
Scheduling Human Intelligence Tasks
in Multi-Tenant Crowd-Powered Systems

Djellel Eddine Difallah

⇤
, Gianluca Demartini

†
and Philippe Cudré-Mauroux

⇤

⇤
eXascale Infolab, University of Fribourg—Switzerland

†
Information School, University of Sheffield—United Kingdom

ABSTRACT
Micro-task crowdsourcing has become a popular approach to
e↵ectively tackle complex data management problems such
as data linkage, missing values, or schema matching. How-
ever, the backend crowdsourced operators of crowd-powered
systems typically yield higher latencies than the machine-
processable operators, this is mainly due to inherent ef-
ficiency di↵erences between humans and machines. This
problem can be further exacerbated by the lack of workers on
the target crowdsourcing platform, or when the workers are
shared unequally among a number of competing requesters;
including the concurrent users from the same organization
who execute crowdsourced queries with di↵erent types, pri-
orities and prices. Under such conditions, a crowd-powered
system acts mostly as a proxy to the crowdsourcing plat-
form, and hence it is very di�cult to provide e�ency guar-
antees to its end-users.

Scheduling is the traditional way of tackling such prob-
lems in computer science, by prioritizing access to shared
resources. In this paper, we propose a new crowdsourcing
system architecture that leverages scheduling algorithms to
optimize task execution in a shared resources environment,
in this case a crowdsourcing platform. Our study aims at
assessing the e�ciency of the crowd in settings where mul-
tiple types of tasks are run concurrently. We present exten-
sive experimental results comparing i) di↵erent multi-tenant
crowdsourcing jobs, including a workload derived from real
traces, and ii) di↵erent scheduling techniques tested with
real crowd workers. Our experimental results show that task
scheduling can be leveraged to achieve fairness and reduce
query latency in multi-tenant crowd-powered systems, al-
though with very di↵erent tradeo↵s compared to traditional
settings not including human factors.

General Terms
Design; Experimentation; Human Factors.

Keywords
Crowdsourcing; Scheduling; Crowd-Powered System.

Copyright is held by the International World Wide Web Conference Com-

mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the

author’s site if the Material is used in electronic media.

WWW 2016, April 11–15, 2016, Montréal, Québec, Canada.

ACM 978-1-4503-4143-1/16/04.

http://dx.doi.org/10.1145/2872427.2883030 .

1. INTRODUCTION
Thanks to micro-task crowdsourcing platforms such as

Amazon Mechanical Turk1 (AMT) and Crowdflower2, it is
today possible to build hybrid human-machine systems com-
bining both the scalability of computers with the yet un-
matched cognitive abilities of the human brain.

Micro-task crowdsourcing has already been used to
power, among others, database systems [15], image search
engines [10], or machine-learning algorithms [36]. In these
systems, human and machines behave fundamentally
di↵erently: While machines can deal with large volumes of
data, with real-time streams, and with flocks of concurrent
users interacting with the system, crowdsourcing is mostly
used as a batch-oriented, o✏ine data processing paradigm,
as opposed to cases where achieving low latency is key.
The main reason behind this gap lies in the fact that
crowdsourcing platforms do not provide guarantees on task
completion times, due to the unpredictability of the crowd
workers, who are free to come and go at any point in time
and to selectively focus on an arbitrary subset of the tasks
only.

With increased momentum around crowdsourcing for both
academic and commercial purposes [12], managing the e�-
ciency of a crowdsourcing platform in delivering results and
completing tasks becomes a challenge. E�ciency concerns
have so far mostly been tackled by adjusting the price of
the Human Intelligence Tasks (HITs) or by repeatedly re-
posting them on the crowdsourcing platform [14, 4, 11].
In this work, we propose to take control of the distribu-
tion process of tasks originating from multi-tenant crowd-
powered systems where multiple, and potentially heteroge-
neous, HITs are executed. This allows us to apply scheduling
techniques to decide which task gets to be sent to the next
available worker.

We apply, adapt, and empirically evaluate a series of
scheduling techniques that can be used by multi-tenant
crowd-powered systems to launch HITs onto the
crowdsourcing platform in order to improve their overall
e�ciency. For that purpose, we propose a system
architecture and its AMT-tailored implementation, which
have the following system-oriented objectives:

• improve the overall execution time of the generated
workload, while

• ensure fairness among the di↵erent users of the system
by equitably balancing the available workforce, and

• avoid starvation of smaller requests.

1http://mturk.com
2http://crowdflower.com

855

From a worker perspective, task scheduling presents new
challenges such as context switching and user priming.
Hence, we try to answer the following questions: “Does
known scheduling algorithms exhibit their usual properties
when applied to the crowd?” and “What are the adaptations
needed to accommodate the crowd work routine?”.

To the best of our knowledge, this paper is the first piece
of work focusing on applying scheduling techniques in order
to improve the e�ciency of crowd-powered systems. While
our focus is on e�ciency, considering quality constrains to
take scheduling decisions is left outside of the scope of this
paper (see Section 7 for related work on this topic).

