Problem

What is the shortest road to go from one city to another?

Example: Which road should I take to go from Montréal to Boston (MA)?

Variants:
• What is the fastest road?
• What is the cheapest road?
Modeling as graphs

Input:
• Directed graph $G = (V, E)$
• Weight function $w: E \rightarrow \mathbb{R}$

Weight of path $p = \langle v_0, v_1, \ldots, v_k \rangle$

$$= \sum_{k=1}^{n} w(v_{k-1}, v_k)$$

= sum of edges weights on path p

Shortest-path weight u to v:

$$\delta(u, v) = \begin{cases}
\min \left\{ w(p) : u \rightarrow^p v \right\} & \text{If there exists a path } u \sim^p v. \\
\infty & \text{Otherwise.}
\end{cases}$$

Shortest path u to v is any path p such that $w(p) = \delta(u, v)$

Generalization of breadth-first search to weighted graphs
Example

Shortest path from s?
Shortest paths are organized as a tree. Vertices store the length of the shortest path from s.
Example

Shortest paths are not necessarily unique!
Variants

- **Single-source:** Find shortest paths from a given source vertex $s \in V$ to every vertex $v \in V$.

- **Single-destination:** Find shortest paths to a given destination vertex.

- **Single-pair:** Find shortest path from u to v.

 Note: No way to known that is better in worst case than solving the single-source problem!

- **All-pairs:** Find shortest path from u to v for all $u, v \in V$.
Negative weight edges can create issues.

Why? If we have a negative-weight cycle, we can just keep going around it, and get $w(s, v) = -\infty$ for all v on the cycle.

When? If they are reachable from the source (Corollary: It is OK to have a negative-weight cycles if it is not reachable from the source).

What? Some algorithms work only if there are no negative-weight edges in the graph. We must specify when they are allowed and not.
Cycles

Shortest paths cannot contain cycles:

• Negative-weight: Already ruled out.

• Positive-weight: we can get a shorter path by omitting the cycle.

• Zero-weight: no reason to use them ⇒ assume that our solutions will not use them.
Optimal substructure

Lemma
Any subpath of a shortest path is a shortest path.

Proof: (cut and paste)

Suppose this path p is a shortest path from u to v.

Then $\delta(u,v) = w(p) = w(p_{ux}) + w(p_{xy}) + w(p_{yv})$.
Optimal substructure

Lemma
Any subpath of a shortest path is a shortest path.

Proof: (cont’d)

Now suppose there exists a shorter path $x \sim y$.

Then $w(p'_{xy}) < w(p_{xy})$.

$w(p') = w(p_{ux}) + w(p'_{xy}) + w(p_{yx}) < w(p_{ux}) + w(p_{xy}) + w(p_{yx}) = w(p)$.

Contradiction of the hypothesis that p is the shortest path!
Vertices count the number of edges used to reach them.
Customized breadth-first search
Customized breadth-first search
Customized breadth-first search
Can we generalize BFS to use edge weights?
Output of single-source shortest-path algorithm

For each vertex \(v \in V \):
• \(d[v] = \delta(s,v) \).
 • Initially, \(d[v] = \infty \).
 • Reduces as algorithms progress, but always maintain \(d[v] \geq \delta(s,v) \).
 • Call \(d[v] \) a \textbf{shortest-path estimate}.
• \(\pi[v] = \) predecessor of \(v \) on a shortest path from \(s \).
 • If no predecessor, \(\pi[v] = \text{NIL} \).
 • \(\pi \) induces a tree - \textbf{shortest-path tree} (see proof in textbook).
Algorithm structure

1. Initialization
2. Scan vertices and relax edges

The algorithms differ in the order and how many times they relax each edge.
Initialization

\textsc{Init-Single-Source}(V, s)

\begin{algorithm}
\begin{algorithmic}
\State \textbf{for} each \(v \in V \) \textbf{do}
\State \(d[v] \leftarrow \infty \)
\State \(\pi[v] \leftarrow \text{NIL} \)
\State \(d[s] \leftarrow 0 \)
\end{algorithmic}
\end{algorithm}
Relaxing an edge

\[
\text{RELAX}(u,v,w) \\
\text{if } d[v] > d[u] + w(u,v) \text{ then} \\
\quad d[v] \leftarrow d[u] + w(u,v) \\
\quad \pi[v] \leftarrow u
\]

![Diagram showing the relaxation process](image-url)
Triangle inequality

For all $(u, v) \in E$, we have $\delta(u, v) \leq \delta(u, x) + \delta(x, v)$.

