COMP251: Amortized Analysis

Jérôme Waldispühl
School of Computer Science
McGill University

Based on (Cormen et al., 2009)
Overview

• Analyze a sequence of operations on a data structure.

• We will talk about average cost in the worst case (i.e. not averaging over a distribution of inputs. No probability!)

• **Goal:** Show that although some individual operations may be expensive, on average the cost per operation is small.

• 3 methods:
 1. aggregate analysis
 2. accounting method
 3. potential method
Aggregate analysis

Stack operations

• PUSH(S, x): $O(1)$ each $\Rightarrow O(n)$ for any sequence of n operations.
• POP(S): $O(1)$ each $\Rightarrow O(n)$ for any sequence of n operations.
• MULTIPOP(S, k):
 \[
 \text{while } S \neq \emptyset \text{ and } k > 0 \text{ do}
 \]
 \[
 \text{POP}(S)
 \]
 \[
 k \leftarrow k - 1
 \]

Running time of MULTIPOP?
Running time of MULTIPOP

- Linear in # of POP operations.
- Let each PUSH/POP cost 1.
- # of iterations of *while* loop is $\min(s, k)$, where $s = # \text{ of objects on stack}$. Therefore, total cost = $\min(s, k)$.

Sequence of n PUSH, POP, MULTIPOP operations:
- Worst-case cost of MULTIPOP is $O(n)$.
- Have n operations.
- Therefore, worst-case cost of sequence is $O(n^2)$.

But:
- Each object can be popped only once per time that it is pushed.
- Have $\leq n$ PUSHes $\Rightarrow \leq n$ POPs, including those in MULTIPOP.
- Therefore, total cost = $O(n)$.
- Average over the n operations $\Rightarrow O(1)$ per operation on average.
Binary counter

• k-bit binary counter $A[0 \ldots k-1]$ of bits, where $A[0]$ is the least significant bit and $A[k-1]$ is the most significant bit.
• Counts upward from 0.
• Value of counter is: $\sum_{i=0}^{k-1} A[i] \cdot 2^i$
• Initially, counter value is 0, so $A[0 \ldots k-1] = 0$.
• To increment, add 1 (mod 2^k):
 Increment(A,k):
 $i \leftarrow 0$
 while $i<k$ and $A[i]=1$ do
 $A[i] \leftarrow 0$
 $i \leftarrow i+1$
 if $i < k$ then
 $A[i] \leftarrow 1$
Example (1)

\(k = 3 \)

<table>
<thead>
<tr>
<th>Counter Value</th>
<th>(A)</th>
<th>cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 0 0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0 0 1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0 1 0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>0 1 1</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>1 0 0</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>1 0 1</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>1 1 0</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>1 1 1</td>
<td>11</td>
</tr>
<tr>
<td>0</td>
<td>0 0 0</td>
<td>14</td>
</tr>
</tbody>
</table>

Cost of INCREMENT = \(\Theta(\text{# of bits flipped}) \)

Analysis: Each call could flip \(k \) bits,
so \(n \) INCREMENTs takes \(O(nk) \) time.
Example (2)

<table>
<thead>
<tr>
<th>Bit</th>
<th>Flips how often</th>
<th>Time in n INCREMENTs</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Every time</td>
<td>n</td>
</tr>
<tr>
<td>1</td>
<td>½ of the time</td>
<td>floor(n/2)</td>
</tr>
<tr>
<td>2</td>
<td>¼ of the time</td>
<td>floor(n/4)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>i</td>
<td>1/2^i of the time</td>
<td>floor(n/2^i)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>i≥k</td>
<td>Never</td>
<td>0</td>
</tr>
</tbody>
</table>

Thus, total # flips = \[\sum_{i=0}^{k-1}\left\lfloor \frac{n}{2^i} \right\rfloor < n \sum_{i=0}^{\infty} \frac{1}{2^i} = n \left(\frac{1}{1-1/2}\right) = 2 \cdot n\]

Therefore, \(n\) INCREMENTs costs \(O(n)\).
Average cost per operation = \(O(1)\).
Accounting method

Assign different charges to different operations.
• Some are charged more than actual cost.
• Some are charged less.

Amortized cost = amount we charge.

When amortized cost > actual cost, store the difference *on specific objects* in the data structure as **credit**.
Use credit later to pay for operations whose actual cost > amortized cost.