In the following, we experimentally compare the e�ciency
of various crowd scheduling approaches on real crowds of
workers working in a micro-task crowdsourcing platform; We
vary the size of the crowd, the ordering and priority of the
tasks, as well as the size of the task batches. In addition,
we take into account the unique characteristics of the crowd
workers such as the e↵ect of context switching and work con-
tinuity to design crowd-aware scheduling algorithms. Our
experimental settings include i) a controlled setup with a
fixed number of workers involved in the experiments, and ii)
a real-world setup with varying number of workers, and HIT
workloads taken from a commercial crowdsourcing platform
log. The results of our experimental evaluation indicate that
using scheduling approaches for micro-task crowdsourcing
minimize the overall latency of batches of tasks irrespective
of their size, while significantly improving the productivity
of workers measured as their average execution time.

In summary, the main contributions of this paper are:
• A crowdsourcing system architecture that implements

the newly proposed multi-tenant crowd-powered sys-
tem focusing on HIT scheduling to improve system ef-
ficiency;

• A HIT scheduling layer for crowd-powered systems
serving multiple users;

• A series of scheduling algorithms customized for the
crowd;

• An extensive empirical evaluation comparing the
scheduling algorithms over the crowd conducted both
in a controlled setting as well as in a real deployment.

The rest of the paper is structured as follows. Section
2 describes the HIT scheduling problem for multi-tenant
crowd-powered systems. We introduce our new architecture
in Section 3. In Section 4, we present the di↵erent schedul-
ing algorithms we implemented for assigning HITs to crowd
workers, while Section 5 presents an extensive experimental
evaluation of the proposed techniques. We discuss the re-
sults and summarize our main findings in Section 6. Section
7 gives an overview of current approaches in crowd-powered
systems and micro-task crowdsourcing and how they moti-
vated our investigation. Finally, we conclude the paper in
Section 8.

2. MOTIVATION
In this section, we give an overview of crowdsourcing plat-

forms in order to highlight some of their characteristics that
motivated our approach. We focus on Amazon Mechanical
Turk as i) it is currently the most popular micro-task crowd-
sourcing platform, ii) there is a continuous flow of workers
and requesters completing and publishing HITs on the plat-
form, and iii) its activity logs are available to the public
[17].

2.1 The AMT Platform
Amazon Mechanical Turk is an open crowdsourcing mar-

ketplace where the crowd is free to choose what to work on.
This is desirable as it imposes high HIT standards; for in-
stance, requesters need to pay close attention to their HIT
design, documentation and pricing in order to attract and
retain workers. On the other hand, this freedom limits the
possibilities of the platform to provide any form of service
guarantees to the requesters.

2.2 Requesters
In crowdsourcing platforms, businesses that heavily rely

on micro-task crowdsourcing for their daily operations end
up competing with themselves: If a requester runs concur-
rent campaigns on a crowdsourcing platform, these will end
up a↵ecting each other. For example, a newly posted large
batch of HITs is likely to get more attention than a two
days old batch waiting to be finished with few HITs remain-
ing (see below for an explanation on that point).

2.3 HITs Execution Patterns in AMT
One of the common phenomena in micro-task crowdsourc-

ing is the presence of long-tail work distributions: In a batch
of HITs, the bulk of the work is completed by a few workers
who perform most of the tasks while the rest is performed by
many di↵erent workers who perform just a few HITs each.

We run an initial crowdsourcing experiment to observe the
e↵ect that the number of simultaneous workers has on the
throughput of our batch (HITs/Minute), and the amount
of work done by each worker. We can see in Figure 2a
that the overall throughput of the system increases linearly
with the number of workers. Figure 2b shows the amount
of work (number of HITs submitted during the experiment)
performed by each worker. Here, we can observe a long-
tailed distribution where few workers perform most of the
tasks while many workers perform just a few tasks.

We extend our analysis to the throughput of batches run-
ning concurrently on AMT. To that end, we computed the
throughput of every batch publicly visible during a three
months period, and grouped the results into three categories
of batches (tiny, small, medium and large). The results are
depicted in Figure 1. We observe that large batches dom-
inate the throughput of a crowdsourcing platform even if
the vast majority of the running batches are very small (less
than 10 HITs). Large batches are completed at a certain
speed by the crowd, up to a certain point when few HITs
are left in the batch. Those final few HITs take a much
longer time to be completed as compared to the majority
of HITs in the batch. Such a batch starvation phenomenon
has been observed in a number of recent reports, e.g., in [14,
34] where authors observe that the batch completion time
depends on its size and on HIT pricing. HIT completion
starts o↵ quickly but then loses momentum. In that sense,
large batches of tasks are able to systematically yield higher
throughputs as more crowd workers can work on them in
parallel.

A similar observation was made in [15], where the authors
compared the throughput of di↵erent batch sizes and con-
cluded that large batches have the highest throughput, while
medium sized batches (50-100 tasks) completed faster. We
can conjecture that these phenomena are partially due to
the preference of the crowd towards large batches. Indeed,
the workers tend to explore new batches with many HITs,

856

0.00

0.25

0.50

0.75

1.00

Jan 01 Jan 15 Feb 01 Feb 15 Mar 01 Mar 15 Apr 01
Time (Day)

C
ou

nt
 (N

or
m

al
ize

d)
(a) Batch distribution per Size − Most of the Batches present on AMT have 10 HITs or less.

