

Big-O notation Part I

COMP 250: Winter 2018

Lecture 11

Carlos G. Oliver

Slides adapted from M. Langer and M. Blanchette

Running time of selection sort

- We showed that running selection sort on an array of n elements takes in the worst case $T(n) = 1 + 15 n + 5 n^2$ primitive operations
- When n is large, $T(n) \approx 5 \text{ n}^2$
- When n is large, $T(2n) / T(n) \approx 5 (2n)^2 / 5 n^2$ ≈ 4

Doubling n quadruples T(n) N.B. That is true for any coefficient of n² (not just 5)

n	T(n)
10	661
20	2301
30	4951
40	8601
•••	•••
1000	5015001
2000	20030001

Towards a formal definition of big O

Let t(n) be a function that describes the time it takes for some algorithm on input size n.

We would like to express how t(n) grows with n, as n becomes large i.e. asymptotic behavior.

Unlike with limits, we want to say that t(n) grows like certain simpler functions such as

$$log_2n, n, n^2, ..., 2^n$$
, etc.

Preliminary Formal Definition

Let t(n) and g(n) be two functions, where $n \geq 0$. We say t(n) is asymptotically bounded above by g(n) if there exists n_0 such that, for all $n \geq n_0$,

$$t(n) \leq g(n)$$
.

This is not yet a formal definition of big O.

for all
$$n_0 \ge n$$
, $t(n) \le g(n)$

Example

Claim: 5n + 70 is asymptotically bounded above by 6n.

Proof:

(State definition) We want to show there exists an n_0 such that, for all $n \ge n_0$, $5n + 70 \le 6n$.

Claim: 5n + 70 is asymptotically bounded above by 6n.

Proof:

(State definition) We want to show there exists an n_0 such that, for all $n \ge n_0$, $5n + 70 \le 6n$.

$$5n + 70 \le 6n$$

$$\Leftrightarrow 70 \le n$$

Symbol "⇔" means "if and only if" i.e. logical equivalence

Claim: 5n + 70 is asymptotically bounded above by 6n.

Proof:

(State definition) We want to show there exists an n_0 such that, for all $n \ge n_0$, $5n + 70 \le 6n$.

$$5n + 70 \le 6n$$

$$\Leftrightarrow 70 \le n$$

Thus, we can use $n_0 = 70$.

Symbol "⇔" means "if and only if" i.e. logical equivalence

We would like to express formally how some function t(n) grows with n, as n becomes large.

We would like to compare the function t(n) with simpler functions, g(n), such as log_2n , n, n^2 , ..., 2^n , etc.

Formal Definition of Big O

Let t(n) and g(n) be two functions, where $n \ge 0$.

g(n) will be a simple function, but this is not required in the definition.

We say t(n) is O(g(n)) if there exist two positive constants n_0 and c such that, for all $n \geq n_0$,

$$t(n) \leq c g(n)$$
.

Intuition and visualization

• "f(n) is O(g(n))" iff there exists a point n_0 beyond which f(n) is less than some fixed constant times g(n)

Proof 1:

$$5 n + 70 \leq ?$$

We say t(n) is O(g(n)) if there exist two positive constants n_0 and c such that, for all $n \geq n_0$,

$$t(n) \leq c g(n)$$
.

Proof 1:

$$5n + 70 \le 5n + 70n$$
, if $n \ge 1$

We say t(n) is O(g(n)) if there exist two positive constants n_0 and c such that, for all $n \geq n_0$,

$$t(n) \leq c g(n)$$
.

Proof 1:

$$5n + 70 \le 5n + 70n$$
, if $n \ge 1$

$$= 75 n$$

So take c = 75, $n_0 = 1$.

Proof 2:

$$5n + 70 \le 5n + 6n$$
, if $n \ge 12$

Proof 2:

$$5n + 70 \le 5n + 6n$$
, if $n \ge 12$

$$= 11 n$$

So take c = 11, $n_0 = 12$.

Proof 3:

$$5n + 70 \le 5n + n$$
, $n \ge 70$

Proof 3:

$$5n + 70 \le 5n + n, \quad n \ge 70$$

$$= 6n$$

So take c = 6, $n_0 = 70$.