Proof:
Weight of shortest path $u \rightsquigarrow v$ is \leq weight of any path $u \rightsquigarrow v$. Path $u \rightsquigarrow x \rightsquigarrow v$ is a path $u \rightsquigarrow v$, and if we use a shortest path $u \rightsquigarrow x$ and $x \rightsquigarrow v$, its weight is $\delta(u, x) + \delta(x, v)$.

\begin{center}
\begin{tikzpicture}
\node (u) at (0,0) {u};
\node (v) at (2,0) {v};
\node (x) at (1,2) {x};
\draw[->] (u) to node [above] {$\delta(u, x)$} (x);
\draw[->] (x) to node [left] {$\delta(x, v)$} (v);
\draw[->] (u) to node [right] {$\delta(u, v)$} (v);
\end{tikzpicture}
\end{center}
Upper bound property

Always have $\delta(s, v) \leq d[v]$ for all v. Once $d[v] = \delta(s, v)$, it never changes.

Proof:

- Initially true.
- Then, assume it exists a vertex v such that $d[v] < \delta(s, v)$. WLOG, v is the first vertex for which this happens.
 Let u be the vertex that causes $d[v]$ to change. Then $d[v] = d[u] + \delta(u, v)$. But, we also have:

$$d[v] < \delta(s, v) \leq \delta(s, u) + \delta(u, v) \leq d[u] + \delta(u, v)$$

(triangle inequality) \hspace{1cm} (v is first violation)

$\Rightarrow d[v] < d[u] + \delta(u, v)$.

Contradicts $d[v] = d[u] + \delta(u, v)$.

No-path property

If $\delta(s, v) = \infty$, then $d[v] = \infty$ always.

Proof: $d[v] \geq \delta(s,v) = \infty \Rightarrow d[v] = \infty$.
Convergence property

If:
1. $s \leadsto u \rightarrow v$ is a shortest path,
2. $d[u] = \delta(s,u)$,
3. we call RELAX(u,v,w),
then $d[v] = \delta(s,v)$ afterward.

Proof:
After relaxation:
$$d[v] \leq d[u] + w(u,v) \quad \text{(RELAX code)}$$
$$= \delta(s,u) + w(u,v) \quad \text{(d[u] = \delta(s,u))}$$
$$= \delta(s,v) \quad \text{(s\leadsto u \rightarrow v is a shortest path}$$
$$\quad \text{& lemma sub-optimal structure)}$$

Since $d[v] \geq \delta(s,v)$, must have $d[v] = \delta(s,v)$.
Path-relaxation property

Let \(p = \langle v_0, v_1, \ldots, v_k \rangle \) be a shortest path from \(s = v_0 \) to \(v_k \). If we relax, in order, \((v_0, v_1), (v_1, v_2), \ldots, (v_{k-1}, v_k) \), even intermixed with other relaxations, then \(d[v_k] = \delta(s, v_k) \).

Proof:

Induction to show that \(d[v_i] = \delta(s, v_i) \) after \((v_{i-1}, v_i) \) is relaxed.

Basis: \(i = 0 \). Initially, \(d[v_0] = 0 = \delta(s, v_0) = \delta(s, s) \).

Inductive step: Assume \(d[v_{i-1}] = \delta(s, v_{i-1}) \). Relax \((v_{i-1}, v_i) \). By convergence property, \(d[v_i] = \delta(s, v_i) \) afterward and \(d[v_i] \) never changes.
Single-source shortest paths in a DAG

DAG ⇒ no negative-weight cycles.

DAG-SHORTEST-PATHS(V, E, w, s)
topologically sort the vertices
INIT-SINGLE-SOURCE(V, s)
for each vertex u in topological order do
 for each vertex v ∈ Adj[u] do
 RELAX(u, v, w)

![Diagram of a directed acyclic graph (DAG) with vertices labeled s, t, x, y, z and edges with weights 6, 2, 7, 1, -1, -2, 4, 2.](image-url)
Example
Example
Example
Example
Example
Single-source shortest paths in a DAG

\texttt{DAG-SHORTEST-PATHS}(V,E,w,s)
topologically sort the vertices
\texttt{INIT-SINGLE-SOURCE}(V,s)
\texttt{for} each vertex \texttt{u} in topological order \texttt{do}
 \texttt{for} each vertex \texttt{v} \texttt{∈ Adj}[u] \texttt{do}
 \texttt{RELAX}(u,v,w)

\textbf{Time:} \((V + E)\).

