COMP251: Graphs, Probability and Binary numbers

Jérôme Waldispühl
School of Computer Science
McGill University
Outline

• Graphs
 o Terminology, definitions and properties
 o Graph traversal: Depth-First Search and Breadth-first search

• Probability

• Binary numbers
Background

Graphs
Graph

• A graph is a pair \((V, E)\), where
 – \(V\) is a set of nodes, called vertices
 – \(E\) is a collection of pairs of vertices, called edges

• Example:
 – A vertex represents an airport and stores the airport code
 – An edge represents a flight route between two airports
Edge Types

- Directed edge
 - ordered pair of vertices \((u,v)\)
 - first vertex \(u\) is the origin
 - second vertex \(v\) is the destination
 - e.g., a flight

- Undirected edge
 - unordered pair of vertices \((u,v)\)
 - e.g., a street

- Directed graph: all edges are directed

- Weighted edge: has a real number associated to it
 - e.g. distance between cities
 - e.g. bandwidth between internet routers

- Weighted graph: all edges have weights
Labeled graphs

• Labeled graphs: vertices have identifiers

• Unlabeled graph: vertices have no identifiers

 Note: Geometric layout doesn’t matter - only connections matter
Applications

- Electronic circuits
 - Printed circuit board
 - Integrated circuit
- Transportation networks
 - Highway network
 - Flight network
- Computer networks
 - Local area network
 - Internet
 - Web
- Databases
 - Entity-relationship diagram
Terminology

- **Endpoints of an edge**
 - U and V are the endpoints of a
- **Edges incident on a vertex**
 - a, b, and d are incident on V
- **Adjacent vertices**
 - Connected by an edge
 - U and V are adjacent
- **Degree of a vertex**
 - Number of incident edges
 - X has degree 5
- **Parallel edges**
 - h and i are parallel edges
- **Self-loop**
 - j is a self-loop
Terminology (cont.)

• Path
 – sequence of adjacent vertices

• Simple path
 – path such that all its vertices are distinct

• Examples
 – $P_1=\langle V, X, Z \rangle$ is a simple path
 – $P_2=\langle U, W, X, Y, W, V \rangle$ is a path that is not simple

• Graph is connected iff
 – For all pair of vertices u and v, there is a path between u and $v
Terminology (cont.)

- **Cycle**
 - path that starts and ends at the same vertex
- **Simple cycle**
 - cycle where each vertex is distinct
- **Examples**
 - $C_1=(V, X, Y, W, U, \ldots)$ is a simple cycle
 - $C_2=(U, W, X, Y, W, V, \ldots)$ is a cycle that is not simple
- **A tree is a connected acyclic graph**
Properties

Property 1

\[\sum_{v \in V} \deg(v) = 2|E| \]

Why?

Property 2

In an undirected graph with no self-loops and no multiple edges:

\[|E| \leq |V| (|V| - 1)/2 \]

Why?

Notation

| V | number of vertices
| E | number of edges
| \deg(v) | degree of vertex v

Example

- \(|V| = 4 \)
- \(|E| = 6 \)
- \(\deg(v) = 3 \)
Data structure for graphs - Adjacency lists

- Graph can be stored as
 - A dictionary of pairs (key, info) where
 - key = vertex identifier
 - info contains a list (called adj) of adjacent vertices

- Example: if the dictionary is implemented as a linked-list

```
vertices
SFO  ORD  LGA
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SFO</td>
<td>LAX</td>
</tr>
<tr>
<td>ORD</td>
<td>SFO</td>
</tr>
<tr>
<td>LGA</td>
<td>ORD</td>
</tr>
</tbody>
</table>
```

```
vertices
LAX  DFW
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LAX</td>
<td>DFW</td>
</tr>
<tr>
<td>DFW</td>
<td>LGA</td>
</tr>
</tbody>
</table>
```

```
vertices
ORD  SFO  LAX
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ORD</td>
<td>SFO</td>
</tr>
<tr>
<td>LAX</td>
<td>DFW</td>
</tr>
</tbody>
</table>
```

```
vertices
DFW  LAX  ORD  LGA
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DFW</td>
<td>LAX</td>
<td>ORD</td>
</tr>
<tr>
<td>LGA</td>
<td>DWF</td>
<td></td>
</tr>
</tbody>
</table>
```
Adjacency lists - Operations