0.00

0.25

0.50

0.75

1.00

Jan 01 Jan 15 Feb 01 Feb 15 Mar 01 Mar 15 Apr 01
Time (Day)

Th
ro

ug
hp

ut
 (N

or
m

al
ize

d) (b) Cumulative Throughput per Batch Size − The overall platform throughput is dominated by larger batches.

Tiny[0,10]
Small[10,100]
Medium[100,1000]
Large[1000,Inf]

Figure 1: An analysis of three months activity log on Amazon MTurk January-March 2014 obtained from mturk-tracker.com [17]
The crawler frequency is every 20 minutes, hence it might miss some batches. All HITs considered in this plot are rewarded $0.01.
Throughput measured in HIT/minute for HIT batches of di↵erent sizes.

0

25

50

75

100

18:26 18:28 18:30 18:32 18:34 18:36
Time

W
or

ke
r C

ou
nt

 −
 T

hr
ou

gh
pu

t H
IT

s/
M

in
ut

e

HITs/Minute
Number of workers

(a) Throughupt vs #Workers

0

10

20

30

0 50 100
Worker ID

#H
IT

s
su

bm
itt

ed

(b) Work Distribution

Figure 2: Results of a crowdsourcing experiment involving 100+
workers concurrently working on a batch of HITs. (a) Throughput
(measured in HITs/minute) increases with an increasing number
of workers involved. (b) Work Distribution: the amount of work
done by each worker has a long tailed distribution.

since they have a high reward potential, without requiring
to search for and select a new type of HIT. This hypothesis
is confirmed by our experimental results (see Section 5).

3. THE ARCHITECTURE OF MULTI-
TENANT CROWD-POWERED SYS-
TEMS

We now describe a new scheduling architecture that can be
integrated to a typical crowd-powered system. We designed
this architecture to operate on any crowdsourcing platform,
though we will focus the remaining description on AMT as
a target platform.

We study scheduling techniques for crowdsourcing on
AMT by introducing the notion of HIT-BUNDLE, that is, a
batch container where heterogeneous HITs of comparable
complexity and reward get published continuously by
the crowd-powered system on AMT. We show how the
notion of HIT-BUNDLE not only permits to apply di↵erent
scheduling strategies but also produces a higher overall
throughput in Section 5.2.

Our general framework is depicted in Figure 3. The in-
put to our system comes from the di↵erent crowdsourced
queries submitted through a crowdsourcing interface. A
Crowdsourcing Decision Engine takes the role of extract-
ing the parts of the queries (and their input) to crowdsource.
Subsequently, the HIT Manager generates HIT batches to-
gether with a given monetary budget, and passes its re-
quests to our HIT Scheduler. This contrasts to traditional
crowd-powered systems, where batches are directly sent to
the crowdsourcing platform.

The HIT Scheduler aims at improving the execution time
of selected HITs. Once new HIT batches are generated, they
are put in a container of tasks to-be-crowdsourced. The
scheduler is constantly monitoring the progress of the work
through AMT’s Application Programming Interface (API)
and assigning dynamically the next HIT to the next availble
worker based on a scheduling algorithm. More specifically,
the HIT Scheduler collects in its Batch Catalog the set of
HIT batches generated by the HIT Manager together with
their reward and priorities.

Finally, the HIT-BUNDLE Manager creates crowdsourcing
batchs on AMT. Based on the scheduling algorithm adopted,
a HIT queue (specifying which HIT must be served next
in the HIT-BUNDLE) is generated and periodically updated.
As soon as a worker is available, the HIT Scheduler serves
the first element in the queue. When HITs are completed,
the results are collected and sent back to the system for
aggregation, merging and forwards the final results to the
end-users.

Workers are allowed to not accept (or return) HITs they
prefer not to complete. The workers can also leave the sys-
tem at any point in time. In these cases, the Scheduler
takes responsibility of updating the queue and reschedules
uncompleted HITs.

In the following section, we introduce a number of schedul-
ing algorithms that can be used to manage HIT queues.

4. HIT SCHEDULING MODELS
In this section we give a formal problem definition of

scheduling with the crowd, and introduce the set of design
requirements we accounted for when creating and choosing
the scheduling strategies. We will also briefly revisit com-
mon scheduling approaches used by existing resource man-
agers in shared environments, and discuss their advantages
and drawbacks when applied to the architecture presented in
Section 3. As we show in Section 5, using such algorithms
presents several new dimensions to be taken into account
compared to traditional CPU scheduling, thus, we also pro-
pose new scheduling algorithms adapted to the crowd.

4.1 HIT Scheduling: Problem Definition
First, we formally define the problem of scheduling HITs

generated by a multi-tenant crowd-based system on top of
a crowdsourcing platform.

A query r submitted to the system and including crowd-
powered operators generates a batch B

j

of HITs. We define
a batch B

j

= {h1, .., hn

} as a set of HITs h

i

. Each batch

857

Crowdsourcing
Decision Engine

HIT-Bundle Manager

Multi-Tenant
Crowd-Powered System

Crowdsourcing
Platform

Progress
Monitor API

HIT Scheduler

Human
Workers

c1 a1b3..

Queue
Crowdsourcing

App

HIT Collection and Reward
HIT

Results
Aggregator

HIT
Manager

Scheduler

External
HIT

Page

Batch A $$

Batch B $$$

Batch C $

..

