COMP251: Topological Sort & Strongly Connected Components

Jérôme Waldispühl
School of Computer Science
McGill University

Based on (Cormen et al., 2002)

Based on slides from D. Plaisted (UNC)
Recap: Breadth-first Search

• **Input:** Graph $G = (V, E)$, either directed or undirected, and **source vertex** $s \in V$.

• **Output:**

 - $d[v] =$ distance (smallest # of edges, or shortest path) from s to v, for all $v \in V$. $d[v] = \infty$ if v is not reachable from s.

 - $\pi[v] = u$ such that (u, v) is last edge on shortest path $s \sim v$.

 • u is v's predecessor.

 - Builds breadth-first tree with root s that contains all reachable vertices.
Recap: BFS Example

```
  1  2
 r  v

t  w

  0  2
 s  x

t  u

  2  3
 x  y
```

The graph shows the Breadth-First Search (BFS) traversal order.
Recap: Depth-first Search

- **Input:** $G = (V, E)$, directed or undirected. No source vertex given.
- **Output:**
 - 2 timestamps on each vertex. Integers between 1 and $2|V|$.
 - $d[v] = \text{discovery time}$ (v turns from white to gray)
 - $f[v] = \text{finishing time}$ (v turns from gray to black)
 - $\pi[v]$: predecessor of $v = u$, such that v was discovered during the scan of u’s adjacency list.
- Uses the same coloring scheme for vertices as BFS.
Recap: DFS Example

Starting time $d(x)$

Finishing time $f(x)$
Recap: Parenthesis Theorem

Theorem 1:
For all \(u, v \), exactly one of the following holds:

1. \(d[u] < f[u] < d[v] < f[v] \) or \(d[v] < f[v] < d[u] < f[u] \) and neither \(u \) nor \(v \) is a descendant of the other.

2. \(d[u] < d[v] < f[v] < f[u] \) and \(v \) is a descendant of \(u \).

3. \(d[v] < d[u] < f[u] < f[v] \) and \(u \) is a descendant of \(v \).

- Like parentheses:

 - **OK:** \((\{ \}) []\)
 - **Not OK:** \((\{ \}) \)

 \[1\ 2\ 3\ 4\ 5\ 6 \]

Corollary

\(v \) is a proper descendant of \(u \) if and only if \(d[u] < d[v] < f[v] < f[u] \).
White-path Theorem

Theorem 2

\(v \) is a descendant of \(u \) if and only if at time \(d[u] \), there is a path \(u \sim v \) consisting of only white vertices (Except for \(u \), which was \emph{just} colored gray).
Example (white-path theorem)

v, y, and x are descendants of u.
Edge classification with DFS

1. Forward edge
2. Back edge
3. Cross edge
4. Tree edge
Classification of Edges

- **Tree edge:** in the depth-first forest. Found by exploring \((u, v)\).
- **Back edge:** \((u, v)\), where \(u\) is a descendant of \(v\) (in the depth-first tree).
- **Forward edge:** \((u, v)\), where \(v\) is a descendant of \(u\), but not a tree edge.
- **Cross edge:** any other edge. Can go between vertices in same depth-first tree or in different depth-first trees.

Theorem 3
In DFS of a connected undirected graph, we get only tree and back edges. No forward or cross edges.
Identification of Edges

• Edge type for edge \((u, v)\) can be identified when it is first explored by DFS.

• Identification is based on the color of \(v\).
 – White – tree edge.
 – Gray – back edge.
 – Black – forward or cross edge.
Directed Acyclic Graph

• DAG – Directed graph with no cycles.
• Good for modeling processes and structures that have a **partial order:**
 – \(a > b \) and \(b > c \) \(\Rightarrow \) \(a > c \).
 – But may have \(a \) and \(b \) such that neither \(a > b \) nor \(b > a \).
• Can always make a **total order** (either \(a > b \) or \(b > a \) for all \(a \neq b \)) from a partial order.
Example

DAG of dependencies for putting on goalie equipment.
Characterizing a DAG

Lemma 1
A directed graph G is acyclic iff a DFS of G yields no back edges.

Proof:
• (\Rightarrow) Show that back edge \Rightarrow cycle.
 – Suppose there is a back edge (u, v). Then v is ancestor of u in depth-first forest.
 – Therefore, there is a path $v \leadsto u$, so $v \leadsto u \leadsto v$ is a cycle.

![Diagram of a directed acyclic graph (DAG) with nodes labeled v, T, T, T, and u connected by directed edges with labels T, T, and T. There is a back edge labeled B from u to v.]}
Characterizing a DAG

Lemma 1
A directed graph G is acyclic iff a DFS of G yields no back edges.

