COMP251: Amortized Analysis

Jérôme Waldispühl
School of Computer Science
McGill University

Based on (Cormen et al., 2009)
Overview

• Analyze a sequence of operations on a data structure.

• We will talk about average cost in the worst case (i.e. not averaging over a distribution of inputs. No probability!)

• **Goal:** Show that although some individual operations may be expensive, on average the cost per operation is small.

• 3 methods:
 1. aggregate analysis
 2. accounting method
 3. potential method (See textbook for more details)
Aggregate analysis

Stack operations

- **PUSH**(S, x): $O(1)$ each $\Rightarrow O(n)$ for any sequence of n operations.
- **POP**(S): $O(1)$ each $\Rightarrow O(n)$ for any sequence of n operations.
- **MULTIPOP**(S,k):

  ```
  while S≠Ø and k>0 do
    POP(S)
    k←k−1
  ```

Running time of **MULTIPOP**?
Running time of *multiple operations*

Running time of MULTIPOP:
- Let each PUSH/POP cost 1.
- # of iterations of *while* loop is min(s, k), where s = # of objects on stack. Therefore, total cost = min(s, k).

Sequence of *n* PUSH, POP, MULTIPOP operations:
- Worst-case cost of MULTIPOP is $O(n)$.
- Have *n* operations.
- Therefore, worst-case cost of sequence is $O(n^2)$.

But:
- Each object can be popped only once per time that it is pushed.
- Have $\leq n$ PUSHes $\Rightarrow \leq n$ POPs, including those in MULTIPOP.
- Therefore, total cost = $O(n)$.
- Average over the *n* operations $\Rightarrow O(1)$ per operation on average.
Binary counter

• k-bit binary counter $A[0 \ldots k-1]$ of bits, where $A[0]$ is the least significant bit and $A[k-1]$ is the most significant bit.
• Counts upward from 0.
• Value of counter is: $\sum_{i=0}^{k-1} A[i] \cdot 2^i$
• Initially, counter value is 0, so $A[0 \ldots k-1] = 0$.
• To increment, add 1 (mod 2^k):
 Increment(A,k):

 $i \leftarrow 0$
 while $i < k$ and $A[i] = 1$ do
 $A[i] \leftarrow 0$
 $i \leftarrow i + 1$
 if $i < k$ then
 $A[i] \leftarrow 1$
Example (1)

Let k=3

<table>
<thead>
<tr>
<th>Counter Value</th>
<th>A [2 \ 1 \ 0]</th>
<th>cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>_0 _0 _0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0 _0 _1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>_0 _1 _0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>0 _1 _1</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>1 _0 _0</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>1 _0 _1</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>1 _1 _0</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>1 _1 _1</td>
<td>11</td>
</tr>
<tr>
<td>0</td>
<td>_0 _0 _0</td>
<td>14</td>
</tr>
</tbody>
</table>

Cost of INCREMENT = \(\Theta(\# \text{ of bits flipped}) \)

(Analysis): Each call could flip \(k \) bits, so \(n \) INCREMENTs takes \(O(nk) \) time.
Example (2)

<table>
<thead>
<tr>
<th>Bit</th>
<th>Flips how often</th>
<th>Time in n INCREMENTs</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Every time</td>
<td>n</td>
</tr>
<tr>
<td>1</td>
<td>½ of the time</td>
<td>floor(n/2)</td>
</tr>
<tr>
<td>2</td>
<td>¼ of the time</td>
<td>floor(n/4)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>i</td>
<td>1/2^i of the time</td>
<td>floor(n/2^i)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>i≥k</td>
<td>Never</td>
<td>0</td>
</tr>
</tbody>
</table>

Thus, total # flips = \[\sum_{i=0}^{k-1} \left\lfloor \frac{n}{2^i} \right\rfloor < n \cdot \sum_{i=0}^\infty \frac{1}{2^i} = n \left(\frac{1}{1 - 1/2} \right) = 2 \cdot n \]

Therefore, \(n \) INCREMENTs costs \(O(n) \).
Average cost per operation = \(O(1) \).
Accounting method

Assign different charges to different operations.
• Some are charged more than actual cost.
• Some are charged less.

Amortized cost = amount we charge.

• When amortized cost is higher than the actual cost, store the difference *on specific objects* in the data structure as *credit*.
• Use credit later to pay for operations whose actual cost is higher than the amortized cost.

But we need to guarantee that the credit never goes negative!

