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Running time of selection sort
• We showed that running selection sort on an 

array of n elements takes in the worst case  
T(n) = 1 + 15 n + 5 n2 primitive operations

• When n is large, T(n) ≈ 5 n2

• When n is large, 
T(2n) / T(n) ≈ 5 (2n)2 / 5 n2

       ≈ 4
Doubling n quadruples T(n)
N.B. That is true for any 

   coefficient of n2 (not just 5)

n T(n)
10 661
20 2301
30 4951
40 8601
... ...
1000 5015001
2000 20030001





Towards a formal definition of big O

Let  𝑡 𝑛 be a function that describes the time it 
takes for some algorithm on input size 𝑛.

We would like to express how 𝑡 𝑛 grows with 𝑛, as 
𝑛 becomes large i.e.   asymptotic behavior.

Unlike with limits,  we want to say that 𝑡 𝑛 grows 
like certain simpler functions  such as 
𝑙𝑜𝑔2𝑛, 𝑛, 𝑛2, … , 2𝑛, ,  etc.,, 
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Preliminary Formal Definition

Let 𝑡 𝑛 and 𝑔 𝑛 be two functions, where 𝑛 ≥ 0.
We  say  𝑡 𝑛 is asymptotically bounded above by 𝑔 𝑛
if there exists 𝑛0 such that,   for all 𝑛 ≥ 𝑛0 ,

𝑡 𝑛 ≤ 𝑔 𝑛 .

This is not yet a formal definition of big O.
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𝑔 𝑛

𝑡 𝑛

𝑛
𝑛0 9

for all 𝑛0 ≥ 𝑛,     𝑡 𝑛 ≤ 𝑔 𝑛



6𝑛

5𝑛 + 70

𝑛
𝑛0

Example
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Claim:    5𝑛 + 70 is asymptotically bounded above by 6𝑛.

Proof:    

(State definition) We want to show there exists an 𝑛0
such that,   for all 𝑛 ≥ 𝑛0 ,     5𝑛 + 70 ≤ 6𝑛.
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Claim:    5𝑛 + 70 is asymptotically bounded above by 6𝑛.

Proof:    

(State definition)    We want to show there exists an 𝑛0
such that,   for all 𝑛 ≥ 𝑛0 ,     5𝑛 + 70 ≤ 6𝑛.

5𝑛 + 70 ≤ 6𝑛
⟺ 70 ≤ 𝑛

Symbol  “⟺ " means “if and only if”  i.e.  logical equivalence
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Claim:    5𝑛 + 70 is asymptotically bounded above by 6𝑛.

Proof:    

(State definition)    We want to show there exists an 𝑛0
such that,   for all 𝑛 ≥ 𝑛0 ,     5𝑛 + 70 ≤ 6𝑛.

5𝑛 + 70 ≤ 6𝑛
⟺ 70 ≤ 𝑛

Thus,  we can use  𝑛0 = 70.

Symbol  “⟺ " means “if and only if”  i.e.  logical equivalence
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5𝑛 + 70

𝑛
𝑛0 = 12

11𝑛

24

75 𝑛
5𝑛 + 70

𝑛
𝑛0 = 1

6𝑛
5𝑛 + 70

𝑛
𝑛0 = 70
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We would like to express formally how some 
function 𝑡 𝑛 grows with 𝑛, as 𝑛 becomes large.  

We would like to compare the function 𝑡 𝑛 with
simpler functions ,  g(𝑛 ), such as  
𝑙𝑜𝑔2𝑛, 𝑛, 𝑛2, … ,2𝑛, ,  etc.,, 



Formal Definition of Big O

Let 𝑡 𝑛 and 𝑔 𝑛 be two functions, where 𝑛 ≥ 0.

𝑔 𝑛 will be a simple function, but this is not required in 
the definition.

We  say  𝑡 𝑛 is  𝑂( 𝑔 𝑛 ) if there exist two positive 

constants  𝑛0 and 𝑐 such that,   for all 𝑛 ≥ 𝑛0 ,

𝑡 𝑛 ≤ 𝑐 𝑔 𝑛 .
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Intuition and visualization
• “f(n) is O(g(n))” iff there exists a point n0 

beyond which f(n) is less than some fixed 
constant times g(n) 

n0

f(n)

g(n)

For all n ≥ n0

f(n) ≤ c • g(n)  (for c = 1)





𝑛

5𝑛 + 70

𝑛

Claim:  5 𝑛 + 70  is  𝑂 𝑛 .
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Claim:     5 𝑛 + 70   is   𝑂 𝑛 .

Proof  1:

5 𝑛 + 70 ≤ ?
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We  say  𝑡 𝑛 is  𝑂( 𝑔 𝑛 ) if there exist two positive constants  

𝑛0 and 𝑐 such that,   for all 𝑛 ≥ 𝑛0 ,

𝑡 𝑛 ≤ 𝑐 𝑔 𝑛 .



Claim:     5 𝑛 + 70   is   𝑂 𝑛 .

Proof  1:

5 𝑛 + 70 ≤ 5 𝑛 + 70𝑛, if 𝑛 ≥ 1
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We  say  𝑡 𝑛 is  𝑂( 𝑔 𝑛 ) if there exist two positive constants  

𝑛0 and 𝑐 such that,   for all 𝑛 ≥ 𝑛0 ,

𝑡 𝑛 ≤ 𝑐 𝑔 𝑛 .



Claim:     5 𝑛 + 70   is   𝑂 𝑛 .

Proof  1:

5 𝑛 + 70 ≤ 5 𝑛 + 70𝑛, if 𝑛 ≥ 1

= 75 𝑛

So take 𝑐 = 75, 𝑛0 = 1.
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Claim:     5 𝑛 + 70   is   𝑂 𝑛 .