Batch Catalog
HIT-Bundle
Creation/Update

Batch Merging

StatusMETA

System

Crowdsourced
queries

Batch Input
Merger

Resource
Tracker

config_file

Figure 3: The role of the HIT Scheduler in a Multi-Tenant Crowd-Powered System Architecture.

has additional metadata attached to it: A monetary budget
M

j

to be spent for its execution and a priority score p

j

with
which it should be completed: Batches with higher priority
should be executed before batches with lower priority. Thus,
if a high-priority batch is submitted to the platform while
a low-priority batch is still uncompleted, the HITs from the
high-priority batch are to be scheduled to run first.

The problem of scheduling HITs takes as input a set
of available batches {B1, .., Bn

} and a crowd of workers
{w1, .., wm

} currently active on the platform, and produces
as output an ordered list of HITs from {B1, .., Bn

} to be
assigned to workers in the crowd by publishing them as
a single HIT-BUNDLE. Once a worker w

i

is available, the
system assigns him/her the first task in the list as decided
by the scheduling algorithm.

Scheduling may need to be repeated over time to update
the HIT execution queue. Such re-scheduling operations
are necessary, for example when a worker fails to complete
his/her assigned HIT, or when a new batch of HITs is sub-
mitted by one of the clients.

In this way, we obtain some hybrid pull-push behavior on
top of AMT as the workers participating in the crowd sourc-
ing campaign are shown HITs computed by the scheduler.
Workers are still free to decline the HIT, ask for another
one, or simply seek for another requester on AMT.

Worker Context Switch. From the worker perspective,
scheduling can lead to randomly alternating task types
that a single worker might receive. In such a situation, the
worker has to adapt to the new task instructions, interface,
question etc, and this could be penalizing (see our related
work section 7). This overhead is called context switch.
One of the goals of this paper is to improve the e�ciency
of each worker by mitigating her context switches.

4.2 HIT Scheduling Requirement Analysis
Next, we describe which requirements should be taken

into account when applying scheduling in a crowdsourcing
setting. We then use some of these requirement to customize
known scheduling techniques for the crowd.

(R1) Runtime Scalability: unlike parallel schedulers,
where the compiled query plan dictates where
and when the operators should be executed [30],
crowd-powered systems are bound to adopt a runtime
scheduler that a) dynamically adapts to the current
availability of the crowd, and b) scales to make

realtime scheduling decisions as the work demand
grows higher. A similar design consideration is
adopted by YARN[31], the new Hadoop resource
manager.

(R2) Fairness: An important feature that any shared sys-
tem should provide is fairness across the users of the
system. By taking control of the HIT-BUNDLE schedul-
ing, the crowd-powered system acts as the load bal-
ancer of the currently available crowd and the remain-
ing HITs in the HIT-BUNDLE. For example, the sched-
uler should provide a steady progress to large requests
without blocking – or starving, the smaller requests.

(R3) Priority: in a multi-tenant System, some queries have
a higher priority than others. For this reason, HITs
generated from the queries should be scheduled accord-
ingly. In a crowdsourcing scheduling setting, as work-
ers are not committed to the platform and can leave
at any point in time, a crowd-powered system sched-
uler should be best-e↵ort, that is, the system should
do its best to meet the requester priority requirements
without any hard guarantee.

(R4) Worker Friendly: Di↵erently from CPUs, people
performances are impacted by many factors includ-
ing training e↵ects, boringness, task di�culty and in-
terestingness. Scheduling approaches over the crowd
should whenever possible take these factors into ac-
count. In this paper, we experimentally test worker-
conscious scheduling approaches that aim at balancing
the trade-o↵ between serving similar HITs to workers
and providing fair execution to di↵erent HIT batches.

4.3 Basic Space-Sharing Schedulers
Crowdsourcing platforms usually operate in a non-

preemptive mode, that is, they do not allow to interrupt
a worker performing a task of low priority to have him
perform a task of higher priority with the risk of reneging.
In our evaluation we consider common space-sharing

algorithms where a resource (a crowd worker in this case)
is assigned a HIT until he/she finishes it, or returns it
uncompleted to the platform.

FIFO. On crowdsourcing platforms, this scheduling has the
e↵ect of serving lists of tasks of the same batch to the work-
ers until they are finished. By concentrating the entire work-
force on a single job until it is done, FIFO provides the best

858

throughput per batch one can expect from the platform at a
given moment in time.

The potential shortcomings of this scheme are as follows:
i) short jobs and high priority jobs can get stuck behind long
running tasks, minimizing the overall e�ciency of the crowd-
sourcing system, and ii) when a batch has a large number
of tasks, assigned workers can potentially get bored [27].

Shortest Job First (SJF). Other simple scheduling
schemes o↵er di↵erent tradeo↵s depending on the
requirements of the multi-tenant system. Shortest Job
First (SJF) o↵ers fast turn-around for short HITs, and
can lead to a minimum of a context switch for part of the
crowd, since the shortest jobs are either quickly finished or
scheduled to the first available workers.

However, SJF is not strategy-proof on current crowd-
sourcing platforms as the requesters can lie about the
expected HIT execution times. Hence, these schemes
should be used in trusted settings mostly (e.g., in
enterprise crowd-DBMSs). Moreover, these schemes do not
systematically interweave tasks from di↵erent batches, and
thus present also the same shortcomings as FIFO.

