COMP251: Elementary graph algorithms

Jérôme Waldispühl
School of Computer Science
McGill University

Based on (Cormen et al., 2002)
Based on slides from D. Plaisted (UNC)
Graphs

- **Graph G = (V, E)**
 - V = set of vertices
 - E = set of edges \(\subseteq (V \times V) \)

- **Types of graphs**
 - Undirected: edge \((u, v) = (v, u)\); for all \(v\), \((v, v) \notin E\) (No self loops.)
 - Directed: \((u, v)\) is edge from \(u\) to \(v\), denoted as \(u \rightarrow v\). Self loops are allowed.
 - Weighted: each edge has an associated weight, given by a weight function \(w : E \rightarrow \mathbb{R}\).
 - Dense: \(|E| \approx |V|^2\).
 - Sparse: \(|E| \ll |V|^2\).

- \(|E| = O(|V|^2)\)
Properties

• If \((u, v) \in E\), then vertex \(v\) is adjacent to vertex \(u\).

• Adjacency relationship is:
 – Symmetric if \(G\) is undirected.
 – Not necessarily so if \(G\) is directed.

• If \(G\) is connected:
 – There is a path between every pair of vertices.
 – \(|E| \geq |V| - 1\).
 – Furthermore, if \(|E| = |V| - 1\), then \(G\) is a tree.
Ingoing edges of u: $\{ (v,u) \in E \}$ (e.g. $\text{in}(e) = \{ (b,e), (d,e) \}$)
Outgoing edges of u: $\{ (u,v) \in E \}$ (e.g. $\text{out}(d) = \{ (d,e) \}$)
In-degree(u): $| \text{in}(u) |$
Out-degree(u): $| \text{out}(u) |$
Representation of Graphs

- Two standard ways.
 - Adjacency Lists.
 - Adjacency Matrix.
Adjacency Lists

- Consists of an array Adj of $|V|$ lists.
- One list per vertex.
- For $u \in V$, $Adj[u]$ consists of all vertices adjacent to u.

Note: If weighted, store weights also in adjacency lists.
Storage Requirement

• For directed graphs:
 – Sum of lengths of all adj. lists is
 \[\sum_{v \in V} \text{out-degree}(v) = |E| \]
 – Total storage: \(\Theta(V+E) \)

• For undirected graphs:
 – Sum of lengths of all adj. lists is
 \[\sum_{v \in V} \text{degree}(v) = 2|E| \]
 – Total storage: \(\Theta(V+E) \)
Pros and Cons: adj list

• Pros
 – Space-efficient, when a graph is sparse.
 – Can be modified to support many graph variants.

• Cons
 – Determining if an edge \((u,v) \in E\) is not efficient.
 • Have to search in \(u\)'s adjacency list. \(\Theta(\text{degree}(u))\) time.
 • \(\Theta(V)\) in the worst case.
Adjacency Matrix

- \(|V| \times |V|\) matrix \(A\).
- Number vertices from 1 to \(|V|\) in some arbitrary manner.
- \(A\) is then given by:

\[
A[i, j] = a_{ij} = \begin{cases}
1 & \text{if } (i, j) \in E \\
0 & \text{otherwise}
\end{cases}
\]

\[
A = A^T \text{ for undirected graphs.}
\]
Space and Time

- **Space:** $\Theta(V^2)$.
 - Not memory efficient for large sparse graphs.
- **Time:** to list all vertices adjacent to u: $\Theta(V)$.
- **Time:** to determine if $(u, v) \in E$: $\Theta(1)$.
- Can store weights instead of bits for weighted graph.
Graph-searching Algorithms (COMP250)

• Searching a graph:
 – Systematically follow the edges of a graph to visit the vertices of the graph.

• Used to discover the structure of a graph.

• Standard graph-searching algorithms.
 – Breadth-first Search (BFS).
 – Depth-first Search (DFS).
Breadth-first Search

• Expands the frontier between discovered and undiscovered vertices uniformly across the breadth of the frontier.
 – A vertex is “discovered” the first time it is encountered during the search.
 – A vertex is “finished” if all vertices adjacent to it have been discovered.

• Colors the vertices to keep track of progress.
 – White – Undiscovered.
 – Gray – Discovered but not finished.
 – Black – Finished.

 • Colors are required only to reason about the algorithm. Can be implemented without colors.
Breadth-first Search

- **Input:** Graph $G = (V, E)$, either directed or undirected, and *source vertex* $s \in V$.

