COMP250: Induction proofs.

Jérôme Waldispühl
School of Computer Science
McGill University

Based on slides from (Langer, 2012), (CRLS, 2009) & (Sora, 2015)
Outline

• **Induction proofs**
 o Introduction
 o Definition
 o Examples

• **Loop invariants**
 o Definition
 o Example (Insertion sort)
 o Analogy with induction proofs
 o Example (Merge sort)
for any $n \geq 2$, $n^2 \geq 2^n$?

$f(x) = x^2$

g(x) = 2^x
for any \(n \geq 5 \), \(n^2 \leq 2^n \) ?

\[g(x) = 2^x \]
\[f(x) = x^2 \]
Motivation

How to prove these?

\[for \ any \ n \geq 1, \quad 1 + 2 + 3 + 4 + \cdots + n = \frac{n \cdot (n + 1)}{2} \]
\[for \ any \ n \geq 1, \quad 1 + 3 + 5 + 7 + \cdots + (2 \cdot n - 1) = n^2 \]
\[for \ any \ n \geq 5, \quad n^2 \leq 2^n \]

And in general, any statement of the form:
“for all \ n \geq n_0, \ P(n)” \ where \ P(n) \ is \ some \ proposition."
Mathematical induction

Many statement of the form “for all \(n \geq n_0 \), \(P(n) \)” can be proven with a logical argument call *mathematical induction*.

The proof has two components:

- **Base case**: \(P(n_0) \)
- **Induction step**: for any \(n \geq n_0 \), if \(P(n) \) then \(P(n+1) \)
Principle

\[n_0 \]

| 0 | 1 | 2 | 3 | 4 | 5 | ... | k | k+1 | ...

Implies

etc.
Example 1

Claim: for any \(n \geq 1 \),
\[
1 + 2 + 3 + 4 + \cdots + n = \frac{n \cdot (n+1)}{2}
\]

Proof:

• Base case: \(n = 1 \)

 \[
 1 = \frac{1 \cdot 2}{2}
 \]

• Induction step:

 for any \(k \geq 1 \), if

 \[
 1 + 2 + 3 + 4 + \cdots + k = \frac{k \cdot (k+1)}{2}
 \]

 then

 \[
 1 + 2 + 3 + 4 + \cdots + k + (k+1) = \frac{(k+1) \cdot (k+2)}{2}
 \]
Example 1

Assume \(1 + 2 + 3 + 4 + \cdots + k = \frac{k \cdot (k + 1)}{2} \)

then \(1 + 2 + 3 + 4 + \cdots + k + (k + 1) \)

\[
\begin{align*}
&= \frac{k \cdot (k + 1)}{2} + (k + 1) \\
&= \frac{k \cdot (k + 1) + 2 \cdot (k + 1)}{2} \\
&= \frac{(k + 2) \cdot (k + 1)}{2}
\end{align*}
\]
Summary

Base case: \(P(1) \)

Induction step: for any \(k \geq 1 \), if \(P(k) \) then \(P(k+1) \)

Thus for all \(n \geq 1 \), \(P(n) \) ☐
Example 2

Claim: for any \(n \geq 1 \), \(1 + 3 + 5 + 7 + \cdots + (2 \cdot n - 1) = n^2 \)

Proof:

• Base case: \(n = 1 \), \(1 = 1^2 \)

• Induction step:

\[\text{for any } k \geq 1, \text{ if } 1 + 3 + 5 + 7 + \cdots + (2 \cdot k - 1) = k^2 \]
\[\text{then } 1 + 3 + 5 + 7 + \cdots + (2 \cdot (k + 1) - 1) = (k + 1)^2 \]
Example 2

Assume \(1 + 3 + 5 + 7 + \cdots + (2 \cdot k - 1) = k^2 \)

then \(1 + 3 + 5 + 7 + \cdots + (2 \cdot k - 1) + (2 \cdot (k + 1) - 1) \)

\[
= k^2 + 2 \cdot (k + 1) - 1
\]

\[
= k^2 + 2 \cdot k + 1
\]

\[
= (k + 1)^2
\]
Example 3

\[f(x) = 2x + 1 \]

\[g(x) = 2^x \]
Example 3

Claim: \(\text{for any } n \geq 3, \ 2 \cdot n + 1 < 2^n \)

Proof:

• Base case: \(n = 3 \)
 \[2 \cdot 3 + 1 = 7 < 2^3 = 8 \]

• Induction step:
 \[\text{for any } k \geq 3, \ \text{if } 2 \cdot k + 1 < 2^k \]
 then \(2 \cdot (k + 1) + 1 < 2^{k+1} \)
Example 3

Assume \(2 \cdot k + 1 < 2^k\)

then \(2 \cdot (k + 1) + 1\)

\[
= 2 \cdot k + 2 + 1 \\
< 2^k + 2 \\
\leq 2^k + 2^k \quad \text{for } k \geq 1 \\
= 2^{k+1}
\]