- **addVertex(key k):** `vertices.insert(k, emptyList)`
- **addEdge(key k, key l):**
  ```
  vertices.find(k).adj.insert(l)
  vertices.find(l).adj.insert(k)
  ```
- **areAdjacent(key k, key l):**
  ```
  return vertices.find(k).adj.find(l)
  ```
Data structure for graphs - Adjacency matrix

Define some order on the vertices, for example: DFW, LAX, LGA, ORD, SFO

Graph with n vertices is stored as

- n x n array M of boolean, where
- $M[i][j] = \begin{cases} 1 & \text{if there is an edge between i-th and j-th vertices} \\ 0 & \text{otherwise} \end{cases}$

DFW LAX LGA ORD SFO
DFW 0 1 1 1 1 0
LAX 1 0 0 1 1 1
LGA 1 0 0 0 0 0
ORD 1 1 0 0 1 1
SFO 0 1 0 1 0 0
Adjacency matrix - Operations

• addEdge(i,j): \[\text{matrix}[i][j] = 1 \]
• removeEdge(i,j): \[\text{matrix}[i][j] = 0 \]
• Not great for inserting/removing vertices because it requires shifting elements of matrix.
• Requires space \(O(n^2) \)
Lists vs Matrices

• Adjacency lists are better if:
 – You frequently need to add/remove vertices
 – The graph has few edges
 – Need to traverse the graph

• Adjacency matrices are better if
 – you frequently need to
 • add/remove edges, but NOT vertices
 • Check for the presence/absence of an edge between i,j
 – matrix is small enough to fit in memory
Graph traversal - Idea

• Problem:
 – you visit each node in a graph, but all you have to start with is:
 • One vertex A
 • A method getNeighbors(vertex v) that returns the set of vertices adjacent to v
Graph traversal - Motivations

• Applications
 – Exploration of graph not known in advance, or too big to be stored:
 • Web crawling
 • Exploration of a maze
 – Graph may be computed as you go. Example: game strategy:
 • Vertices = set of all configurations of a Rubik’s cube
 • Edges connect pairs of configuration that are one rotation away.
Depth-First Search

• Idea: Go Deep!
 – **Intuition**: Adventurous web browsing: always click the first unvisited link available. Click "back" when you hit a deadend.
 – Start at some vertex v
 – Let w be the first neighbor of v that is not yet visited. Move to w.
 – If no such unvisited neighbor exists, move back to the vertex that lead to v
Example

- A: unexplored vertex
- B: visited vertex
- C: unexplored vertex
- D: unexplored edge
- E: discovery edge
Example (cont.)

[Diagram of network graphs with nodes labeled A, B, C, D, and E, showing different connections and transformations.]

- [Network graph 1: Nodes A, B, C, D, E with connections between them.]
- [Network graph 2: Nodes A, B, C, D, E with the connection from D to E changed to a dashed line.]
- [Network graph 3: Nodes A, B, C, D, E with new connections introduced.]
- [Network graph 4: Nodes A, B, C, D, E with the same connections as graph 2.]

[Arrows for transformation and changes indicated.]
DFS Algorithm

Algorithm $DFS(G, v)$

Input: graph G with no parallel edges and a start vertex v of G

Output: Visits each vertex once (as long as G is connected)

print v // or do some kind of processing on v
v.setLabel($VISITED$)

for all $u \in v$.getNeighbors()
 if (u.setLabel() \neq $VISITED$) then $DFS(G, u)$
The DFS algorithm is similar to a classic strategy for exploring a maze:
- We mark each intersection, corner and dead end (vertex) visited
- We mark each corridor (edge) traversed
- We keep track of the path back to the entrance (start vertex) by means of a rope (recursion stack)
DFS and Rubik’s cube

• Rubik’s cube game can be represented as a graph:
 – Vertices: Set of all possible configurations of the cube
 – Edges: Connect configurations that are just one rotation away from each other

• Given a starting configuration S, find a path to the “perfect” configuration P

• Depth-first search could in principle be used:
 – start at S and making rotations until P is reached, avoiding configurations already visited

• Problem: The graph is huge: 43,252,003,274,489,856,000 vertices
Running time of DFS

- DFS(G, v) is called once for every vertex v (if G is connected)
- When visiting node v, the number of iterations of the for loop is deg(v).
- Conclusion: The total number of iterations of all for loops is: $\sum_v \text{deg}(v) = ?$
- Thus, the total running time is $O(|E|)$
Applications of variants of DFS

• DFS can be used to:
 – Determine if a graph is connected
 – Determine if a graph contains cycles
 – Solve games single-player games like Rubik’s cube
Breadth-First Search

Idea:
- Explore graph layers by layers
- Start at some vertex v
- Then explore all the neighbors of v
- Then explore all the unvisited neighbors of the neighbors of v
- Then explore all the unvisited neighbors of the neighbors of the neighbors of v
- until no more unvisited vertices remain
Example

- **A**: unexplored vertex
- **A**: visited vertex
- **L**: unexplored edge
- **F**: discovery edge

Graph transition from L_0 to L_1.
Example (cont.)
Example (cont.)

