

Big-O notation Part I

COMP 250: Winter 2018
Lecture 11

Carlos G. Oliver
Slides adapted from M. Langer and M. Blanchette

Running time of selection sort
• We showed that running selection sort on an

array of n elements takes in the worst case
T(n) = 1 + 15 n + 5 n2 primitive operations

• When n is large, T(n) ≈ 5 n2

• When n is large,
T(2n) / T(n) ≈ 5 (2n)2 / 5 n2

 ≈ 4
Doubling n quadruples T(n)
N.B. That is true for any

 coefficient of n2 (not just 5)

n T(n)
10 661
20 2301
30 4951
40 8601
... ...
1000 5015001
2000 20030001

Towards a formal definition of big O

Let 𝑡 𝑛 be a function that describes the time it
takes for some algorithm on input size 𝑛.

We would like to express how 𝑡 𝑛 grows with 𝑛, as
𝑛 becomes large i.e. asymptotic behavior.

Unlike with limits, we want to say that 𝑡 𝑛 grows
like certain simpler functions such as
𝑙𝑜𝑔2𝑛, 𝑛, 𝑛2, … , 2𝑛, , etc.,,

7

Preliminary Formal Definition

Let 𝑡 𝑛 and 𝑔 𝑛 be two functions, where 𝑛 ≥ 0.
We say 𝑡 𝑛 is asymptotically bounded above by 𝑔 𝑛
if there exists 𝑛0 such that, for all 𝑛 ≥ 𝑛0 ,

𝑡 𝑛 ≤ 𝑔 𝑛 .

This is not yet a formal definition of big O.
8

𝑔 𝑛

𝑡 𝑛

𝑛
𝑛0 9

for all 𝑛0 ≥ 𝑛, 𝑡 𝑛 ≤ 𝑔 𝑛

6𝑛

5𝑛 + 70

𝑛
𝑛0

Example

10

Claim: 5𝑛 + 70 is asymptotically bounded above by 6𝑛.

Proof:

(State definition) We want to show there exists an 𝑛0
such that, for all 𝑛 ≥ 𝑛0 , 5𝑛 + 70 ≤ 6𝑛.

11

Claim: 5𝑛 + 70 is asymptotically bounded above by 6𝑛.

Proof:

(State definition) We want to show there exists an 𝑛0
such that, for all 𝑛 ≥ 𝑛0 , 5𝑛 + 70 ≤ 6𝑛.

5𝑛 + 70 ≤ 6𝑛
⟺ 70 ≤ 𝑛

Symbol “⟺ " means “if and only if” i.e. logical equivalence
12

Claim: 5𝑛 + 70 is asymptotically bounded above by 6𝑛.

Proof:

(State definition) We want to show there exists an 𝑛0
such that, for all 𝑛 ≥ 𝑛0 , 5𝑛 + 70 ≤ 6𝑛.

5𝑛 + 70 ≤ 6𝑛
⟺ 70 ≤ 𝑛

Thus, we can use 𝑛0 = 70.

Symbol “⟺ " means “if and only if” i.e. logical equivalence
13

5𝑛 + 70

𝑛
𝑛0 = 12

11𝑛

24

75 𝑛
5𝑛 + 70

𝑛
𝑛0 = 1

6𝑛
5𝑛 + 70

𝑛
𝑛0 = 70

14

We would like to express formally how some
function 𝑡 𝑛 grows with 𝑛, as 𝑛 becomes large.

We would like to compare the function 𝑡 𝑛 with
simpler functions , g(𝑛), such as
𝑙𝑜𝑔2𝑛, 𝑛, 𝑛2, … ,2𝑛, , etc.,,

Formal Definition of Big O

Let 𝑡 𝑛 and 𝑔 𝑛 be two functions, where 𝑛 ≥ 0.

𝑔 𝑛 will be a simple function, but this is not required in
the definition.

We say 𝑡 𝑛 is 𝑂(𝑔 𝑛) if there exist two positive

constants 𝑛0 and 𝑐 such that, for all 𝑛 ≥ 𝑛0 ,

𝑡 𝑛 ≤ 𝑐 𝑔 𝑛 .
15

Intuition and visualization
• “f(n) is O(g(n))” iff there exists a point n0

beyond which f(n) is less than some fixed
constant times g(n)

n0

f(n)

g(n)

For all n ≥ n0

f(n) ≤ c • g(n) (for c = 1)

𝑛

5𝑛 + 70

𝑛

Claim: 5 𝑛 + 70 is 𝑂 𝑛 .

16

Claim: 5 𝑛 + 70 is 𝑂 𝑛 .

Proof 1:

5 𝑛 + 70 ≤ ?

17

We say 𝑡 𝑛 is 𝑂(𝑔 𝑛) if there exist two positive constants

𝑛0 and 𝑐 such that, for all 𝑛 ≥ 𝑛0 ,

𝑡 𝑛 ≤ 𝑐 𝑔 𝑛 .

Claim: 5 𝑛 + 70 is 𝑂 𝑛 .

Proof 1:

5 𝑛 + 70 ≤ 5 𝑛 + 70𝑛, if 𝑛 ≥ 1

18

We say 𝑡 𝑛 is 𝑂(𝑔 𝑛) if there exist two positive constants

𝑛0 and 𝑐 such that, for all 𝑛 ≥ 𝑛0 ,

𝑡 𝑛 ≤ 𝑐 𝑔 𝑛 .

Claim: 5 𝑛 + 70 is 𝑂 𝑛 .

Proof 1:

5 𝑛 + 70 ≤ 5 𝑛 + 70𝑛, if 𝑛 ≥ 1

= 75 𝑛

So take 𝑐 = 75, 𝑛0 = 1.