Round Robin (RR). The previous schemes introduces bi-
ases, in the sense that they give an advantage to one batch
over the others. Round Robin removes such biases by assign-
ing HITs from batches in a cyclic fashion. In this way, all
the batches are guaranteed to make regular progress. While
Round Robin ensures an even distribution of the workforce
and avoids starvation, it does not meet one of our require-
ment (R2) since it is not priority-aware: All the batches
are treated equally with the side e↵ect that batches with
short HITs would (proportionally) get more workforce than
longer HITs. Another risk is that a worker might find her-
self bouncing across tasks and being forced to continuously
switch context, hence loosing time to understand the spe-
cific instructions of the tasks. The negative e↵ect of context
switch is evident from our experimental results (see Section
5) and should be avoided.

4.4 Fair Schedulers
In order to deal with batches of HITs having di↵erent pri-

orities while avoiding starvation, we also consider scheduling
techniques frequently used in cluster computing.

Fair Sharing (FS). Sharing heterogeneous resources across
jobs having di↵erent demands is a well-known and com-
plex problem that has been tackled by the cluster com-
puting community. One popular approach currently used
in Hadoop/Yarn is Fair Scheduling (FS) [16]. In the con-
text of scheduling HITs on a crowdsourcing platform, we
borrow this approach in order to achieve fair scheduling of
micro-tasks: Whenever a worker is available, he/she gets a
HIT from the batch with the lowest number of currently as-
signed HITs which we call running tasks. Unlike Round
Robin, this ensures that all the jobs get the same amount
of resources (thus being fair). Algorithm 1 gives the exact
way we considered FS in our context.

Weighted Fair Sharing (WFS). In order to schedule
batches with higher priority first (see R2 in Section 4.2),
weighted fair scheduling can be used, in order assign a task

Algorithm 1 Basic Fair Sharing

Input: B = {b
i

< p1, r1 >, .., b

n

< p

n

, r

n

>} set of batches
currently queued with priority p

i

, and number of run-
ning HITs per batch r

i

.
Output: HIT h

i

.
1: When a worker is available for a task
2: B

Sorted

= Sort B by increasing r

i

3: h

i

= B

Sorted

[0].getNextHit()
4: return h

i

from the jobs with the least running tasks/task priority

value. Algorithm1, line 2, gets in that case updated: Sort

B by increasing r

i

/p

i

. This puts more weight on batches
with few running tasks and a high priority.

The following formula gives the fair share of resources
(i.e., number crowd workers) allocated to a HIT batch j

with priority score p

j

and concurrent running batches with
priority scores {p1..pN} at any given point in time

w

j

=
p

jP
N

1 p

i

4.5 Crowd-aware Scheduling
In addition to the standard scheduling techniques

described above, we also evaluate a couple of approach
aiming at scheduling tasks taking into account the crowd
workers need (see R4 in Section 2). In that sense, we
propose scheduling approaches that o↵er a tradeo↵ between
being fair to the batches (by load-balancing the workers)
while also being fair to the workers (by serving HITs with
some continuity, if possible, and with minimal wait time).

Worker Conscious Fair Sharing (WCFS). Worker Con-
scious Fair Sharing (WCFS) maximizes the likelihood of
a worker receiving a task from a batch he worked on re-
cently, thus avoiding that a worker jumps back and forth
between di↵erent tasks (i.e., minimizing context switching).
We suggest to achieve this by having top priority batches
concede their positions in favor of one of the next batches
in the queue. Each batch can concede his turn up to K

times, a predefined concession threshold, which is reset af-
ter a scheduling. This approach is the crowd-equivalent of
Delay Scheduling [39].

5. EXPERIMENTAL EVALUATION
We describe in the following our experimental results ob-

tained by scheduling HITs on the Amazon MTurk (AMT)
crowdsourcing platform.

As a general experimental setup, we implemented the ar-
chitecture proposed in Section 3 on top of AMT’s API. Our
implementation and datasets are available as an open-source
project for reproducibility purposes and as a basis for po-
tential extensions3.

5.1 Datasets
For our experiments, we used a dataset composed of 7

batches of varying complexity, sizes, and reference prices.
The data was partly created by us and partly collected from
related works; it includes typical tasks that could have been
generated by a crowd-powered system. Table 1 gives a sum-
mary of our dataset and provides a short description and

3https://github.com/XI-lab/HIT-Scheduler

859

Algorithm 2 Worker Conscious Fair Share

Input: B = {b
i

< p1, r1, si >, .., b

n

< p

n

, r

n

, s

n

>} set of
batches currently queued with priority p

i

, r
i

number of
running HITs, and s

i

concessions initialized to 0.
Input: K = maximum concession threshold
Output: HIT h

i

.
1: When a worker w

j

is available for a HIT
2: b

last

= Last batch that w
j

did // null if it’s a new worker
3: B

Sorted

= Sort B by increasing r

i

/p
i

4: if b

last

== null then
5: B

Sorted

[0].s = 0
6: return B

Sorted

[0].getNextHit()
7: end if
8: for b in B

Sorted

do
9: if b == b

last

then
10: b.s = 0
11: return b.getNextHit()
12: else if b.s < K then
13: b.s ++
14: continue
15: else
16: b.s = 0
17: b.getNextHit()
18: end if
19: end for

references when applicable. We note that for the purpose of
our experiments, we vary the batch sizes and prices accord-
ing to the setup.

