COMP251: Greedy algorithms

Jérôme Waldispühl
School of Computer Science
McGill University

Based on (Cormen et al., 2002)

Based on slides from D. Plaisted (UNC) & (goodrich & Tamassia, 2009)
Overview

• Algorithm design technique to solve optimization problems.
• Problems exhibit optimal substructure.
• Idea (the greedy choice):
 – When we have a choice to make, make the one that looks best right now.
 – Make a locally optimal choice in hope of getting a globally optimal solution.
Greedy Strategy

The choice that seems best at the moment is the one we go with.

– Prove that when there is a choice to make, one of the optimal choices is the greedy choice. Therefore, it is always safe to make the greedy choice.

– Show that all but one of the sub-problems resulting from the greedy choice are empty.
Activity-selection Problem

- **Input:** Set S of n activities, a_1, a_2, \ldots, a_n.
 - $s_i = \text{start time of activity } i$.
 - $f_i = \text{finish time of activity } i$.

- **Output:** Subset A of maximum number of compatible activities.
 - 2 activities are compatible, if their intervals do not overlap.

Example:
Activity-selection Problem

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>f_i</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

Activities sorted by finishing time.

Optimal compatible set: \{ a_1, a_3, a_5 \}
Optimal Substructure

• Assume activities are sorted by finishing times.

• Suppose an optimal solution includes activity a_k. This solution is obtained from:
 – An optimal selection of a_1, \ldots, a_{k-1} activities compatible with one another, and that finish before a_k starts.
 – An optimal solution of a_{k+1}, \ldots, a_n activities compatible with one another, and that start after a_k finishes.
Optimal Substructure

• Let $S_{ij} =$ subset of activities in S that start after a_i finishes and finish before a_j starts.

$$S_{ij} = \{a_k \in S : \forall i, j \quad f_i \leq s_k < f_k \leq s_j \}$$

• $A_{ij} =$ optimal solution to S_{ij}

• $A_{ij} = A_{ik} \cup \{a_k\} \cup A_{kj}$
Recursive Solution

• Subproblems: Selecting maximum number of mutually compatible activities from S_{ij}.
• Let $c[i, j] = $ size of maximum-size subset of mutually compatible activities in S_{ij}.

Recursive solution: $c[i, j] = \begin{cases}
0 & \text{if } S_{ij} = \emptyset \\
\max \{c[i, k] + c[k, j] + 1\} & \text{if } S_{ij} \neq \emptyset
\end{cases}$ where $i < k < j$ and $a_k \in S_{ij}$

Note: Here, we do not know (yet) which k to use for the optimal solution.
Greedy choice

Theorem:
Let \(S_{ij} \neq \emptyset \), and let \(a_m \) be the activity in \(S_{ij} \) with the earliest finish time: \(f_m = \min\{ f_k : a_k \in S_{ij} \} \). Then:

1. \(a_m \) is used in some maximum-size subset of mutually compatible activities of \(S_{ij} \).
2. \(S_{im} = \emptyset \), so that choosing \(a_m \) leaves \(S_{mj} \) as the only nonempty subproblem.
Greedy choice

Proof:

(1) \(a_m\) is used in some maximum-size subset of mutually compatible activities of \(S_{ij}\).

- Let \(A_{ij}\) be a maximum-size subset of mutually compatible activities in \(S_{ij}\) (i.e. an optimal solution of \(S_{ij}\)).
- Order activities in \(A_{ij}\) in monotonically increasing order of finish time, and let \(a_k\) be the first activity in \(A_{ij}\).
- If \(a_k = a_m\) \(\Rightarrow\) done.
- Otherwise, let \(A'_{ij} = A_{ij} \cup \{a_m\} \setminus \{a_k\}\)

\(A'_{ij}\) is valid because \(a_m\) finishes before \(a_k\)
- Since \(|A_{ij}| = |A'_{ij}|\) and \(A_{ij}\) maximal \(\Rightarrow\) \(A'_{ij}\) maximal too.
Greedy choice

Proof:

(2) \(S_{im} = \emptyset \), so that choosing \(a_m \) leaves \(S_{mj} \) as the only nonempty subproblem.

If there is \(a_k \in S_{im} \) then \(f_i \leq s_k < f_k \leq s_m < f_m \) \(\Rightarrow f_k < f_m \) which contradicts the hypothesis that \(a_m \) has the earlier finish.
Greedy choice

<table>
<thead>
<tr>
<th></th>
<th>Before theorem</th>
<th>After theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td># subproblems in</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>optimal solution</td>
<td></td>
<td></td>
</tr>
<tr>
<td># choices to consider</td>
<td>j-i-1</td>
<td>1</td>
</tr>
</tbody>
</table>

\[A_{ij} = A_{ik} \cup \{ a_k \} \cup A_{kj} \]

\[A_{ij} = \{ a_m \} \cup A_{mj} \]

We can now solve the problem \(S_{ij} \) top-down:

- Choose \(a_m \in S_{ij} \) with the earliest finish time (greedy choice).
- Solve \(S_{mj} \).
Activity-selection Problem

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>s_i</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>f_i</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

Activities sorted by finishing time.
Activity-selection Problem

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>f_i</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

Activities sorted by finishing time.
Activity-selection Problem

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>f_i</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

Activities sorted by finishing time.