Proof 2:

5 𝑛 + 70 ≤ 5 𝑛 + 6𝑛, if 𝑛 ≥ 12
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Claim:     5 𝑛 + 70   is   𝑂 𝑛 .

Proof 2:

5 𝑛 + 70 ≤ 5 𝑛 + 6𝑛, if 𝑛 ≥ 12

= 11 𝑛

So take 𝑐 = 11, 𝑛0 = 12.

21



Claim:     5 𝑛 + 70   is   𝑂 𝑛 .

Proof 3:

5 𝑛 + 70 ≤ 5 𝑛 + 𝑛, 𝑛 ≥ 70
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Claim:     5 𝑛 + 70   is   𝑂 𝑛 .

Proof 3:

5 𝑛 + 70 ≤ 5 𝑛 + 𝑛, 𝑛 ≥ 70

= 6 𝑛

So take 𝑐 = 6, 𝑛0 = 70.
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5𝑛 + 70

𝑛
𝑛0 = 12

11𝑛

24

75 𝑛
5𝑛 + 70

𝑛
𝑛0 = 1

6𝑛
5𝑛 + 70

𝑛
𝑛0 = 70
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Claim:     5 𝑛 + 70   is   𝑂 𝑛 .

Incorrect  Proof:

Q:   Why is this incorrect ?  
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Claim:     5 𝑛 + 70   is   𝑂 𝑛 .

Incorrect  Proof:

Q:   Why is this incorrect ?  A:  Because we don’t know which line 
follows logically from which.   
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Claim:  8 𝑛2 − 17𝑛 + 46 is  𝑂 𝑛2 .

Proof (1):     
8 𝑛2 − 17𝑛 + 46

≤ 8 𝑛2 + 17 𝑛2, 𝑛 ≥ 1

≤ 25 𝑛2

So take 𝑐 = 25, 𝑛0 = 1.
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Claim:  8 𝑛2 − 17𝑛 + 46 is  𝑂 𝑛2 .

Proof (1):     
8 𝑛2 − 17𝑛 + 46

≤ 8 𝑛2 + 46 𝑛2, 𝑛 ≥ 1

≤ 25 𝑛2

So take 𝑐 = 25, 𝑛0 = 1.
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Claim:  8 𝑛2 − 17𝑛 + 46 is  𝑂 𝑛2 .

Proof (1):     
8 𝑛2 − 17𝑛 + 46

≤ 8 𝑛2 + 46 𝑛2, 𝑛 ≥ 1

≤ 54 𝑛2

So take 𝑐 = 25, 𝑛0 = 1.
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Claim:  8 𝑛2 − 17𝑛 + 46 is  𝑂 𝑛2 .

Proof (1):     
8 𝑛2 − 17𝑛 + 46

≤ 8 𝑛2 + 46 𝑛2, 𝑛 ≥ 1

≤ 54 𝑛2

So take 𝑐 = 54, 𝑛0 = 1.
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Claim:  8 𝑛2 − 17𝑛 + 46 is  𝑂 𝑛2 .

Proof (2):     
8 𝑛2 − 17𝑛 + 46

≤ 8 𝑛2 + 17 𝑛2, 𝑛 ≥ 1

≤ 25 𝑛2

So take 𝑐 = 25, 𝑛0 = 1.
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Claim:  8 𝑛2 − 17𝑛 + 46 is  𝑂 𝑛2 .

Proof (2):     
8 𝑛2 − 17𝑛 + 46

≤ 8 𝑛2 , 𝑛 ≥ 3

So take 𝑐 = 8, 𝑛0 = 3.



What does  𝑂( 1 ) mean?

We  say  𝑡 𝑛 is  𝑂( 1 ),   if there exist two positive 
constants  𝑛0 and 𝑐 such that,   for all 𝑛 ≥ 𝑛0 ,

𝑡 𝑛 ≤ 𝑐.

So it just means that 𝑡 𝑛 is bounded.
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Never write    𝑂 3𝑛 , 𝑂( 5 𝑙𝑜𝑔2𝑛 ),   etc.

Instead,  write   𝑂 𝑛 , 𝑂(𝑙𝑜𝑔2𝑛 ),   etc.

Why?   The point of big O notation is to avoid 
dealing with constant factors.

It is still technically correct to write the above.   
We just don’t do it. 



Considerations

I n0 and c are not uniquely defined. For a given c and n0 that
satisfy O() we can increase one or both to again satisfy the
definition. There is no “better” choice of constants.

I However, we generally want a “tight” upper bound, so smaller
O() relations give us more information. (This is not the same
as smaller c or n0).

I e.g. any f (n) that is O(n) is also O(n2) and O(2n). But
O(n) is more informative.



Big O as a set

I When we show that a t(n) is O(g(n) you will sometimes see
this written as g(n) = O(g(n))

I This is not strictly true given the standard definition of = so
instead we think of O(g(n)) as a set of functions bounded by
g(n).

I We can then say that t(n) is a member of this set as such:
t(n) 2 O(g(n))



Example

Show that n! is O((n + 2)!)

n!  c(n + 2)!

n!  c(n + 2)(n + 1) divide byn!

1  c(n + 2)(n + 1)

(1)

We choose n0 = 1 and c = 1



Example

Show that (n + 2)! is O( n! )
If this is true, I can write;

(n + 2)!  n! for all n � n0

(n + 2)(n + 1)n!  cn!

(n + 2)(n + 1)  c

(2)

However, this is clearly not the case for all n � n0 since c is
constant (and c < 1) and so it cannot be larger than an infinite
number of increasing n



Complexity Classes