5.2 Micro Benchmarking
The goal of the following micro benchmark experiments

is to validate some of the hypotheses that motivate the use
of a HIT-BUNDLE and the design of a worker-aware schedul-
ing algorithm that minimizes tasks switching for the crowd
workers.

5.2.1 Batch Split-up
The first question we address is whether smaller or larger

batches of homogeneous HITs are more attractive to the
workers on AMT. We experimentally check if a single large
batch executes faster than when breaking the same batch
into smaller ones. To this end, we use the batch B6 which
we split into 1, 10 and 60 individual batches, containing re-
spectively 600, 60 and 10 HITs each. Next, we run all these
batches on AMT concurrently with non-indicative titles and
similar unit prices of $0.01. Note that the batch combina-
tions were published at the same time on the crowdsourcing
platform so all the variables like crowd population and size,
concurrent requesters, and rewards are the same across the
di↵erent settings.

Figure 4 shows how the three di↵erent batch splitting
strategies executed overtime on B6. We observe that run-
ning B6 as one large batch of 600 HITs completed first. We
also observe that the strategy with 10 batches only really
kicks-o↵ when the large batch finishes (and similarly for the
strategy with 60 batches). From this experiment, we con-
clude that larger batches provide a better throughput and
constitute a better organizational strategy. This finding is
especially interesting for requesters who would periodically
run queries that use a common crowdsourcing operator (al-
beit, with a di↵erent input), by pushing new HITs into an
existing HIT-BUNDLE.

ID Dataset Description
Price
per
HIT

#HITs

Avg.
Time
per
HIT

B1
Customer Care
Phone Number
Search

Find the customer-care phone
number of a given US-based com-
pany using the Web.

$0.07 50 75sec

B2
Image Tagging Type all the relevant keywords re-

lated to a picture from the ESP
game dataset. [33]

$0.02 50 40sec

B3
Sentiment
Analysis

Classify the expressed sentiment of
a product review (positive, nega-
tive, neutral).

$0.05 200 22sec

B4

Type a Short
Text

This a is study on short memory,
where a worker is presented with
text for a few seconds, then he is
asked to type it from memory. [32]

$0.03 100 11sec

B5
Spelling Cor-
rection

A collection of short paragraphs to
spell check from StackExchange.

$0.03 100 36sec

B6

Butterfly Clas-
sification

Classify a butterfly image to one of
6 species (Admiral, Black Swallow-
tail, Machaon, Monarch, Peacock,
and Zebra). [23]

$0.01 600 15sec

B7

Item Matching Uniquely identify products that
can be referred to by di↵er-
ent names (e.g., ‘iPad Two’ and
‘iPad2nd Generation’). [35]

$0.01 96 22sec

Table 1: Description of the batches constituting the dataset used
in our experiments.

0

200

400

600

0 500 1000 1500 2000
Time (seconds)

#H
IT

s
R

em
ai

ni
ng

1 Batch of 600 HITs
10 Batches of 60Hits
60 Batches of 10Hits

Figure 4: A performance comparison of batch execution time
using di↵erent grouping strategies publishing a large batch of 600
HITs vs smaller batches (From B6).

0

25

50

75

100

0 1000 2000 3000 4000
Time (seconds)

#H
IT

s
R

em
ai

ni
ng

B6 − Bundle
B7 − Bundle
B6
B7

Figure 5: A performance comparison of batch execution time
using di↵erent grouping strategies publishing two distinct batches
of 192 HITs separately vs combined inside an HIT-BUNDLE.

5.2.2 Merging Heterogenous Batches
We extend the above experiment to compare the execution

of two heterogenous batches run separately or within a single
HIT-BUNDLE. Unlike the previous experiment, where the fine-
grained batches were one to two orders of magnitude smaller
than the larger one, this scenario involves two batches of
type B6 and B7 containing 96 HITs each, versus one HIT-

BUNDLE regrouping all 192 HITs. We run the three batches
concurrently on AMT, with non-indicative titles and similar
unit prices of $0.01 and without altering the default serving
order within the HIT-BUNDLE 4. The results are depicted in
Figure 5.

4We observe that AMT randomly selects the input to serve.

860

** (p−value=0.023)** (p−value=0.023)

20

40

60

RR SEQ10 SEQ25
Experiment Type

Ex
ec

ut
io

n
tim

e
pe

r H
IT

 (S
ec

on
ds

)
RR SEQ10 SEQ25

Figure 6: Average Execution time for each HIT submitted from
the experimental groups RR, SEQ10 and SEQ25.

Again, the HIT-BUNDLE exhibits a faster throughput as
compared to individual batches. Moreover, the embedded
batches both finish before their counterparts that are run-
ning separately.

At this point, we have shown that requesters who would
run queries invoking di↵erent crowdsourcing operators can
also benefit from pushing their HITs into the same HIT-

BUNDLE. Since a system might support multiple crowdsourc-
ing operators, the next question we explore is whether con-
text switches (i.e., alternating HIT types) a↵ects workers
e�ciency.

