COMP251: Red-black trees

Jérôme Waldispühl
School of Computer Science
McGill University

Based on (Cormen et al., 2002)

Based on slides from D. Plaisted (UNC)
Red-black trees: Overview

• Red-black trees are a variation of binary search trees to ensure that the tree is balanced.
 – Height is $O(\lg n)$, where n is the number of nodes.
• Operations take $O(\lg n)$ time in the worst case.
• Invented by R. Bayer (1972).
Red-black Tree

• Binary search tree + 1 bit per node: the attribute color, which is either red or black.
• All other attributes of BSTs are inherited:
 – key, left, right, and parent.
• All empty trees (leaves) are colored black.
 – Note: We can use a single sentinel, nil, for all the leaves of red-black tree T, with $\text{color}[\text{nil}] = \text{black}$. The root’s parent is also $\text{nil}[T]$.
Red-black Properties

1. Every node is either red or black.

2. The root is black.

3. Every leaf (nil) is black.

4. If a node is red, then its children are black (i.e. no 2 consecutive red nodes).

5. For each node, all paths from the node to descendant leaves contain the same number of black nodes (i.e. same black height).
Red-black Tree – Example

Note: every internal node has two children, even though nil leaves are not usually shown.
Height of a Red-black Tree

• Height of a node:
 – $h(x)$ = number of edges in the longest path to a leaf.

• Black-height of a node x, $bh(x)$:
 – $bh(x)$ = number of black nodes (including $nil[T]$) on the path from x to leaf, not counting x.

• Black-height of a red-black tree is the black-height of its root.
 – By Property 5, black height is well defined.
Height of a Red-black Tree

- **Height** $h(x)$:
 # edges in a longest path to a leaf.

- **Black-height** $bh(x)$:
 # black nodes on path from x to leaf, *not counting* x.

- **Property**: $bh(x) \leq h(x) \leq 2 \cdot bh(x)$
Lemma 1: Any node \(x \) with height \(h(x) \) has a black-height \(bh(x) \geq h(x)/2 \).

Proof: By property 4, \(\leq h/2 \) nodes on the path from the node to a leaf are red. Hence \(\geq h/2 \) are black. \(\blacksquare \)
Bound on RB Tree Height

Lemma 2: The subtree rooted at any node x contains $\geq 2^{bh(x)} - 1$ internal nodes.

Proof: By induction on height of x.

- **Base Case:** Height $h(x) = 0 \Rightarrow x$ is a leaf $\Rightarrow bh(x) = 0$. Subtree has $\geq 2^0 - 1 = 0$ nodes.

- **Induction Step:**
 - Each child of x has height $h(x) - 1$ and black-height either $bh(x)$ (child is red) or $bh(x) - 1$ (child is black).
 - By ind. hyp., each child has $\geq 2^{bh(x) - 1} - 1$ internal nodes.
 - Subtree rooted at x has $\geq 2 \cdot (2^{bh(x) - 1} - 1) + 1$
 $= 2^{bh(x)} - 1$ internal nodes. (The +1 is for x itself) □
Bound on RB Tree Height

Lemma 1: Any node x with height $h(x)$ has a black-height $bh(x) \geq h(x)/2$.

Lemma 2: The subtree rooted at any node x has $\geq 2^{bh(x)}-1$ internal nodes.

Lemma 3: A red-black tree with n internal nodes has height at most $2 \log(n+1)$.

Proof:

• By lemma 2, $n \geq 2^{bh} - 1$,
• By lemma 1, $bh \geq h/2$, thus $n \geq 2^{h/2} - 1$.
• $\Rightarrow h \leq 2 \log(n + 1)$.
Insertion in RB Trees

• Insertion must preserve all red-black properties.
• Should an inserted node be colored Red? Black?
• Basic steps:
 – Use BST Tree-Insert to insert a node x into T.
 • Procedure $\text{RB-Insert}(x)$.
 – Color the node x red.
 – Fix the new tree by (1) re-coloring nodes, and (2) performing rotation to preserve RB tree property.
 • Procedure RB-Insert-Fixup.
Insertion

\textbf{RB-Insert}(T, z)

1. \(y \leftarrow \text{nil}[T] \)
2. \(x \leftarrow \text{root}[T] \)
3. \textbf{while} \(x \neq \text{nil}[T] \)
4. \textbf{do} \(y \leftarrow x \)
5. \textbf{if} \(\text{key}[z] < \text{key}[x] \)
6. \textbf{then} \(x \leftarrow \text{left}[x] \)
7. \textbf{else} \(x \leftarrow \text{right}[x] \)
8. \(p[z] \leftarrow y \)
9. \textbf{if} \(y = \text{nil}[T] \)
10. \textbf{then} \(\text{root}[T] \leftarrow z \)
11. \textbf{else if} \(\text{key}[z] < \text{key}[y] \)
12. \textbf{then} \(\text{left}[y] \leftarrow z \)
13. \textbf{else} \(\text{right}[y] \leftarrow z \)