![Diagram of activity selection problem]

- s_1, f_1: \(s_1 = 0, f_1 = 1\)
- s_2, f_2: \(s_2 = 1, f_2 = 3\)
- s_3, f_3: \(s_3 = 2, f_3 = 5\)
- s_4, f_4: \(s_4 = 4, f_4 = 6\)
- s_5, f_5: \(s_5 = 5, f_5 = 9\)
- s_6, f_6: \(s_6 = 6, f_6 = 10\)
- s_7, f_7: \(s_7 = 7, f_7 = 10\)

Activities sorted by finishing time.
Activity-selection Problem

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>f_i</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

Activities sorted by finishing time.
Recursive Algorithm

Recursive-Activity-Selector \((s, f, i, n)\)

1. \(m \leftarrow i+1 \)
2. while \(m \leq n \) and \(s_m < f_i \) \hspace{1cm} \text{// Find first activity in } S_{i,n+1}
3. do \(m \leftarrow m+1 \)
4. if \(m \leq n \)
5. then return \(\{a_m\} \cup \)
6. Recursive-Activity-Selector\((s, f, m, n)\)
7. else return \(\emptyset \)

Initial Call: Recursive-Activity-Selector \((s, f, 0, n+1)\)
Complexity: \(\Theta(n) \)

Note 1: We assume activities are already ordered by finishing time.
Note 2: Straightforward to convert the algorithm to an iterative one.
Typical Steps

• Cast the optimization problem as one in which we make a choice and are left with one subproblem to solve.
• Prove that there is always an optimal solution that makes the greedy choice (greedy choice is safe).
• Show that greedy choice and optimal solution to subproblem ⇒ optimal solution to the problem.
• Make the greedy choice and solve top-down.
• You may have to preprocess input to put it into greedy order (e.g. sorting activities by finish time).
Elements of Greedy Algorithms

No general way to tell if a greedy algorithm is optimal, but two key ingredients are:

• Greedy-choice Property.
 – A globally optimal solution can be arrived at by making a locally optimal (greedy) choice.

• Optimal Substructure.
Text Compression

• Given a string X, efficiently encode X into a smaller string Y
 – Saves memory and/or bandwidth

• A good approach: **Huffman encoding**
 – Compute frequency $f(c)$ for each character c.
 – Encode high-frequency characters with short code words
 – No code word is a prefix for another code
 – Use an optimal encoding tree to determine the code words
Encoding Tree Example

- A **code** is a mapping of each character of an alphabet to a binary code-word
- A **prefix code** is a binary code such that no code-word is the prefix of another code-word
- An **encoding tree** represents a prefix code
 - Each external node (leaf) stores a character
 - The code word of a character is given by the path from the root to the external node storing the character (0 for a left child and 1 for a right child)
Encoding Example

Initial string: $X = \text{acda}$

Encoded string: $Y = 00 \ 011 \ 10 \ 00$
Encoding Tree Optimization

• Given a text string X, we want to find a prefix code for the characters of X that yields a small encoding for X
 – Rare characters should have long code-words
 – Frequent characters should have short code-words
• Example
 – $X =$ abracadabra
 – T_1 encodes X into 29 bits
 – T_2 encodes X into 24 bits
Example

\(X = \text{abracadabra}\)

Frequencies

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Diagram:

- Node a with frequency 5
- Node b with frequency 2
- Node c with frequency 1
- Node d with frequency 1
- Node r with frequency 2

Diagram transformation:

- Node 2 with children a and c
- Node 4 with children b and d
- Node 6 with children r, a, c, d, b, and r

Diagram steps:

1. Merge node a and c
2. Merge node b and d
3. Merge node r and the combined node from steps 1 and 2
4. Keep node r unchanged

Result:

- Node 2 with children a and c
- Node 4 with children b and d
- Node 6 with children r, a, c, d, b, and r

Diagram final state:

- Node 11 with children a, c, and d
- Node 6 with children b and r
- Node 2 with children a and c
- Node 4 with children b and d
- Node 6 with children r, a, c, d, b, and r
Extended Huffman Tree Example

String: a fast runner need never be afraid of the dark

<table>
<thead>
<tr>
<th>Character</th>
<th>a</th>
<th>b</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>h</th>
<th>i</th>
<th>k</th>
<th>n</th>
<th>o</th>
<th>r</th>
<th>s</th>
<th>t</th>
<th>u</th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>9</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>7</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
Huffman’s Algorithm

- Given a string X, Huffman’s algorithm construct a prefix code that minimizes the size of the encoding of X.
- It runs in time $O(n + d \log d)$, where n is the size of X and d is the number of distinct characters of X.
- A heap-based priority queue is used as an auxiliary structure.

Algorithm $HuffmanEncoding(X)$

Input: string X of size n
Output: optimal encoding trie for X

1. $C \leftarrow$ distinctCharacters(X)
2. computeFrequencies(C, X)
3. $Q \leftarrow$ new empty heap
4. for all $c \in C$
 - $T \leftarrow$ new single-node tree storing c
 - $Q.insert(getFrequency(c), T)$
5. while $Q.size() > 1$
 - $f_1 \leftarrow Q.minKey()$
 - $T_1 \leftarrow Q.removeMin()$
 - $f_2 \leftarrow Q.minKey()$
 - $T_2 \leftarrow Q.removeMin()$
 - $T \leftarrow$ join(T_1, T_2)
 - $Q.insert(f_1 + f_2, T)$
6. return $Q.removeMin()$