5.2.3 Workers Sensitivity to Context Switch
The following experimental setup involves three groups of

24 distinct workers each. Each group was exposed to three
types of HIT serving strategies, namely:

• RR: a worker in this group would receive tasks in an
alternating order from batches B6 and B7.

• SEQ10 : here the workers will receive 10 tasks from B6
then 10 tasks from B7 then again 10 from B6 and so
on.

• SEQ25 : similar to SEQ10 but with sequences of 25
tasks. In order to trigger the context switch, each par-
ticipant was asked to do at least 10, and up to 100,
tasks.

Figure 6 shows the average execution time of all the 100
HITs under each execution group. We observe that the av-
erage of execution time of HITs is worst when using RR
as compared to workers performing longer alternating se-
quences in SEQ10 and SEQ25. To test the statistical signif-
icance of these improvements, and since the distribution of
HIT execution time cannot be assumed to be normally dis-
tributed, we perform a Willcoxon signed-rank test. SEQ10
has a p=0.09 which is not enough to achieve statistical sig-
nificance. However, the SEQ25 improvement over RR is
statistically significant with p<0.05.

In conclusion, context switch generates a significant slow-
down for the workers, thus reducing their overall e�ciency.
Hence, this result motivates the design of a scheduling algo-
rithm that takes into account workers e�ciency by schedul-
ing longer sequences of HITs of the same type.

5.3 Scheduling HITs for the Crowd
Now we move our attention to experimentally comparing

the scheduling algorithm that are used to manage the dis-
tribution of HITs within a HIT-BUNDLE.

0

500

1000

1500

2000

B1 B2 B3 B4 B5
Batch

Ti
m

e
(S

ec
on

ds
)

FIFO FS RR SJF

(a) Batch Latency

0

500

1000

1500

2000

FIFO FS RR SJF
Scheduling Scheme

Ti
m

e
(S

ec
on

ds
)

(b) Overall Experiment Latency

Figure 7: Scheduling approaches applied to the crowd.

5.3.1 Controlled Experimental Setup
In order to develop a clear understanding of the properties

of classical scheduling algorithms when applied to crowd-
sourcing, we put in place an experimental setup that miti-
gates the e↵ects of workforce variability overtime5.

In our controlled setting, each experiment that we run in-
volves a number of crowd workers ranging between: Min

w

|workforce| Max

w

, at any point in time. To be within
this range target, the workers who arrive first are presented
with a reCaptcha to solve (paid $0.01 each), until Min

w

workers join the system, at that point the experiment be-
gins serving tasks. From that point on, new workers are
still accepted up to a maximum Max

w

. If the number of
active sessions drops bellow Min

w

, then the system starts
accepting new sessions again.

Unless otherwise stated, we use the following configura-
tion:

• Number of workers: 10 |workforce| 15.
• Weighted Fair Sharing, with price as weighting factor.
• a HIT-BUNDLE composed of {B1, B2, B3, B4, B5}.
• FIFO order is [B1, B2, B3, B4, B5].
• SJF order is [B4, B3, B5, B2, B1].

Also, we note that each experiment involves a distinct crowd
of workers to avoid any further training e↵ects on the tasks.

5.3.2 Comparing Scheduling Algorithms
First, we compare how di↵erent scheduling algorithms

perform from a latency point of view, taking into account
the results of individual batches as well as the overall perfor-
mance. We create a HIT-BUNDLE out of {B1,B2,B3,B4,B5},
which is then published to AMT. In each run, we use a dif-
ferent scheduling algorithm from: FIFO, FS, RR, and SJF,
with 10 |workforce| 15. Figure 7 shows the comple-
tion time of each batch in our experimental setting and the
cumulative execution time of the whole HIT-BUNDLE.

FS achieved the best overall performance, thus maximiz-
ing the system utility, though, at the batch level, FS did
not always win (e.g., for B2). We see how FIFO just as-
signs tasks from a batch until it is completed. In our setup,
we used the predefined order of the batches, which explains
why B1 is getting a preferential treatment as compared to
B5, which finishes last. Similarly, SJF performs unfairly over
all the batches but manages to get B4 completed extremely
fast. In fact, SJF uses statistics collected from the system
on the execution speed of each operator (see Table 1); this
explains the fast execution of B4. On the positive side, we
observe that both RR and FS perform best in terms of fair-

5We decided not to run simulations, but rather to report the
actual results obtained with human workers as part of the
evaluated system.

861

0

300

600

900

B1 B2 B3 B4 B5
Batch

Ti
m

e
(s

ec
on

ds
)

B2:$0.02
B2:$0.05

(a)Vary The Price

0

250

500

750

1000

B1 B2 B3 B4 B5
Batch

Ti
m

e
(s

ec
on

ds
)

10 workers
20 workers

(b) Vary The Workforce

Figure 8: (a) E↵ect of increasing B2 priority on batch execution
time. (b) E↵ect of varying the number of crowd workers involved
in the completion of the HIT batches.

0

50

100

150

Batch Type

Ex
ec

ut
io

n
tim

e
pe

r H
IT

 (S
ec

on
ds

)

Individual Batches WCFS FS

Figure 9: Average execution time per HIT under di↵erent
scheduling schemes.

ness with respect to the di↵erent batches, i.e., there was no
preferential treatment.