\textbf{RB-Insert}(T, z) \textbf{Contd.}

14. \(\text{left}[z] \leftarrow \text{nil}[T] \)
15. \(\text{right}[z] \leftarrow \text{nil}[T] \)
16. \(\text{color}[z] \leftarrow \text{RED} \)
17. \text{RB-Insert-Fixup} (T, z)

Regular BST insert + color assignment + fixup.
Insert RB Tree – Example
Insert RB Tree – Example

Insert(T, 15)
Insert RB Tree – Example

Recolor 10, 8 & 11
Insert RB Tree – Example

Right rotate at 18
Insert RB Tree – Example

Right rotate at 18 (parent & child with conflict are aligned)
Insert RB Tree – Example

Left rotate at 7
Insert RB Tree – Example

Left rotate at 7
Insert RB Tree – Example

Recolor 10 & 7 (root must be black!)
Insertion – Fixup

RB-Insert-Fixup \((T, z)\)

1. \(\text{while } \text{color}[p[z]] = \text{RED}\)
2. \(\text{do if } p[z] = \text{left}[p[p[z]]]\)
3. \(\text{then } y \leftarrow \text{right}[p[p[z]]]\)
4. \(\text{if } \text{color}[y] = \text{RED}\)
5. \(\text{then } \text{color}[p[z]] \leftarrow \text{BLACK} \quad \text{// Case 1}\)
6. \(\text{color}[y] \leftarrow \text{BLACK} \quad \text{// Case 1}\)
7. \(\text{color}[p[p[z]]] \leftarrow \text{RED} \quad \text{// Case 1}\)
8. \(z \leftarrow p[p[z]] \quad \text{// Case 1}\)
Insertion – Fixup

RB-Insert-Fixup(T, z) (Contd.)

9. \(\text{else if } z = \text{right}[p[z]] \) \(\text{// color}[y] \neq \text{RED} \)

10. \(\text{then } z \leftarrow p[z] \) \(\text{// Case 2} \)

11. \(\text{LEFT-ROTATE}(T, z) \) \(\text{// Case 2} \)

12. \(\text{color}[p[z]] \leftarrow \text{BLACK} \) \(\text{// Case 3} \)

13. \(\text{color}[p[p[z]]] \leftarrow \text{RED} \) \(\text{// Case 3} \)

14. \(\text{RIGHT-ROTATE}(T, p[p[z]]) \) \(\text{// Case 3} \)

15. \(\text{else (if } p[z] = \text{right}[p[p[z]]]) \) (same as 10-14 with “right” and “left” exchanged)

16. \(\text{color}[\text{root}[T]] \leftarrow \text{BLACK} \)
Case 1 – uncle y is red

- $p[p[z]]$ (z’s grandparent) must be black, since z and $p[z]$ are both red and there are no other violations of property 4.
- Make $p[z]$ and y black \Rightarrow now z and $p[z]$ are not both red. But property 5 might now be violated.
- Make $p[p[z]]$ red \Rightarrow restores property 5.
- The next iteration has $p[p[z]]$ as the new z (i.e., z moves up 2 levels).

z is a right child here. Similar steps if z is a left child.
Case 2 – y is black, z is a right child

- Left rotate around $p[z]$, $p[z]$ and z switch roles \Rightarrow now z is a left child, and both z and $p[z]$ are red.
- Takes us immediately to case 3.
Case 3 – y is black, z is a left child

- Make $p[z]$ black and $p[p[z]]$ red.
- Then right rotate right on $p[p[z]]$ (in order to maintain property 4).
- No longer have 2 reds in a row.
- $p[z]$ is now black \Rightarrow no more iterations.
Algorithm Analysis

• $O(lg \ n)$ time to get through RB-Insert up to the call of RB-Insert-Fixup.

• Within RB-Insert-Fixup:
 – Each iteration takes $O(1)$ time.
 – Each iteration but the last moves z up 2 levels.
 – $O(lg \ n)$ levels \Rightarrow $O(lg \ n)$ time.
 – Thus, insertion in a red-black tree takes $O(lg \ n)$ time.
 – Note: there are at most 2 rotations overall.
Correctness

Loop invariant:
• At the start of each iteration of the while loop,
 – z is red.
 – There is at most one red-black violation:
 • Property 2: z is a red root, or
 • Property 4: z and p[z] are both red.
Correctness – Contd.

• Initialization: ✓

• **Termination:** The loop terminates only if $p[z]$ is black. Hence, property 4 is OK. The last line ensures property 2 always holds.

• **Maintenance:** We drop out when z is the root (since then $p[z]$ is sentinel $nil[T]$, which is black). When we start the loop body, the only violation is of property 4.
 – There are 6 cases, 3 of which are symmetric to the other 3. We consider cases in which $p[z]$ is a left child.
 – See cases 1, 2, and 3 described above.
Further Readings

See Chapter 13 for the complete proofs & deletion