Induction hypothesis

Stronger than we need, but that works!
Example 4

\[g(x) = 2^x \]

\[f(x) = x^2 \]
Example 4

Claim: \(\text{for any } n \geq 5, \quad n^2 \leq 2^n \)

Proof:

• Base case: \(n = 5 \quad 25 \leq 32 \)

• Induction step:

\[
\text{for any } k \geq 5, \quad \text{if } \quad k^2 \leq 2^n
\]

\[
\text{then } \quad (k + 1)^2 \leq 2^{k+1}
\]
Example 4

Assume \(k^2 \leq 2^k \)

then \((k + 1)^2 \)

\[
= k^2 + 2 \cdot k + 1 \\
\leq 2^k + 2 \cdot k + 1 \\
\leq 2^k + 2^k \\
= 2^{k+1}
\]
Example 5

Fibonacci sequence:

\[\text{Fib}_0 = 0 \quad \text{base case} \]
\[\text{Fib}_1 = 1 \quad \text{base case} \]
\[\text{Fib}_n = \text{Fib}_{n-1} + \text{Fib}_{n-2} \quad \text{for } n > 1 \quad \text{recursive case} \]

Claim: For all \(n \geq 0 \), \(\text{Fib}_n < 2^n \)

Base case: \(\text{Fib}_0 = 0 < 2^0 = 1 \), \(\text{Fib}_1 = 1 < 2^1 = 2 \)

Q: Why should we check both \(\text{Fib}_0 \) and \(\text{Fib}_1 \)?

Induction step: for any \(i \leq k \), if \(\text{Fib}_i < 2^i \) then \(\text{Fib}_{k+1} < 2^{k+1} \)
Example 5

Assume that for all \(i \leq k \), \(Fib_i < 2^i \) (Note variation of induction hypothesis)

Then \(Fib_{k+1} = Fib_k + Fib_{k-1} \)

\[
< 2^k + 2^{k-1}
\]

\[
\leq 2^k + 2^k
\]

\[
= 2^{k+1}
\]

for \(k \geq 1 \)
Proving the correctness of an algorithm

LOOP INVARIANTS
Algorithm specification

• An algorithm is described by:
 – Input data
 – Output data
 – Preconditions: specifies restrictions on input data
 – Postconditions: specifies what is the result

• Example: Binary Search
 – Input data: \(a: \text{array of integer}; x: \text{integer};\)
 – Output data: \(\text{index: integer};\)
 – Precondition: \(a\) is sorted in ascending order
 – Postcondition: \(\text{index of } x \text{ if } x \text{ is in } a, \text{ and } -1 \text{ otherwise.}\)
Correctness of an algorithm

An algorithm is correct if:

– for any correct input data:
 • it stops and
 • it produces correct output.

– Correct input data: satisfies precondition
– Correct output data: satisfies postcondition

Problem: Proving the correctness of an algorithm may be complicated when the latter is repetitive or contains loop instructions.
How to prove the correctness of an algorithm?

- Recursive algorithm \(\Rightarrow \) Induction proofs
- Iterative algorithm (loops) \(\Rightarrow \) ???
Loop invariant

A loop invariant is a loop property that holds before and after each iteration of a loop.
Insertion sort

for i ← 1 to length(A) - 1
 j ← i
 while j > 0 and A[j-1] > A[j]
 swap A[j] and A[j-1]
 j ← j - 1
 end while
end for

(Seen in previous lecture)
Insertion sort

1 3 5 6 2 4

n elements already sorted
New element to sort

1 2 3 5 6 4

$n+1$ elements sorted
Loop invariant

The array $A[0...i-1]$ is fully sorted.
Initialization

Just before the first iteration ($i = 1$), the sub-array $A[0 \ldots i-1]$ is the single element $A[0]$, which is the element originally in $A[0]$, and it is trivially sorted.
Maintenance

Iteration i

1 3 5 6 2 4

n elements already sorted

Iteration $i+1$

1 2 3 5 6 4

$n+1$ elements sorted

Note: To be precise, we would need to state and prove a loop invariant for the ``inner'' while loop.
Termination

The outer for loop ends when $i \geq \text{length}(A)$ and increment by 1 at each iteration starting from 1. Therefore, $i = \text{length}(A)$.

Plugging $\text{length}(A)$ in for $i-1$ in the loop invariant, the subarray $A[0 \ldots \text{length}(A)-1]$ consists of the elements originally in $A[0 \ldots \text{length}(A)-1]$ but in sorted order.

$A[0 \ldots \text{length}(A)-1]$ contains $\text{length}(A)$ elements (i.e. all initial elements!) and no element is duplicated/deleted. In other words, the entire array is sorted.
Proof using loop invariants

We must show:

1. **Initialization**: It is true prior to the first iteration of the loop.

2. **Maintenance**: If it is true before an iteration of the loop, it remains true before the next iteration.