19

Claim: 5 𝑛 + 70 is 𝑂 𝑛 .

Proof 2:

5 𝑛 + 70 ≤ 5 𝑛 + 6𝑛, if 𝑛 ≥ 12

20

Claim: 5 𝑛 + 70 is 𝑂 𝑛 .

Proof 2:

5 𝑛 + 70 ≤ 5 𝑛 + 6𝑛, if 𝑛 ≥ 12

= 11 𝑛

So take 𝑐 = 11, 𝑛0 = 12.

21

Claim: 5 𝑛 + 70 is 𝑂 𝑛 .

Proof 3:

5 𝑛 + 70 ≤ 5 𝑛 + 𝑛, 𝑛 ≥ 70

22

Claim: 5 𝑛 + 70 is 𝑂 𝑛 .

Proof 3:

5 𝑛 + 70 ≤ 5 𝑛 + 𝑛, 𝑛 ≥ 70

= 6 𝑛

So take 𝑐 = 6, 𝑛0 = 70.

23

5𝑛 + 70

𝑛
𝑛0 = 12

11𝑛

24

75 𝑛
5𝑛 + 70

𝑛
𝑛0 = 1

6𝑛
5𝑛 + 70

𝑛
𝑛0 = 70

25

Claim: 5 𝑛 + 70 is 𝑂 𝑛 .

Incorrect Proof:

Q: Why is this incorrect ?

26

Claim: 5 𝑛 + 70 is 𝑂 𝑛 .

Incorrect Proof:

Q: Why is this incorrect ? A: Because we don’t know which line
follows logically from which.

27

Claim: 8 𝑛2 − 17𝑛 + 46 is 𝑂 𝑛2 .

Proof (1):
8 𝑛2 − 17𝑛 + 46

≤ 8 𝑛2 + 17 𝑛2, 𝑛 ≥ 1

≤ 25 𝑛2

So take 𝑐 = 25, 𝑛0 = 1.

28

Claim: 8 𝑛2 − 17𝑛 + 46 is 𝑂 𝑛2 .

Proof (1):
8 𝑛2 − 17𝑛 + 46

≤ 8 𝑛2 + 46 𝑛2, 𝑛 ≥ 1

≤ 25 𝑛2

So take 𝑐 = 25, 𝑛0 = 1.

29

Claim: 8 𝑛2 − 17𝑛 + 46 is 𝑂 𝑛2 .

Proof (1):
8 𝑛2 − 17𝑛 + 46

≤ 8 𝑛2 + 46 𝑛2, 𝑛 ≥ 1

≤ 54 𝑛2

So take 𝑐 = 25, 𝑛0 = 1.

30

Claim: 8 𝑛2 − 17𝑛 + 46 is 𝑂 𝑛2 .

Proof (1):
8 𝑛2 − 17𝑛 + 46

≤ 8 𝑛2 + 46 𝑛2, 𝑛 ≥ 1

≤ 54 𝑛2

So take 𝑐 = 54, 𝑛0 = 1.

31

Claim: 8 𝑛2 − 17𝑛 + 46 is 𝑂 𝑛2 .

Proof (2):
8 𝑛2 − 17𝑛 + 46

≤ 8 𝑛2 + 17 𝑛2, 𝑛 ≥ 1

≤ 25 𝑛2

So take 𝑐 = 25, 𝑛0 = 1.

32

Claim: 8 𝑛2 − 17𝑛 + 46 is 𝑂 𝑛2 .

Proof (2):
8 𝑛2 − 17𝑛 + 46

≤ 8 𝑛2 , 𝑛 ≥ 3

So take 𝑐 = 8, 𝑛0 = 3.

What does 𝑂(1) mean?

We say 𝑡 𝑛 is 𝑂(1), if there exist two positive
constants 𝑛0 and 𝑐 such that, for all 𝑛 ≥ 𝑛0 ,

𝑡 𝑛 ≤ 𝑐.

So it just means that 𝑡 𝑛 is bounded.

33

Never write 𝑂 3𝑛 , 𝑂(5 𝑙𝑜𝑔2𝑛), etc.

Instead, write 𝑂 𝑛 , 𝑂(𝑙𝑜𝑔2𝑛), etc.

Why? The point of big O notation is to avoid
dealing with constant factors.

It is still technically correct to write the above.
We just don’t do it.

Considerations

I n0 and c are not uniquely defined. For a given c and n0 that
satisfy O() we can increase one or both to again satisfy the
definition. There is no “better” choice of constants.

I However, we generally want a “tight” upper bound, so smaller
O() relations give us more information. (This is not the same
as smaller c or n0).

I e.g. any f (n) that is O(n) is also O(n2) and O(2n). But
O(n) is more informative.

Big O as a set

I When we show that a t(n) is O(g(n) you will sometimes see
this written as g(n) = O(g(n))

I This is not strictly true given the standard definition of = so
instead we think of O(g(n)) as a set of functions bounded by
g(n).

I We can then say that t(n) is a member of this set as such:
t(n) 2 O(g(n))

Example

Show that n! is O((n + 2)!)

n!  c(n + 2)!

n!  c(n + 2)(n + 1) divide byn!

1  c(n + 2)(n + 1)

(1)

We choose n0 = 1 and c = 1

Example

Show that (n + 2)! is O(n!)
If this is true, I can write;

(n + 2)!  n! for all n � n0

(n + 2)(n + 1)n!  cn!

(n + 2)(n + 1)  c

(2)

However, this is clearly not the case for all n � n0 since c is
constant (and c < 1) and so it cannot be larger than an infinite
number of increasing n

Complexity Classes

