

Bi1g-O notation Part I

COMP 250: Winter 2018
Lecture 11
Carlos G. Oliver

Slides adapted from M. Langer and M. Blanchette

Running time of selection sort

* We showed that running selection sort on an
array of n elements takes in the worst case
T(n) =1+ 15 n + 5 n2 primitive operations

e When n 1s large, T(n) = 5 n2
* When n 1s large,
T(2n) / T(n) =5 (2n)2/ 5 n2
~ 4
Doubling n quadruples T(n)
N.B. That is true for any
coefficient of n2 (not just J)

n T(n)
10 661
20 2301
30 4951
40 8601
1000 5015001
12000 2003000 1

Time (s)

0.06 A

0.05 A

0.04 -

0.03 A

0.02 A

0.01 A

0.00 A

selection sort
mergesort

-
. e
..’ .:.,(.'._
-t a8t
o W,
. don
- n
e
. o]
: o .‘.;.\/
* .o
.
o
o..
.
o o
.'.‘*;-fo
DT
BE
Lo
. -‘--.".’l;‘
S Je
o
.
Se .l
o . PR ~ PRI}

400 600
List size (n)

800

1000

Towards a formal definition of big O

Let t(n) be a function that describes the time it
takes for some algorithm on input size n.

We would like to express how t(n) grows with n, as
n becomes large i.e. asymptotic behavior.

Unlike with limits, we want to say that t(n) grows
like certain simpler functions such as

n

log,n, n, n* ..,2" , etc.

Preliminary Formal Definition

Let t(n) and g(n) be two functions, where n = 0.
We say t(n) is asymptotically bounded above by g(n)
if there exists ny such that, foralln = n,,

t(n) < g(n).

This is not yet a formal definition of big O.

forallng =2n, t(n)< g(n)

g(n)

t(n)

Example

6n

5n+ 70

10

Claim: 5n 4+ 70 is asymptotically bounded above by 6n.
Proof:

We want to show there exists an n,
such that, foralln =n,, 5n + 70 < én.

Claim: 5n 4+ 70 isasymptotically bounded above by 6n.

Proof:

We want to show there exists an n,
such that, foralln =n,, 5n + 70 < én.

5n + 70 < 61
= 70 < n

Symbol “< " means “if and only if” i.e. logical equivalence

12

Claim: 5n 4+ 70 isasymptotically bounded above by 6n.

Proof:

We want to show there exists an n,
such that, foralln =>n,, 5n + 70 < én.

5n + 70 < 61
= 70 < n

Thus, we can use ny = 70.

Symbol “< " means “if and only if” i.e. logical equivalence

13

75 n

sn+70 | /11 50470

Ng = 70 24

We would like to compare the function t(n) with
simpler functions, g(n), such as
log,n, n, n% ..,2" , etc.

14

Formal Definition of Big O

Let t(n) and g(n) be two functions, where n = 0.

We say t(n)is O(g(n)) if there exist two positive

constants ny and ¢ such that, foralln = n,,

t(n)< c g(n).

Intuition and visualization
 “f(n) is O(g(n))" iff there exists a point n,

beyond which f(n) is less than some fixed

constant times g(n) g(n)
f(n)

/ For all n = n,

f(n)<cegn) (forc=1)

Time (s)

0.06 A

0.05 A

0.04 -

0.03 A

0.02 A

0.01 A

0.00 A

selection sort
mergesort

-
. e
..’ .:.,(.'._
-t a8t
o W,
. don
- n
e
. o]
: o .‘.;.\/
* .o
.
o
o..
.
o o
.'.‘*;-fo
DT
BE
Lo
. -‘--.".’l;‘
S Je
o
.
Se .l
o . PR ~ PRI}

400 600
List size (n)

800

1000

Claim: 5n+70 is O(n).

‘T 5n + 70

Claim: 5n+70 is O(n).
Proof 1:

5n+70 < ?

Claim: 5n+70 is O(n).
Proof 1:

5n+70 < 5n+70n, ftn=>1

Claim: 5n+70 is O(n).
Proof 1.:
5n+70 < 5n+70n, ftn=>1
= 75n

Sotakec =75, ng=1.