\textbf{Correctness:}
Because we process vertices in topologically sorted order, edges of any path must be relaxed in order of appearance in the path.
⇒ Edges on any shortest path are relaxed in order.
⇒ By path-relaxation property, correct.
Dijkstra’s algorithm

- No negative-weight edges.
- Weighted version of BFS:
 - Instead of a FIFO queue, uses a priority queue.
 - Keys are shortest-path weights ($d[v]$).
- Have two sets of vertices:
 - $S =$ vertices whose final shortest-path weights are determined,
 - $Q =$ priority queue $= V − S$.
- Similar Prim’s algorithm, but computing $d[v]$, and using shortest-path weights as keys.
- Greedy choice: At each step we choose the light edge.
Dijkstra’s algorithm

DIJKSTRA(V, E, w, s)
INIT-SINGLE-SOURCE(V, s)
S ← ∅
Q ← V

while Q ≠ ∅ do
 u ← EXTRACT-MIN(Q)
 S ← S ∪ {u}
 for each vertex v ∈ Adj[u] do
 RELAX(u, v, w)
Example
Example
Example
Example

Q

\[
\begin{array}{|c|c|}
\hline
x & z \\
\hline
\end{array}
\]
Example
Example
Example
Correctness

Loop invariant:
At the start of each iteration of the while loop, \(d[v] = \delta(s,v) \) for all \(v \in S \).

Initialization:
Initially, \(S = \emptyset \), so trivially true.

Termination:
At end, \(Q=\emptyset \Rightarrow S = V \Rightarrow d[v] = \delta(s,v) \) for all \(v \in V \).

Maintenance:
Show that \(d[u] = \delta(s,u) \) when \(u \) is added to \(S \) in each iteration.
Correctness (cont’d)

Show that $d[u] = \delta(s,u)$ when u is added to S in each iteration.

Suppose there exists u such that $d[u] \neq \delta(s,u)$.

Let u be the first vertex for which $d[u] \neq \delta(s, u)$ when u is added to S.

• $u \neq s$, since $d[s] = \delta(s,s) = 0$.

• Therefore, $s \in S$, so $S \neq \emptyset$.

• There must be some path $s \sim u$. Otherwise $d[u] = \delta(s,u) = \infty$ by no-path property.

• So, there is a path $s \sim u$. Thus, there is a shortest p path $s \sim u$.

Correctness (cont’d)

Show that $d[u] = \delta(s,u)$ when u is added to S in each iteration.

Just before u is added to S, the path p connects a vertex in S (i.e., s) to a vertex in $V - S$ (i.e., u).

Let y be the first vertex along p that is in $V - S$, and let $x \in S$ be y's predecessor.

Decompose p into $s \sim x \rightarrow y \sim u$.
Correctness (cont’d)

Claim 1: \(d[y] = \delta(s, y) \) when \(u \) is added to \(S \).

Proof:

\(x \in S \) and \(u \) is the first vertex such that \(d[u] \neq \delta(s, u) \) when \(u \) is added to \(S \) \(\Rightarrow \) \(d[x] = \delta(s, x) \) when \(x \) is added to \(S \).

But when \(x \) is added we relax the edge \((x, y) \), so by the convergence property, \(d[y] = \delta(s, y) \).
Correctness (cont’d)

Show that $d[u] = \delta(s,u)$ when u is added to S in each iteration.

Now, we can get a contradiction to $d[u] \neq \delta(s,u)$:

- y is on shortest path $p(s\leadsto u)$, and all edge weights are nonnegative.
- $\Rightarrow \delta(s, y) \leq \delta(s, u)$

Then by Claim 1, we have $d[y] = \delta(s,y)$

\[
\leq \delta(s,u)
\leq d[u] \quad \text{(upper-bound property)}
\]

In addition, y and u were in Q when we chose u, thus $d[u] \leq d[y]$.

We have $d[y] \leq d[u] \& d[u] \leq d[y] \Rightarrow d[u] = d[y]$.

Therefore, $d[y] = \delta(s,y) \leq \delta(s,u) \leq d[u] = d[y]$

Contradicts assumption that $d[u] \neq \delta(s,u)$.

Analysis

Like Prim’s algorithm, it depends on implementation of priority queue.

If binary heap, each operation takes $O(\lg V)$ time
⇒ $O(E \lg V)$.

Note: We can achieve $O(V \lg V + E)$ with Fibonacci heaps.