Proof (Contd.):

• (⇐) Show that a cycle implies a back edge.
 – c : cycle in G; v : first vertex discovered in c;
 (u, v) : preceding edge in c.
 – At time d[v], vertices of c form a white path v ⟷ u.
 – By **white-path theorem**, u is a descendent of v in depth-first forest.
 – Therefore, (u, v) is a back edge.
Topological Sort

Want to “sort” a directed acyclic graph (DAG).

Think of original DAG as a **partial order**.

Want a **total order** that extends this partial order.
Topological Sort

- Performed on a DAG.
- Linear ordering of the vertices of G such that if $(u, v) \in E$, then u appears somewhere before v.

Topological-Sort (G)
1. call DFS(G) to compute finishing times $f[v]$ for all $v \in V$
2. as each vertex is finished, insert it onto the front of a linked list
3. return the linked list of vertices

Time: $\Theta(V + E)$.
Example 1

Linked List:
Example 1

Linked List:
Example 1

Linked List:
Example 1

Linked List:

A → B
C → B

D → 1/4
E → 2/3
Example 1

Linked List:

A -> B
C

D

E

1/4 -> 2/3
Example 1

Linked List:

A -> B -> C

D -> E

1/4 -> 2/3
Example 1

Linked List:

A → B

B → 5/

5/ → 6/7

6/7 → C

C → D

D → 1/4

1/4 → 2/3

2/3 → E

E → 2/3

2/3 → 1/4

1/4 → 6/7

6/7 → A
Example 1

Linked List:

A -> B
B -> C
C -> 5/8
5/8 -> D
D -> E

E -> 2/3
2/3 -> 1/4
1/4 -> 6/7
6/7 -> B
Example 1

Linked List:

A

9/

B

5/8

C

6/7

D

1/4

E

2/3

B

5/8

C

6/7

D

1/4

E

2/3
Example 1

Linked List:

A → 9/10 → B → 5/8 → C → 6/7 → D → 1/4 → E → 2/3
Example 2

socks

shorts

hose

pants

skates

leg pads

T-shirt

chest pad

sweater

mask

catch glove

blocker

batting glove

26 socks

24 shorts

23 hose

22 pants

21 skates

20 leg pads

19/20 leg pads

18/21 skates

17/22 pants

16/23 hose

15/24 shorts

7/14 T-shirt

1/6 batting glove

2/5 catch glove

3/4 blocker

4/5 block

6 batting glove

5 catch glove

8/13 chest pad

9/12 mask

10/11 sweater

11/12 mask

12/13 chest pad

13/14 sweater

14/13 t-shirt
Correctness (1)

“Linear ordering of the vertices of G such that if $(u, v) \in E$, then u appears somewhere before v.”

\Rightarrow We need to show if $(u, v) \in E$, then $f[v] < f[u]$.

When we explore (u, v), what are the colors of u and v?

Assume we just discovered u, which is thus gray.
Then, what are the possible colors of v?

– Can v be gray?
– Can v be white?
– Can v be black?
Correctness (2)

When we explore \((u, v)\), what are the colors of \(u\) and \(v\)?

– Assume \(u\) is gray.

– Is \(v\) gray, too?

 \textit{No}, because then \(v\) would be ancestor of \(u\).

 \(\Rightarrow (u, v)\) is a back edge.

 \(\Rightarrow\) contradiction of \textbf{Lemma 1} (DAG has no back edges).

– Is \(v\) white?

 • Then becomes descendant of \(u\).

 • By \textit{parenthesis theorem}, \(d[u] < d[v] < f[v] < f[u]\).

– Is \(v\) black?

 • Then \(v\) is already finished.

 • Since we are exploring \((u, v)\), we have not yet finished \(u\).

 • Therefore, \(f[v] < f[u]\).
Strongly Connected Components

• *G* is strongly connected if every pair \((u, v)\) of vertices in *G* is reachable from one another.

• A **strongly connected component** (*SCC*) of *G* is a maximal set of vertices \(C \subseteq V\) such that for all \(u, v \in C\), both \(u \sim v\) and \(v \sim u\) exist.
Component Graph

- $G^{SCC} = (V^{SCC}, E^{SCC})$.
- V^{SCC} has one vertex for each SCC in G.
- E^{SCC} has an edge if there is an edge between the corresponding SCC’s in G.

Example:
G^{SCC} is a DAG

Lemma 2

Let C and C' be distinct SCC's in G, let $u, v \in C$ & $u', v' \in C'$, and suppose there is a path $u \sim u'$ in G. Then there cannot also be a path $v' \sim v$ in G.

Proof:

- Suppose there is a path $v' \sim v$ in G.
- Then there are paths $u \sim u' \sim v'$ and $v' \sim v \sim u$ in G.
- Therefore, u and v' are reachable from each other, so they are not in separate SCC's.
Transpose of a Directed Graph

- $G^T = \text{transpose} \text{ of directed } G$.
 - $G^T = (V, E^T)$, $E^T = \{(u, v) : (v, u) \in E\}$.
 - G^T is G with all edges reversed.