Depth-First Search
Iterative BFS

✿ Idea: use a queue to remember the set of vertices on the frontier

Algorithm iterativeBFS(G, v)

Input graph G with no parallel edges and a start vertex v of G
Output Visits each vertex once (as long as G is connected)

q ← new Queue()
v.setLabel(VISITED)
q.enqueue(v)

while (! q.empty()) do
 w ← q.dequeue()
 print w // or do some kind of processing on w
 for all u ∈ w.getNeighbors() do
 if (u.getLabel() != VISITED) then
 u.setLabel(VISITED)
 s.enqueue(u)
Running time and applications

- Running time of BFS: Same as DFS, $O(|E|)$
- BFS can be used to:
 - Find a shortest path between two vertices
 - Rubik’s cube’s fastest solution
 - Determine if a graph is connected
 - Determine if a graph contains cycles
 - Get out of an infinite maze...
Iterative DFS

- Use a stack to remember your path so far

Algorithm **iterativeDFS**\((G, v)\)

Input graph \(G\) with no parallel edges and a start vertex \(v\) of \(G\)

Output Visits each vertex once (as long as \(G\) is connected)

\[
s \leftarrow \text{new Stack()}
\]
\[
v.setLabel(\text{VISITED})
\]
\[
s.push(v)
\]

while \(!s.empty()\) do

\[
w \leftarrow s.pop()
\]

print \(w\)

for all \(u \in w.getNeighbors()\) do

\[
\text{if } (u.getLabel() \neq \text{VISITED}) \text{ then}
\]

\[
u.setLabel(\text{VISITED})
\]
\[
s.push(u)
\]

Note: Code is identical to BFS, but with a stack instead of a queue!
Background

Expectation & Indicators
Expectation

• Average or mean

• The expected value of a discrete random variable X is $E[X] = \sum_x x \Pr\{X=x\}$

• Linearity of Expectation
 – $E[aX+Y] = a E[X] + E[Y]$, for constant a and all X, Y

• For mutually independent random variables X_1, \ldots, X_n
 – $E[X_1X_2 \ldots X_n] = E[X_1] \cdot E[X_2] \cdot \ldots \cdot E[X_n]$
Expectation – Example

• Let \(X \) be the RV denoting the value obtained when a fair die is thrown. What will be the mean of \(X \), when the die is thrown \(n \) times.

 – Let \(X_1, X_2, \ldots, X_n \) denote the values obtained during the \(n \) throws.
 – The mean of the values is \((X_1 + X_2 + \ldots + X_n)/n \).
 – Since the probability of getting values 1 to 6 is \((1/6) \) in average, we can expect each of the 6 values to show up \((1/6)n \) times.
 – So, the numerator in the expression for mean can be written as \((1/6)n \cdot 1 + (1/6)n \cdot 2 + \ldots + (1/6)n \cdot 6 \)
 – The mean, hence, reduces to \((1/6) \cdot 1 + (1/6) \cdot 2 + \ldots (1/6) \cdot 6 \), which is what we get if we apply the definition of expectation.
Indicator Random Variables

• A simple yet powerful technique for computing the expected value of a random variable.
• Convenient method for converting between probabilities and expectations.
• Helpful in situations in which there may be dependence.
• Takes only 2 values, 1 and 0.
• **Indicator Random Variable** for an event A of a sample space is defined as:

$$I\{A\} = \begin{cases} 1 & \text{if } A \text{ occurs,} \\ 0 & \text{if } A \text{ does not occur.} \end{cases}$$
Lemma 5.1

Given a sample space S and an event A in the sample space S, let $X_A = I\{A\}$. Then $E[X_A] = \Pr\{A\}$.

Proof:

Let $\bar{A} = S - A$ (Complement of A)

Then,

$$E[X_A] = E[I\{A\}]$$

$$= 1 \cdot \Pr\{A\} + 0 \cdot \Pr\{\bar{A}\}$$

$$= \Pr\{A\}$$
Problem: Determine the expected number of heads in n coin flips.

Method 1 (without indicator random variables)
Let X be the random variable for the number of heads in n flips.