Incorrect Proof:

$$5n + 70$$
 \leq cn
 $5n + 70n$ \leq cn , $n \geq 1$
 $75n$ \leq cn
Thus, $c > 75$, $n_0 = 1$

Q: Why is this incorrect?

Incorrect Proof:

$$5n + 70 \leq cn$$

 $5n + 70n \leq cn, n \geq 1$
 $75n \leq cn$
Thus, $c > 75, n_0 = 1$

Q: Why is this incorrect? A: Because we don't know which line follows logically from which.

Claim:
$$8n^2 - 17n + 46$$
 is $O(n^2)$.

$$8 n^2 - 17n + 46$$

Claim:
$$8n^2 - 17n + 46$$
 is $O(n^2)$.

$$8 n^2 - 17n + 46$$

$$\leq 8 n^2 + 46 n^2, \quad n \geq 1$$

Claim:
$$8n^2 - 17n + 46$$
 is $O(n^2)$.

$$8 n^2 - 17n + 46$$

$$\leq 8 n^2 + 46 n^2, \quad n \geq 1$$

$$\leq 54 n^2$$

Claim:
$$8n^2 - 17n + 46$$
 is $O(n^2)$.

$$8 n^2 - 17n + 46$$

$$\leq 8 n^2 + 46 n^2, \quad n \geq 1$$

$$\leq 54 n^2$$

So take c = 54, $n_0 = 1$.

Claim: $8n^2 - 17n + 46$ is $O(n^2)$.

Proof (2):

$$8 n^2 - 17n + 46$$

Claim:
$$8n^2 - 17n + 46$$
 is $O(n^2)$.

Proof (2):

$$8 n^2 - 17n + 46$$

$$\leq 8 n^2$$
 ,

$$n \geq 3$$

So take c = 8, $n_0 = 3$.

What does O(1) mean?

We say t(n) is O(1), if there exist two positive constants n_0 and c such that, for all $n \ge n_0$,

$$t(n) \leq c$$
.

So it just means that t(n) is bounded.

Never write O(3n), $O(5 \log_2 n)$, etc.

Instead, write O(n), $O(log_2n)$, etc.

Why? The point of big O notation is to avoid dealing with constant factors.

It is still *technically* correct to write the above. We just don't do it.

Considerations

- ▶ n_0 and c are not *uniquely* defined. For a given c and n_0 that satisfy $\mathcal{O}()$ we can increase one or both to again satisfy the definition. There is no "better" choice of constants.
- ▶ However, we generally want a "tight" upper bound, so smaller $\mathcal{O}()$ relations give us more information. (This is not the same as smaller c or n_0).
- ▶ e.g. any f(n) that is $\mathcal{O}(n)$ is also $\mathcal{O}(n^2)$ and $\mathcal{O}(2^n)$. But $\mathcal{O}(n)$ is more informative.

Big O as a set

- ▶ When we show that a t(n) is $\mathcal{O}(g(n))$ you will sometimes see this written as $g(n) = \mathcal{O}(g(n))$
- ▶ This is not strictly true given the standard definition of = so instead we think of $\mathcal{O}(g(n))$ as a set of functions bounded by g(n).
- We can then say that t(n) is a member of this set as such: $t(n) \in \mathcal{O}(g(n))$

Example

We choose $n_0 = 1$ and c = 1

Show that
$$n!$$
 is $\mathcal{O}((n+2)!)$
$$n! \leq c(n+2)!$$

$$n! \leq c(n+2)(n+1) \quad \text{divide by } n!$$

$$1 \leq c(n+2)(n+1)$$
 (1)

Example

Show that (n+2)! is $\mathcal{O}(n!)$ If this is true, I can write;

$$(n+2)! \le n! \quad \text{for all } n \ge n_0$$

$$(n+2)(n+1)n! \le cn! \quad (2)$$

$$(n+2)(n+1) \le c$$

However, this is clearly not the case for all $n \ge n_0$ since c is constant (and $c < \infty$) and so it cannot be larger than an infinite number of increasing n

Complexity Classes

(C) 2010 Thomas J Cortina, Carnegie Mellon University