Differs from aggregate analysis:
• In the accounting method, different operations can have different costs.
• In aggregate analysis, all operations have same cost.
Definition

Let $c_i = \text{cost of actual } i^{\text{th}} \text{ operation.}$

$\hat{c}_i = \text{amortized cost of } i^{\text{th}} \text{ operation.}$

Then require $\sum_{i=1}^{n} \hat{c}_i \geq \sum_{i=1}^{n} c_i$ for all sequences of n operations.

Total credit stored $= \sum_{i=1}^{n} \hat{c}_i - \sum_{i=1}^{n} c_i \geq 0$
Stack

<table>
<thead>
<tr>
<th>Operation</th>
<th>Actual cost</th>
<th>Amortized cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUSH</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>POP</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>MULTIPOP</td>
<td>min(k,s)</td>
<td>0</td>
</tr>
</tbody>
</table>

Intuition: When pushing an object, pay $2.
- $1 pays for the PUSH.
- $1 is prepayment for it being popped by either POP or MULTIPOP.
- Since each object has $1, which is credit, the credit can never go negative.
- Total amortized cost (= $O(n)$) is an upper bound on total actual cost.
Binary counter

Charge $2 to set a bit to 1.
• $1 pays for setting a bit to 1.
• $1 is prepayment for flipping it back to 0.
• Have $1 of credit for every 1 in the counter.
• Therefore, credit ≥ 0.

Amortized cost of INCREMENT:
• Cost of resetting bits to 0 is paid by credit.
• At most 1 bit is set to 1.
• Therefore, amortized cost ≤ $2.
• For n operations, amortized cost = $O(n)$.
Dynamic tables

Scenario
• Have a table (maybe a hash table).
• Don’t know in advance how many objects will be stored in it.
• When it fills, must reallocate with a larger size, copying all objects into the new, larger table.
• When it gets sufficiently small, *might* want to reallocate with a smaller size.

Goals
1. $O(1)$ amortized time per operation.
2. Unused space always \leq constant fraction of allocated space.

Load factor $\alpha = (#$ items stored) / (allocated size)

Never allow $\alpha > 1$; Keep $\alpha >$ a constant fraction \Rightarrow Goal 2.
Table expansion

Consider only insertion.
• When the table becomes full, double its size and reinsert all existing items.
• Guarantees that $\alpha \geq \frac{1}{2}$.
• Each time we insert an item into the table, it is an elementary insertion.

TABLE-INSERT(T, x)
if $\text{size}[T] = 0$
 then allocate $\text{table}[T]$ with 1 slot
 $\text{size}[T] \leftarrow 1$
if $\text{num}[T] = \text{size}[T]$ then
 allocate new-table with $2 \cdot \text{size}[T]$ slots
 insert all items in $\text{table}[T]$ into new-table
 free $\text{table}[T]$
 $\text{table}[T] \leftarrow \text{new-table}$
 $\text{size}[T] \leftarrow 2 \cdot \text{size}[T]$
insert x into $\text{table}[T]$
$\text{num}[T] \leftarrow \text{num}[T] + 1$ (Initially, $\text{num}[T] = \text{size}[T] = 0$)
Aggregate analysis

- Cost of 1 per elementary insertion.
- Count only elementary insertions (other costs = constant).

\(c_i \) = actual cost of \(i^{th} \) operation

- If not full, \(c_i = 1 \).
- If full, have \(i-1 \) items in the table at the start of the \(i^{th} \) operation. Have to copy all \(i-1 \) existing items, then insert \(i^{th} \) item \(\Rightarrow c_i = i \).

Naïve: \(n \) operations \(\Rightarrow c_i = O(n) \Rightarrow O(n^2) \) time for \(n \) operations

\[
\begin{align*}
c_i = \begin{cases}
i & \text{if } i-1 \text{ is power of 2} \\1 & \text{Otherwise}
\end{cases}
\end{align*}
\]

Total cost = \(\sum_{i=1}^{n} c_i \leq n + \sum_{j=0}^{[\log n]} 2^j = n + \frac{2^{[\log n]+1} - 1}{2 - 1} < n + 2n = 3n \)

Amortized cost per operation = 3.
Accounting method

Charge $3 per insertion of \(x \).
- $1 pays for \(x \)'s insertion.
- $1 pays for \(x \) to be moved in the future.
- $1 pays for some other item to be moved.

Prove the credit never goes negative:
- \(\text{size}=m \) before and \(\text{size}=2m \) after expansion.
- Assume that the expansion used up all the credit, thus that there is no credit available after the expansion.
- We will expand again after another \(m \) insertions.
- Each insertion will put $1 on one of the \(m \) items that were in the table just after expansion and will put $1 on the item inserted.
- Have \(2m \) of credit by next expansion, when there are \(2m \) items to move. Just enough to pay for the expansion...