- **Output:**
 - $d[v] =$ distance (smallest # of edges, or shortest path) from s to v, for all $v \in V$. $d[v] = \infty$ if v is not reachable from s.
 - $\pi[v] = u$ such that (u, v) is last edge on shortest path $s \rightsquigarrow v$.
 - u is v’s predecessor.
 - Builds breadth-first tree with root s that contains all reachable vertices.
Example (BFS)

Q: s
0
Example (BFS)

Q: w r
 1 1
Example (BFS)

Q: r t x
 1 2 2
Example (BFS)

Q: t x v
2 2 2
Example (BFS)

Q: x v u
 2 2 3
Example (BFS)

Q: v u y
2 3 3
Example (BFS)

Q: u y
 3 3
Example (BFS)

Q: y

3
Example (BFS)

BF Tree
Analysis of BFS

• Initialization takes $O(V)$.

• Traversal Loop
 – After initialization, each vertex is enqueued and dequeued at most once, and each operation takes $O(1)$. So, total time for queuing is $O(V)$.
 – The adjacency list of each vertex is scanned at most once. The sum of lengths of all adjacency lists is $\Theta(E)$.

• Summing up over all vertices ⇒ total running time of BFS is $O(V+E)$, linear in the size of the adjacency list representation of graph.
Depth-first Search (DFS)

• Explore edges out of the most recently discovered vertex \(v \).

• When all edges of \(v \) have been explored, backtrack to explore other edges leaving the vertex from which \(v \) was discovered (its predecessor).

• “Search as deep as possible first.”

• Continue until all vertices reachable from the original source are discovered.

• If any undiscovered vertices remain, then one of them is chosen as a new source and search is repeated from that source.
Depth-first Search

• **Input:** $G = (V, E)$, directed or undirected. No source vertex given.

• **Output:**
 - 2 timestamps on each vertex. Integers between 1 and $2|V|$.
 - $d[v] = \text{discovery time}$ (v turns from white to gray)
 - $f[v] = \text{finishing time}$ (v turns from gray to black)
 - $\pi[v]:$ predecessor of $v = u$, such that v was discovered during the scan of u’s adjacency list.

• Uses the same coloring scheme for vertices as BFS.
DFS(G)
1. for each vertex \(u \in V[G] \)
2. do \(\text{color}[u] \leftarrow \text{white} \)
3. \(\pi[u] \leftarrow \text{NIL} \)
4. \(\text{time} \leftarrow 0 \)
5. for each vertex \(u \in V[G] \)
6. do if \(\text{color}[u] = \text{white} \)
7. then DFS-Visit(u)

Uses a global timestamp \(\text{time} \).

DFS-Visit(u)
1. \(\text{color}[u] \leftarrow \text{GRAY} \) \(\triangledown \) White vertex \(u \) has been discovered
2. \(\text{time} \leftarrow \text{time} + 1 \)
3. \(d[u] \leftarrow \text{time} \)
4. for each \(v \in \text{Adj}[u] \)
5. do if \(\text{color}[v] = \text{WHITE} \)
6. then \(\pi[v] \leftarrow u \)
7. DFS-Visit(v)
8. \(\text{color}[u] \leftarrow \text{BLACK} \) \(\triangledown \) Blacken \(u \); it is finished.
9. \(f[u] \leftarrow \text{time} \leftarrow \text{time} + 1 \)
Example (DFS)
Example (DFS)
Example (DFS)
Example (DFS)
Example (DFS)
Example (DFS)

Starting time $d(x)$

Finishing time $f(x)$
Example (DFS)
Analysis of DFS

• Loops on lines 1-2 & 5-7 take $\Theta(V)$ time, excluding time to execute DFS-Visit.

• DFS-Visit is called once for each white vertex $v \in V$ when it’s painted gray the first time. Lines 3-6 of DFS-Visit is executed $|\text{Adj}[v]|$ times. The total cost of executing DFS-Visit is $\sum_{v \in V} |\text{Adj}[v]| = \Theta(E)$

• Total running time of DFS is $\Theta(V+E)$.
Example (DFS)

Starting time $d(x)$

Finishing time $f(x)$
Theorem 1:
For all u, v, exactly one of the following holds:

2. $d[u] < d[v] < f[v] < f[u]$ and v is a descendant of u.

- Like parentheses:
 - OK: () [] ([]) [()]
 - Not OK: ([)] [()]

Corollary

v is a proper descendant of u if and only if $d[u] < d[v] < f[v] < f[u]$.
Example (Parenthesis Theorem)

\[(s \ (z \ (y \ (x \ x) \ y) \ (w \ w) \ z) \ s) \ (t \ (v \ v) \ (u \ u) \ t)\]