Then, $E[X] = \sum_{k=0}^{n} k \cdot \Pr\{X=k\}$

We can solve this with a lot of math.
Method 2 (with Indicator Random Variables)

• Define n indicator random variables, X_i, $1 \leq i \leq n$.
• Let X_i be the indicator random variable for the event that the i^{th} flip results in a Head.

$$\Rightarrow X_i = 1\{\text{the } i^{th} \text{ flip results in } H\}$$

• Then $X = X_1 + X_2 + \ldots + X_n = \sum_{i=1..n} X_i$.
• By Lemma 5.1, $E[X_i] = \Pr\{H\} = \frac{1}{2}$, $1 \leq i \leq n$.
• Expected number of heads is $E[X] = E[\sum_{i=1..n} X_i]$.
• By linearity of expectation, $E[\sum_{i=1..n} X_i] = \sum_{i=1..n} E[X_i]$.

$$E[X] = \sum_{i=1..n} E[X_i] = \sum_{i=1..n} \frac{1}{2} = n/2.$$
Binary numbers
Decimal (base 10)

Digits = \{ 0, 1, 2, 3, 4, 5, 7, 8, 9 \}

Example of numerals: 11, 923, 5548, etc.

\[
11 = 1 \times 10^1 + 1 \times 10^0 \\
923 = 9 \times 10^2 + 2 \times 10^1 + 3 \times 10^0 \\
5548 = 5 \times 10^3 + 5 \times 10^2 + 4 \times 10^1 + 8 \times 10^0
\]

\[
m = \sum_{i=0}^{\text{digit}} d[i] \times 10^i
\]
Binary (base 2)

Bits = \{ 0, 1 \}

Example of numerals: 11, 101, 1010, etc.

\[11 = 1 \times 2^1 + 1 \times 2^0 \]
\[101 = 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 \]
\[1010 = 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 \]

\[m = \sum_{i=0}^{n} b[i] \times 2^i \]
Relationship

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>101</td>
</tr>
<tr>
<td>6</td>
<td>110</td>
</tr>
<tr>
<td>7</td>
<td>111</td>
</tr>
<tr>
<td>8</td>
<td>1000</td>
</tr>
</tbody>
</table>
Fixed size representation

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00000000</td>
</tr>
<tr>
<td>1</td>
<td>00000001</td>
</tr>
<tr>
<td>2</td>
<td>00000010</td>
</tr>
<tr>
<td>3</td>
<td>00000011</td>
</tr>
<tr>
<td>4</td>
<td>00000100</td>
</tr>
<tr>
<td>5</td>
<td>00000101</td>
</tr>
<tr>
<td>6</td>
<td>00000110</td>
</tr>
<tr>
<td>7</td>
<td>00000111</td>
</tr>
<tr>
<td>8</td>
<td>00001000</td>
</tr>
</tbody>
</table>

Fixed number of bits (typically 8, 16, 32, 64...).

8 bits is called “byte”.
Conversion

• How to convert from binary to decimal?

\[(11010)_2 = 1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0\]
\[= 16 + 8 + 0 + 2 + 0\]
\[= 26\]

Note: You need to know powers of 2...

• How to convert from decimal to binary?

\[(241)_{10} = ???\]
Operations on decimals

Use this property of any positive integer m:

$$m = (m/10) \times 10 + m \mod 10$$

Ex: $238 = 23 \times 10 + 8$

• (integer) division by 10 = dropping rightmost digit
 Ex: $238/10 = 23$

• Multiplication by 10 = shifting left by one digit
 Ex: $23\times10 = 230$

• Remainder of integer division by 10 = rightmost digit
 Ex: $238\mod10 = 8$
Operations on binary

Same property holds for binary:

\[m = m \% 2 + (m/2) \times 2 \]

Example:

\[
\begin{align*}
m & = (1011)_2 \\
m/2 & = (0101)_2 \\
(m/2) \times 2 & = (1010)_2 \\
m \% 2 & = (0001)_2
\end{align*}
\]
Algorithm $\text{decimal2binary}(m)$

Input: a decimal m

Output: a binary b

$i \leftarrow 0$

while $m > 0$ **do**

$b[i] \leftarrow m \% 2$

$m \leftarrow m / 2$

$i \leftarrow i + 1$
Decimal → Binary (Example)

<table>
<thead>
<tr>
<th>i</th>
<th>m/2</th>
<th>m%2 (b[i])</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>241</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>120</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Answer:

\[b[] = \ldots011110001 \]
Why is the algorithm working?

