COMP251: Red-black trees

Jérôme Waldispühl
School of Computer Science
McGill University

Based on (Cormen et al., 2002)

Based on slides from D. Plaisted (UNC)
Red-black trees: Overview

- Red-black trees are a variation of binary search trees to ensure that the tree is balanced.
 - Height is $O(\log n)$, where n is the number of nodes.
- Operations take $O(\log n)$ time in the worst case.
- Invented by R. Bayer (1972).
Red-black Tree

• Binary search tree + 1 bit per node: the attribute color, which is either red or black.

• All other attributes of BSTs are inherited:
 – key, left, right, and parent.

• All empty trees (leaves) are colored black.
 – Note: We can use a single sentinel, nil, for all the leaves of red-black tree T, with $\text{color}[\text{nil}] = \text{black}$. The root’s parent is also $\text{nil}[T]$.
Red-black (RB) Properties

1. Every node is either red or black.
2. The root is black.
3. All leaves (nil) are black.
4. If a node is red, then its children are black (i.e. no 2 consecutive red nodes).
5. For each node, all paths from the node to descendant leaves contain the same number of black nodes (i.e. same black height).
Red-black Tree – Example

Note: every internal node has two children, even though nil leaves are not usually shown.
Height of a Red-black Tree

• Height of a node:
 – \(h(x) \) = number of edges in the longest path to a leaf.

• Black-height of a node \(x \), \(bh(x) \):
 – \(bh(x) \) = number of black nodes (including \(nil[T] \)) on the path from \(x \) to leaf, not counting \(x \).

• Black-height of a red-black tree is the black-height of its root.
 – wBy RB Property 5, black height is well defined.
Height of a Red-black Tree

- **Height** $h(x)$:

 #edges in a longest path to a leaf.

- **Black-height** $bh(x)$:

 # black nodes on path from x to leaf, *not counting* x.

- **Property**: $bh(x) \leq h(x) \leq 2 \cdot bh(x)$
Bound on RB Tree Height

Lemma 1: Any node x with height $h(x)$ has a black-height $bh(x) \geq h(x)/2$.

Proof: By RB property 4, $\leq h/2$ nodes on the path from the node to a leaf are red. Hence $\geq h/2$ are black. ■
Bound on RB Tree Height

Lemma 2: The subtree rooted at any node x contains $\geq 2^{bh(x)} - 1$ internal nodes.

Proof: By induction on height of x.

- **Base Case:** Height $h(x) = 0 \implies x$ is a leaf $\implies bh(x) = 0$. Subtree has $\geq 2^0 - 1 = 0$ nodes.

- **Induction Step:**
 - Each child of x has height $h(x) - 1$ and black-height either $bh(x)$ (child is red) or $bh(x) - 1$ (child is black).
 - By ind. hyp., each child has $\geq 2^{bh(x)-1} - 1$ internal nodes.
 - Subtree rooted at x has $\geq 2 \cdot (2^{bh(x)-1} - 1) + 1
 = 2^{bh(x)} - 1$ internal nodes. □
Bound on RB Tree Height

Lemma 1: Any node x with height h(x) has a black-height bh(x) ≥ h(x)/2.

Lemma 2: The subtree rooted at any node x has \[\geq 2^{bh(x)} - 1 \] internal nodes.

Lemma 3: A red-black tree with n internal nodes has height at most \(2 \log(n+1) \).

Proof:
- By lemma 2, \(n \geq 2^{bh} - 1 \),
- By lemma 1, \(bh \geq h/2 \), thus \(n \geq 2^{h/2} - 1 \).
- \(\Rightarrow h \leq 2 \log(n + 1) \).
Insertion in RB Trees

• Insertion must preserve all red-black properties.
• Should an inserted node be colored Red? Black?
• Basic steps:
 – Use BST Tree-Insert to insert a node x into T.
 • Procedure $\text{RB-Insert}(x)$.
 – Color the node x red.
 – Fix the new tree by (1) re-coloring nodes, and (2) performing rotation to preserve RB tree property.
 • Procedure RB-Insert-Fixup.
Insertion

RB-Insert(T, z)

1. $y \leftarrow nil[T]$
2. $x \leftarrow root[T]$
3. while $x \neq nil[T]$

 do $y \leftarrow x$

 if $key[z] < key[x]$

 then $x \leftarrow left[x]$

 else $x \leftarrow right[x]$

4. $p[z] \leftarrow y$

5. if $y = nil[T]$
6. then $root[T] \leftarrow z$
7. else if $key[z] < key[y]$
8. then $left[y] \leftarrow z$
9. else $right[y] \leftarrow z$

RB-Insert(T, z) Contd.