3. **Termination**: When the loop terminates, the invariant gives us a useful property that helps show that the algorithm is correct.
Using loop invariants is like mathematical induction.

• You prove a **base case** and an **inductive step**.
• Showing that the invariant holds before the first iteration is like the base case.
• Showing that the invariant holds from iteration to iteration is like the inductive step.
• The **termination** part differs from classical mathematical induction. Here, we stop the "induction" when the loop terminates instead of using it infinitely.

We can show the three parts in any order.
Merge Sort

\[
\text{MERGE-SORT}(A, p, r) \\
\text{if } p < r \text{ then} \\
\quad q = (p+r)/2 \\
\quad \text{MERGE-SORT}(A, p, q) \\
\quad \text{MERGE-SORT}(A, q+1, r) \\
\quad \text{MERGE}(A, p, q, r)
\]

Precondition:
Array A has at least 1 element between indexes p and r \((p \leq r)\)

Postcondition:
The elements between indexes p and r are sorted
Merge Sort (Merge method)

- MERGE-SORT calls a function MERGE(A,p,q,r) to merge the sorted subarrays of A into a single sorted one.
- The proof of MERGE can be done separately, using loop invariants.

```
MERGE (A,p,q,r)

Precondition: A is an array and p, q, and r are indices into the array such that p <= q < r. The subarrays A[p..q] and A[q+1..r] are sorted.

```
Procedure Merge

Input: Array containing sorted subarrays $A[p..q]$ and $A[q+1..r]$.


```
Merge(A, p, q, r)
1  $n_1 \leftarrow q - p + 1$
2  $n_2 \leftarrow r - q$
3  for $i \leftarrow 1$ to $n_1$
4      do $L[i] \leftarrow A[p + i - 1]$
5  for $j \leftarrow 1$ to $n_2$
6      do $R[j] \leftarrow A[q + j]$
7  $L[n_1+1] \leftarrow \infty$
8  $R[n_2+1] \leftarrow \infty$
9  $i \leftarrow 1$
10 $j \leftarrow 1$
11  for $k \leftarrow p$ to $r$
12      do if $L[i] \leq R[j]$
13          then $A[k] \leftarrow L[i]$
14              $i \leftarrow i + 1$
15          else $A[k] \leftarrow R[j]$
16              $j \leftarrow j + 1$
```
Merge/combine – Example

Idea: The lists L and R are already sorted.
Correctness proof for **Merge**

- **Loop Invariant:** The array $A[p,k]$ stored the $(k-p+1)$ smallest elements of L and R sorted in increasing order.

- **Initialization:** $k = p$
 - A contains a single element (which is trivially “sorted”)
 - $A[p]$ is the smallest element of L and R

- **Maintenance:**
 - Assume that Merge satisfy the loop invariant property until k.
 - $(k-p+1)$ smallest elements of L and R are already sorted in A.
 - Next value to be inserted is the smallest one remaining in L and R.
 - This value is larger than those previously inserted in A.
 - Loop invariant property satisfied for $k+1$.

- **Termination Step:**
 - Merge terminates when $k=r$, thus when $r-p+1$ elements have been inserted in $A \Rightarrow$ All elements are sorted.
Correctness proof for **Merge Sort**

- **Recursive property**: Elements in $A[p,r]$ are be sorted.
- **Base Case**: $p = r$
 - A contains a single element (which is trivially “sorted”)
- **Inductive Hypothesis:**
 - Assume that MergeSort correctly sorts $n=1, 2, \ldots, k$ elements
- **Inductive Step:**
 - Show that MergeSort correctly sorts $n = k + 1$ elements.
- **Termination Step:**
 - MergeSort terminate and all elements are sorted.

Note: Merge Sort is a recursive algorithm. We already proved that the Merge procedure is correct. Here, we complete the proof of correctness of the main method using induction.
Inductive step

• Inductive Hypothesis:
 – Assume MergeSort correctly sorts $n=1, \ldots, k$ elements

• Inductive Step:
 – Show that MergeSort correctly sorts $n = k + 1$ elements.

• Proof:
 – First recursive call $n_1 = q - p + 1 = (k+1)/2 \leq k$
 => subarray $A[p .. q]$ is sorted
 – Second recursive call $n_2 = r - q = (k+1)/2 \leq k$
 => subarray $A[q+1 .. r]$ is sorted
 – A, p, q, r fulfill now the precondition of Merge
 – The post-condition of Merge guarantees that the array $A[p .. r]$ is sorted => post-condition of MergeSort satisfied.
Termination Step

We have to find a quantity that decreases with every recursive call: the length of the subarray of A to be sorted MergeSort.

At each recursive call of MergeSort, the length of the subarray is strictly decreasing.

When MergeSort is called on an array of size ≤ 1 (i.e. the base case), the algorithm terminates without making additional recursive calls.

Calling MergeSort($A,0,n$) returns a fully sorted array.