Claim: 5n+70 is O(n).
Proof 2:

5n+70 < 5n+6n iftn=>12

Claim: 5n+70 is O(n).
Proof 2:
5n+70 < 5n+6n iftn=>12
= 11n

Sotake c =11, ny = 12.

Claim: 5n+70 is O(n).
Proof 3:

5n+70 <5n+n, n=>70

Claim: 5n+70 is O(n).
Proof 3:
5n+70 <5n+n, n=>70
= 6n

Sotakec =6, ng = 70.

75 n

sn+70 | /11 50470

Ng = 70 24

Claim: 5n+70 is 0O(n).

Incorrect Proof:

on + 70

5n + 70n

7om

Thus, ¢>75, ng=1

IA A IA

Q: Why is this incorrect ?

cn
cn,

CTl

25

Claim: 5n+70 is 0O(n).

Incorrect Proof:

n + 70 < cn
on + 70n < cn, n>1
on < cn

Thus, ¢>75, ng=1

Q: Why is thisincorrect ? A: Because we don’t know which line
follows logically from which.

26

Claim: 8n% —17n+ 46 is 0(n%).

Proof (1):
8n¢ —17n + 46

27

Claim: 8n% —17n+ 46 is 0(n%).

Proof (1):
8n¢ —17n + 46

< 8n* + 46 n?, n

IV
p—

28

Claim: 8n% —17n+ 46 is 0(n%).

Proof (1):
8n? —17n+ 46
< 8n* + 46 n?, n> 1
< 54n?

29

Claim: 8n? —17n+ 46 is 0(n%).

Proof (1):
8n? —17n+ 46
< 8n? + 46 n?, n> 1
< 54n?

So take ¢ =54, ng = 1.

Claim: 8n% —17n+ 46 is 0(n%).

Proof (2):
8n¢ —17n + 46

31

Claim: 8n? —17n+ 46 is 0(n%).

Proof (2):
8n¢ —17n + 46

< 8n?, n> 3

So takec =8, nyg = 3.

What does 0(1) mean?

We say t(n)is O(1), ifthere exist two positive
constants ny and ¢ such that, foralln = n,,

t(n) < c.

So it just means that t(n) is bounded.

Never write 0(3n), O(5log,n), etc.
Instead, write O(n), O(log,n), etc.

Why? The point of big O notation is to avoid
dealing with constant factors.

It is still technically correct to write the above.
We just don’t do it.

Considerations

> ng and c are not uniquely defined. For a given ¢ and ng that
satisfy O() we can increase one or both to again satisfy the
definition. There is no “better” choice of constants.

» However, we generally want a “tight” upper bound, so smaller
O() relations give us more information. (This is not the same
as smaller ¢ or np).

» e.g. any f(n) that is O(n) is also O(n?) and O(2"). But
O(n) is more informative.

Big O as a set

» When we show that a t(n) is O(g(n) you will sometimes see
this written as g(n) = O(g(n))

» This is not strictly true given the standard definition of = so
instead we think of O(g(n)) as a set of functions bounded by
g(n).

» We can then say that t(n) is a member of this set as such:
t(n) € O(g(n))

Example

Show that n! is O((n + 2)!)

—_ =
VAN VAN VAN

a

o)
Il

=

We choose ng = 1 an

divide byn!

Example

Show that (n+2)!is O(n!)
If this is true, | can write;

(n+2)<nl forall n>ng
(n+2)(n+1)n! < cn! (2)
(n+2)(n+1)<c

However, this is clearly not the case for all n > ng since c is
constant (and ¢ < 00) and so it cannot be larger than an infinite
number of increasing n

Complexity Classes

Comparing Big O Functions
l

Numberof 4 ©O(2")
Operations

(amount of data)

(C} 2010 Thomas J Cortina, Camege Melion University

BROUTE-FORCE
SOLUT1ON:

o(n!)

DYNAMIC
PROGRAMMING
ALGORITHMS:

O (nzzn)

OELUNG ON ERAY:

0(1)

STILL WORKING
ON YOUR ROUTE?

\

~

SHUT THE
HEW VR