- Can create G^T in $\Theta(V + E)$ time if using adjacency lists.

- G and G^T have the same SCC’s. (u and v are reachable from each other in G if and only if reachable from each other in G^T.)
Algorithm to determine SCCs

SCC(G)

1. call DFS(G) to compute finishing times \(f[u] \) for all \(u \)
2. compute \(G^T \)
3. call DFS\((G^T)\), but in the main loop, consider vertices in order of decreasing \(f[u] \) (as computed in first DFS)
4. output the vertices in each tree of the depth-first forest formed in second DFS as a separate SCC

Time: \(\Theta(V + E) \).
Example

\[G \]
After the first DFS. We computed all finishing times in G.

Example
Then, we compute the transpose G^T of G and sort the vertices with the finishing time calculated in G.
Example

G^T

$(b \ (a \ (e \ e) \ a) \ b) \ (c \ (d \ d) \ c) \ (g \ (f \ f) \ g) \ (h)$
How does it work?

• Idea:
 – By considering vertices in second DFS in decreasing order of finishing times from first DFS, we are visiting vertices of the component graph in topologically sorted order.
 – Because we are running DFS on G^T, we will not be visiting any v from a u, where v and u are in different components.

• Notation:
 – $d[u]$ and $f[u]$ always refer to first DFS.
 – Extend notation for d and f to sets of vertices $U \subseteq V$:
 – $d(U) = \min_{u \in U} \{d[u]\}$ (earliest discovery time)
 – $f(U) = \max_{u \in U} \{f[u]\}$ (latest finishing time)
SCCs and DFS finishing times

Lemma 3
Let C and C' be distinct SCC's in $G = (V, E)$. Suppose there is an edge $(u, v) \in E$ such that $u \in C$ and $v \in C'$. Then $f(C) > f(C')$.

Proof:
- Case 1: $d(C) < d(C')$
 - Let x be the first vertex discovered in C.
 - At time $d[x]$, all vertices in C and C' are white. Thus, there exist paths of white vertices from x to all vertices in C and C'.
 - By the white-path theorem, all vertices in C and C' are descendants of x in depth-first tree.
 - By the parenthesis theorem, $f[x] = f(C) > f(C')$.

SCCs and DFS finishing times

Lemma 3
Let C and C' be distinct SCC’s in $G = (V, E)$. Suppose there is an edge $(u, v) \in E$ such that $u \in C$ and $v \in C'$. Then $f(C) > f(C')$.

Proof:
• Case 2: $d(C) > d(C')$
 – Let y be the first vertex discovered in C'.
 – At $d[y]$, all vertices in C' are white and there is a white path from y to each vertex in C' ⇒ all vertices in C' become descendants of y. Again, $f[y] = f(C')$.
 – At $d[y]$, all vertices in C are also white.
 – By lemma 2, since there is an edge (u, v), we cannot have a path from C' to C.
 – So no vertex in C is reachable from y.
 – Therefore, at time $f[y]$, all vertices in C are still white.
 – Therefore, for all $w \in C$, $f[w] > f[y]$, which implies that $f(C) > f(C')$.
SCCs and DFS finishing times

Corollary 1
Let C and C' be distinct SCC’s in $G = (V, E)$. Suppose there is an edge $(u, v) \in E^T$, where $u \in C$ and $v \in C'$. Then $f(C) < f(C')$.

Proof:
• $(u, v) \in E^T \Rightarrow (v, u) \in E$.
• Since SCC’s of G and G^T are the same, $f(C') > f(C)$, by Lemma 3.
Correctness of SCC

1) At beginning, DFS visit only vertices in the first SCC

• When we do the second DFS, on G^T, start with SCC C such that $f(C)$ is maximum.

• The second DFS starts from some $x \in C$, and it visits all vertices in C.

• Corollary 1 says that since $f(C) > f(C')$ for all $C \neq C'$, there are no edges from C to C' in G^T.

• Therefore, **DFS will visit only vertices in C**.

• Which means that the depth-first tree rooted at x contains *exactly* the vertices of C.
Correctness of SCC

2) *DFS doesn’t visit more than one new SCC at the time*

- The next root in the second DFS is in SCC C' such that $f(C')$ is maximum over all SCC’s other than C.
 - DFS visits all vertices in C', but the only edges out of C' go to C, which we have already visited.
 - Therefore, the only tree edges will be to vertices in C'.

- Iterate the process.

- Each time we choose a root, it can reach only:
 - vertices in its SCC—get tree edges to these,
 - vertices in SCC’s already visited in second DFS—get no tree edges to these.