14. $left[z] \leftarrow nil[T]$
15. $right[z] \leftarrow nil[T]$
16. $color[z] \leftarrow RED$
17. RB-Insert-Fixup (T, z)

Regular BST insert + color assignment + fixup.
Insert RB Tree – Example
Insert RB Tree – Example

Insert(T,15)
Insert RB Tree – Example

Recolor 10, 8 & 11
Insert RB Tree – Example

Right rotate at 18
Insert RB Tree – Example

Parent & child with conflict are now aligned with the root.
Insert RB Tree – Example

Left rotate at 7
Insert RB Tree – Example
Insert RB Tree – Example

Recolor 10 & 7 (root must be black!)
Insertion – Fixup

RB-Insert-Fixup \((T, z)\)

1. while \(\text{color}[p[z]] = \text{RED}\)
2. do if \(p[z] = \text{left}[p[p[z]]]\)
3. then \(y \leftarrow \text{right}[p[p[z]]]\)
4. if \(\text{color}[y] = \text{RED}\)
5. then \(\text{color}[p[z]] \leftarrow \text{BLACK} \quad \text{// Case 1}\)
6. \(\text{color}[y] \leftarrow \text{BLACK} \quad \text{// Case 1}\)
7. \(\text{color}[p[p[z]]] \leftarrow \text{RED} \quad \text{// Case 1}\)
8. \(z \leftarrow p[p[z]] \quad \text{// Case 1}\)
Insertion – Fixup

RB-Insert-Fixup(T, z) (Contd.)

9. \quad \text{else if } z = right[p[z]] \quad // \text{color}[y] \neq \text{RED}
10. \quad \text{then } z \leftarrow p[z] \quad // \text{Case 2}
11. \quad \text{LEFT-ROTATE}(T, z) \quad // \text{Case 2}
12. \quad \text{color}[p[z]] \leftarrow \text{BLACK} \quad // \text{Case 3}
13. \quad \text{color}[p[p[z]]] \leftarrow \text{RED} \quad // \text{Case 3}
14. \quad \text{RIGHT-ROTATE}(T, p[p[z]]) \quad // \text{Case 3}
15. \quad \text{else (if } p[z] = right[p[p[z]]])(\text{same as 10-14}
16. \quad \text{with “right” and “left” exchanged})
17. \quad \text{color}[\text{root}[T]] \leftarrow \text{BLACK}
Case 1 – uncle y is red

- \(p[p[z]] \) (z’s grandparent) must be black, since z and \(p[z] \) are both red and there are no other violations of property 4.
- Make \(p[z] \) and y black \(\Rightarrow \) now z and \(p[z] \) are not both red. But property 5 might now be violated.
- Make \(p[p[z]] \) red \(\Rightarrow \) restores property 5.
- The next iteration has \(p[p[z]] \) as the new z (i.e., z moves up 2 levels).

\(z \) is a right child here. Similar steps if \(z \) is a left child.
Case 2 – y is black, z is a right child

- Left rotate around $p[z]$, $p[z]$ and z switch roles \Rightarrow now z is a left child, and both z and $p[z]$ are red.
- Takes us immediately to case 3.
Case 3 – y is black, z is a left child

- Make $p[z]$ black and $p[p[z]]$ red.
- Then right rotate right on $p[p[z]]$ (in order to maintain property 4).
- No longer have 2 reds in a row.
- $p[z]$ is now black \Rightarrow no more iterations.
Algorithm Analysis

- $O(\lg n)$ time to get through RB-Insert up to the call of RB-Insert-Fixup.
- Within RB-Insert-Fixup:
 - Each iteration takes $O(1)$ time.
 - Each iteration but the last moves z up 2 levels.
 - $O(\lg n)$ levels $\Rightarrow O(\lg n)$ time.
 - Thus, insertion in a red-black tree takes $O(\lg n)$ time.
 - Note: there are at most 2 rotations overall.
Correctness

Loop invariant:

• At the start of each iteration of the **while** loop,
 – z is red.
 – There is at most one red-black violation:
 • Property 2: z is a red root, or
 • Property 4: z and p[z] are both red.
Correctness – Contd.

• **Initialization**: ✓

• **Termination**: The loop terminates only if $p[z]$ is black. Hence, property 4 is OK. The last line ensures property 2 always holds.

• **Maintenance**: We drop out when z is the root (since then $p[z]$ is sentinel $\textit{nil}[T]$, which is black). When we start the loop body, the only violation is of property 4.
 – There are 6 cases, 3 of which are symmetric to the other 3. We consider cases in which $p[z]$ is a left child.
 – See cases 1, 2, and 3 described above.
AVL vs. Red-Black Trees

- AVL trees are more strictly balanced ⇒ faster search
- Red Black Trees have less constraints and insert/remove operations require less rotations ⇒ faster insertion and removal
- AVL trees store balance factors or heights with each node
- Red Black Tree requires only 1 bit of information per node
Further Readings

See Chapter 13 for the complete proofs & deletion