Differs from aggregate analysis:
• In the accounting method, different operations can have different costs.
• In aggregate analysis, all operations have same cost.

But we need to guarantee that the credit never goes negative.
Definition

Let $c_i =$ cost of actual i^{th} operation.

$\hat{c}_i =$ amortized cost of i^{th} operation.

Then require $\sum_{i=1}^{n} \hat{c}_i \geq \sum_{i=1}^{n} c_i$ for all sequences of n operations.

Total credit stored $= \sum_{i=1}^{n} \hat{c}_i - \sum_{i=1}^{n} c_i \geq 0$
Stack

<table>
<thead>
<tr>
<th>Operation</th>
<th>Actual cost</th>
<th>Amortized cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUSH</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>POP</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>MULTIPOP</td>
<td>min(k,s)</td>
<td>0</td>
</tr>
</tbody>
</table>

Intuition: When pushing an object, pay $2.
- $1 pays for the PUSH.
- $1 is prepayment for it being popped by either POP or MULTIPOP.
- Since each object has $1, which is credit, the credit can never go negative.
- Total amortized cost (= $O(n)$) is an upper bound on total actual cost.
Binary counter

Charge $2 to set a bit to 1.
• $1 pays for setting a bit to 1.
• $1 is prepayment for flipping it back to 0.
• Have $1 of credit for every 1 in the counter.
• Therefore, credit ≥ 0.

Amortized cost of INCREMENT:
• Cost of resetting bits to 0 is paid by credit.
• At most 1 bit is set to 1.
• Therefore, amortized cost ≤ $2.
• For n operations, amortized cost = $O(n)$.
Dynamic tables

Scenario
• Have a table - maybe a hash table.
• Don’t know in advance how many objects will be stored in it.
• When it fills, must reallocate with a larger size, copying all objects into the new, larger table.
• When it gets sufficiently small, might want to reallocate with a smaller size.

Goals
1. $O(1)$ amortized time per operation.
2. Unused space always \leq constant fraction of allocated space.

Load factor $\alpha = (# \text{ items stored}) / (\text{allocated size})$

Never allow $\alpha > 1$; Keep $\alpha > a$ constant fraction \Rightarrow Goal 2.
Table expansion

Consider only insertion.
• When the table becomes full, double its size and reinsert all existing items.
• Guarantees that $\alpha \geq \frac{1}{2}$.
• Each time we insert an item into the table, it is an elementary insertion.

TABLE-INSERT(T, x)
if $size[T] = 0$
 then allocate table[T] with 1 slot
 $size[T] \leftarrow 1$
if $num[T] = size[T]$ then
 allocate new-table with $2 \cdot size[T]$ slots
 insert all items in table[T] into new-table
 free table[T]
 table[T] \leftarrow new-table
 $size[T] \leftarrow 2 \cdot size[T]$
insert x into table[T]
$num[T] \leftarrow num[T] + 1$ \hspace{1cm} (Initially, $num[T] = size[T] = 0$)
Aggregate analysis

• Charge 1 per elementary insertion.
• Count only elementary insertions (other costs = constant).

c_i = actual cost of ith operation

• If not full, $c_i = 1$.
• If full, have $i - 1$ items in the table at the start of the ith operation. Have to copy all $i - 1$ existing items, then insert ith item $\Rightarrow c_i = i$.

n operations $\Rightarrow c_i = O(n) \Rightarrow O(n^2)$ time for n operations

$$c_i = \begin{cases} i & \text{if } i - 1 \text{ is power of 2} \\ 1 & \text{Otherwise} \end{cases}$$

Total cost $= \sum_{i=1}^{n} c_i \leq n + \sum_{j=0}^{[\log n]} 2^j = n + \frac{2^{[\log n]+1} - 1}{2-1} < n + 2n = 3n$

Amortized cost per operation = 3.
Accounting method

Charge $3 per insertion of x.

- 1 pays for x’s insertion.
- 1 pays for x to be moved in the future.
- 1 pays for some other item to be moved.

Suppose we’ve just expanded, $\text{size}=m$ before next expansion, $\text{size}=2m$ after next expansion.

- Assume that the expansion used up all the credit, so that there’s no credit stored after the expansion.
- Will expand again after another m insertions.
- Each insertion will put 1 on one of the m items that were in the table just after expansion and will put 1 on the item inserted.
- Have $2m$ of credit by next expansion, when there are $2m$ items to move. Just enough to pay for the expansion...