures property 2 always holds.

• **Maintenance:** We drop out when z is the root (since then $p[z]$ is sentinel $nil[T]$, which is black). When we start the loop body, the only violation is of property 4.
 - There are 6 cases, 3 of which are symmetric to the other 3. We consider cases in which $p[z]$ is a left child.
 - See cases 1, 2, and 3 described above.
AVL vs. Red-Black Trees

- AVL trees are more strictly balanced ⇒ faster search
- Red Black Trees have less constraints and insert/remove operations require less rotations ⇒ faster insertion and removal
- AVL trees store balance factors or heights with each node
- Red Black Tree requires only 1 bit of information per node
Further Readings

See Chapter 13 for the complete proofs & deletion