\[m = m/2 \times 2 + m \% 2 \]

\[(\ldots b[3]b[2]b[1]0)_2 \quad (b[0])_2 \]

Additions

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0+1=1</td>
<td>0+1=1</td>
</tr>
<tr>
<td>1+1=2</td>
<td>1+1=10</td>
</tr>
<tr>
<td>1+2=3</td>
<td>1+10=11</td>
</tr>
</tbody>
</table>
Additions

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>11010</td>
</tr>
<tr>
<td>+ 15</td>
<td>+ 01111</td>
</tr>
<tr>
<td>= 41</td>
<td>= ????</td>
</tr>
</tbody>
</table>
Addition in binary

\[
\begin{array}{cccc}
1 & 1 & 0 & 1 \\
+ & 0 & 1 & 1 & 1 & 1 & 1 \\
\hline
\end{array}
\]
Addition in binary

\[
\begin{array}{cccccc}
1 & 1 & 0 & 1 & 0 \\
+ & 0 & 1 & 1 & 1 & 1 \\
\hline
= & ? & ? & ? & 1 & 0 & 0 & 1
\end{array}
\]
Addition in binary

\[
\begin{array}{cccccccc}
1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 \\
+ & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline
? & ? & 1 & 0 & 1 & 0 & 0 & 1
\end{array}
\]
Addition in binary

\[
\begin{array}{cccccc}
1 & 1 & 0 & 1 & 0 \\
+ & 0 & 1 & 1 & 1 & 1 \\
\hline
\text{=} & ? & 1 & 1 & 0 & 1 & 0 & 1 \\
\end{array}
\]
Addition in binary

\[
\begin{array}{ccccccccc}
& & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\
+ & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline
= & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1
\end{array}
\]
Addition in binary

\[
\begin{array}{cccccc}
& 1 & 1 & 0 & 1 & 0 \\
+ & 0 & 0 & 1 & 1 & 1 \\
\hline
= & 1 & 0 & 1 & 0 & 0 & 1 \\
\end{array}
\]

= 101001 = 41

\[
\begin{array}{cccccc}
2^5 & 2^4 & 2^3 & 2^2 & 2^1 & 2^0 \\
1 & 0 & 1 & 0 & 0 & 1 \\
\hline
= 2^5 + 2^3 + 2^0 = 32 + 8 + 1 = 41
\end{array}
\]
Operation in binary

Recall grade-school algorithm for addition, subtraction, multiplication, and division.

There is nothing special about base 10.

These algorithms work for binary (base 2), and work for other bases too!
Representation size

\[m = \sum_{i=0}^{N-1} b[i] \times 2^i \]

What is the relationship between \(m \) and \(N \)?

(How many bits \(N \) do we need to represent a positive integer \(m \)?)
Lower bound

\[\sum_{i=0}^{N-1} 2^i = 1 + 2 + 4 + \cdots + 2^{N-1} = 2^N - 1 \]

(This is a special case of \(\sum_{i=0}^{N-1} x^i = \frac{x^{N-1}}{x-1} \) where \(x = 2 \))

\[m = \sum_{i=0}^{N-1} b[i] \cdot 2^i \leq \sum_{i=0}^{N-1} 1 \cdot 2^i \]

\[= 2^N - 1 \]

\[< 2^N \]

\[\log_2 m < N \] (apply log on both sides)
Upper bound

We can assume that \(N - 1 \) is the index \(i \) of the leftmost bit \(b[i] \) such that \(b[i] = 1 \) (we ignore leftmost 0’s: 00001101).

\[
m = \sum_{i=0}^{N-1} b[i] \times 2^i \geq 2^{N-1}
\]

\[
\log_2 m \geq N - 1
\]

\[
\log_2 m + 1 \geq N
\]
How many bit do we need?

\[
\log_2 m < N \leq (\log_2 m) + 1
\]

Answer: The largest integer less than or equal to \((\log_2 m) + 1\).

We write it as \(N = \lfloor(\log_2 m) + 1\rfloor\) (a.k.a. "floor" that means “round down”)

Examples

<table>
<thead>
<tr>
<th>m (decimal)</th>
<th>m (binary)</th>
<th>$N = \lfloor \log_2 m \rfloor + 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>101</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>110</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>111</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>1000</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>1001</td>
<td>4</td>
</tr>
</tbody>
</table>
To think about...

• How are negative integers represented?
• How many bits are used to represent int, short, long in a computer?
• How are non-integers (fractional numbers) represented?
• How are characters represented?