COMP251: Network flows (1)

Jérôme Waldispühl
School of Computer Science
McGill University

Based on slides from M. Langer (McGill) & (Cormen et al., 2009)
Flow Network

$G = (V, E)$ directed.

Each edge (u, v) has a **capacity** $c(u, v) \geq 0$.

If $(u, v) \notin E$, then $c(u, v) = 0$.

Source vertex s, **sink** vertex t, assume $s \leadsto v \leadsto t$ for all $v \in V$.
Definitions

Positive flow: A function $p : V \times V \rightarrow \mathbb{R}$ satisfying.

Capacity constraint: For all $u, v \in V$, $0 \leq p(u, v) \leq c(u, v)$

Flow conservation: For all $u \in V - \{s, t\}$, $\sum_{v \in V} p(v, u) = \sum_{v \in V} p(u, v)$

Flow in: $0 + 2 + 1 = 3$
Flow out: $2 + 1 = 3$
Example
Cancellation with positive flows

- Without loss of generality, can say positive flow goes either from u to v or from v to u, but not both.
- In the above example, we can “cancel” 1 unit of flow in each direction between x and z.
- Capacity constraint is still satisfied.
- Flow conservation is still satisfied.
Net flow

A function $f : V \times V \to \mathbb{R}$ satisfying:

- **Capacity constraint:** For all $u, v \in V$, $f(u, v) \leq c(u, v)$
- **Skew symmetry:** For all $u, v \in V$, $f(u, v) = -f(v, u)$
- **Flow conservation:** For all $u \in V - \{s, t\}$, $\sum_{v \in V} f(u, v) = 0$

$$\sum_{v \in V : f(v,u) > 0} f(v,u) = \sum_{v \in V : f(u,v) > 0} f(u,v)$$

Total positive flow entering u
Total positive flow leaving u
Positive vs. Net flows

Define net flow in terms of positive flow:

\[f (u,v) = p(u,v) - p(v,u). \]

The differences between positive flow \(p \) and net flow \(f \):

- \(p(u,v) \geq 0 \),
- \(f \) satisfies skew symmetry.
Values of flows

Definition: $f = |f| = \sum_{v \in V} f(s, v) = \text{total flow out of source}.$

Value of flow $f = |f| = 3.$
Flow properties

- Flow in == Flow out
- Source s has outgoing flow
- Sink t has ingoing flow
- Flow out of source s == Flow in the sink t
Maximum-flow problem

Given $G, s, t,$ and $c,$ find a flow whose value is maximum.
Applications

(http://ais.web.cern.ch/ais/)

(http://driverlayer.com)
Naïve algorithm

Initialize $f = 0$
While true {
 if (\exists path P from s to t such that all edges have a flow less than capacity)
 then
 increase flow on P up to max capacity
 else
 break
}
Naïve algorithm

Initialize $f = 0$
While true {
 if (∃ a path P from s to t s.t. all edges $e \in P$ $f(e) < c(e)$)
 then {
 $\beta = \min\{ c(e)-f(e) \mid e \in P\}$
 for all $e \in P$ { $f(e) += \beta$ }
 } else { break }
}
Example where algorithm works
Example where algorithm works

\[|f| = 2 \]
Example where algorithm works

\[|f| = 4 \]
Example where algorithm works

\[|f| = 5 \]
Example where algorithm fail!
Example where algorithm fail!

$|f|=3$ And terminates...
Challenges

How to choose paths such that:

• We do not get stuck
• We guarantee to find the maximum flow
• The algorithm is efficient!
A better algorithm

Motivation: If we could subtract flow, then we could find it.

Algo 1 terminates here...

Negative value on edge that does not satisfy the definition
Residual graphs

Given a flow network $G=(V,E)$ with edge capacities c and a given flow f, define the residual graph G_f as:

- G_f has the same vertices as G
- The edges E_f have capacities c_f (called residual capacities) that allow us to change the flow f, either by:
 1. Adding flow to an edge $e \in E$
 2. Subtracting flow from an edge $e \in E$
Residual graphs

for each edge $e = (u, v) \in E$
 if $f(e) < c(e)$
 then {
 put a forward edge (u,v) in E_f
 with residual capacity $c_f(e) = c(e) - f(e)$
 }
 if $f(e) > 0$
 then {
 put a backward edge (v,u) in E_f
 with residual capacity $c_f(e) = f(e)$
 }
Example 1/3

Flow network

Flow

Residual graph

forward

backward
Example 2/3

Flow network

Flow

Residual graph

forward 3-2=1
backward 1
Example 3/3

Diagram of a network with labeled edges.
Example 3/3

Flow

Residual graph
Augmenting path

An augmenting path is a path from the source s to the sink t in the residual graph G_f that allows us to increase the flow.

Q: By how much can we increase the flow using this path?
Example

Flow in G

Residual graph G_f
Example

Residual graph G_f

Flow in G_f
Example

\(|f| = 3\)

\(|f| = 5\)

\(\beta = 2\)
Methodology

• Compute the residual graph G_f
• Find a path P
• Augment the flow f along the path P
 1. Let β be the bottleneck (smallest residual capacity $c_f(e)$ of edges on P)
 2. Add β to the flow $f(e)$ on each edge of P.

Q: How do we add β into G?
Augmenting a path

```java
f.augment(P) {
    β = min { c(e)-f(e) | e ∈ P }
    for each edge e = (u,v) ∈ P {
        if e is a forward edge {
            f(e) += β
        } else { // e is a backward edge
            f(e) -= β
        }
    }
}
```
Ford-Fulkerson algorithm

\[
f \leftarrow 0
\]
\[
G_f \leftarrow G
\]
\[
\text{while (there is a s-t path in } G_f \text{)} \{
 f.\text{augment}(P)
 \text{update } G_f \text{ based on new } f
\}
\]
Correctness (termination)

Claim: The Ford-Fulkerson algorithm terminates.

Proof:
- The capacities and flows are strictly positive integers.
- The sum of capacities leaving s is finite.
- Bottleneck values β are strictly positive integers.
- The flow increase by β after each iteration of the loop.
- The flow is an increasing sequence of integers that is bounded.
Complexity (Running time)

- Let \(C = \sum_{e \in E} c(e) \)

- Finding an augmenting path from \(s \) to \(t \) takes \(O(|E|) \) (e.g. BFS or DFS).

- The flow increases by at least 1 at each iteration of the main while loop.

- The algorithm runs in \(O(C \cdot |E|) \)