5.3.3 Varying the Control Factors
In order to test our priority control mechanism across dif-

ferent batches of a HIT-BUNDLE (tuned using the price), we
run an experiment with the same setup as in Section 5.3.2,
but varying the price attached to B2 and using the FS al-
gorithm only. Figure 8 shows that batches with a higher
priority (reward) lead to faster completion times using the
FS scheduling approach (gray bar of batch 2 lower than the
black one). This comes at the expense of other batches being
completed later.

Another dimension that we vary is the crowd size. Figure
8b shows the batch completion time of two di↵erent crowd-
sourcing experiments when we vary the crowd size from
10 |workforce| 15 to 20 |workforce| 25 (keep-
ing all other settings constant). We can see batches being
completed faster when more workers are involved. However,
di↵erent batches obtain di↵erent levels of improvement.

5.4 Live Deployment Evaluation
After the initial evaluation of the di↵erent dimensions in-

volved in scheduling HITs over the crowd, we now evaluate
our proposed fair scheduling techniques FS and WCFS in an
uncontrolled crowdsourcing setting using HIT-BUNDLE, and
compare it against a standard AMT execution.

More specifically, we create a workload that mimics a 1-
hour activity on AMT from a real requester who had 28
batches running concurrently. Since we do not have access
to the input of the batches, we randomly select batches from

large medium small

0.00

0.25

0.50

0.75

1.00

0 1000 2000 0 1000 2000 0 1000 2000
Time (seconds)

C
D

F

FS Individual Batches WCFS

Figure 10: CDF of di↵erent batch sizes and scheduling schemes.

all our experimental datasets and adapt the price and the
size to the actual trace. The trace used in that sense is com-
posed of 28 batches with similar rewards of $0.01; the largest
batch has 45 HITs and the smallest 1 HIT only. For analysis
purposes, we group batches by size: 16 small batches (1-9
HITs), 8 medium batches (9-15 HITs), and 4 large batches
(16-45 HITs). The total size of this trace is 286 HITs.

5.4.1 Live Deployment Experimental Setup
We publish concurrently the 28 batches from the previ-

ously described trace as individual batches (standard ap-
proach) as well as into two HIT-BUNDLEs, one using FS and
the other using WCFS. The individual batches use mean-
ingful titles and descriptions of their associated HIT types;
on the other hand the HIT-BUNDLE informs the crowd work-
ers that they might receive HITs from di↵erent categories.
Other parameters like requester name and reward are simi-
lar.

5.4.2 Average Execution Time
Figure 9 shows the average HIT execution time obtained

by the di↵erent setups. Confirming the results from Section
5.2.3, we observe that workers perform better when working
on individual batches because of the missing context switch
e↵ect (though the performance di↵erence is minimal). In-
stead, when HITs are scheduled, execution time increases
with the benefit of prioritizing certain batches. We also
see that WCFS provides a trade-o↵ between letting workers
work on the same type of HITs longer and having the ability
to schedule batches fairly as we shall see next.

5.4.3 Results of the Live Deployment Run
We plot the CDFs of HIT completion per category in Fig-

ure 10. For example, 25% of small batches completed in
500 seconds when run individually. For all batch sizes, we
observe that individual batches started faster. However, in
all cases they also ended last, especially for smaller batches
su↵ering from some starvation (i.e., long period without
progress); here, we clearly see the benefits of both FS and
WCFS at load balancing.

The final plot (Figure 11) shows how a large workload ex-
ecutes over time on the crowdsourcing platform. We can see
how many workers are involved in each setting and which
HIT batch they are working on (each color represents a dif-
ferent batch). Finally, as expected, the number of active
workers varied wildly overtime in each setup. Corroborat-
ing the results of the previous paragraph, Individual Batches
received more workforce in the beginning (they start faster)
then workers either left, or took some time to spill over the
remaining batches in the [11:25 - 11:35] time period. Our

862

0

10

20

30

0

10

20

30

0

10

20

30

FS
Individual Batches

W
C

FS

12:20 12:30 12:40 12:50
Time

#A
ct

ive
 W

or
ke

rs

Figure 11: Worker allocation with FS, WCFS and classical in-
dividual batches in a live deployment of a large workload derived
from crowdsourcing platform logs. Each color represents a di↵er-
ent batch.

main observation is that FS and WCFS i) achieve their de-
sired property of load balancing the batches when there are
su�cient number of workers, ii) they finish all the jobs well
before the individual execution (10-15 minutes considering
the 95th percentile).

6. DISCUSSION
In Section 4.2, we introduced a set of requirements

for scheduling HITs. The di↵erent scheduling techniques
that we propose meet these requirements as follows:
(R1) Scalability: we choose not to tackle scheduling as
a high-complexity multivariate optimization problem but
rather as a more scalable, HIT sorting task; this property
is desirable since our scheduling algorithms are ought
to serve large numbers of crowd workers—“potentially
billions of users” [18]; (R2/R3) Fairness and Priority:
thanks to FairSharing and weighted FS, we equitably
load balance HITs and express priority of HITs as a
function of the price and schedule them accordingly; (R4)
Worker-Consciousness: thanks to WCFS and CGS, we are
able to adapt scheduling to the crowd.

We presented above the results of a series of empirical
crowdsourcing experiments where we varied di↵erent dimen-
sions.

Starting with a set of micro benchmarks, the first obser-
vation we make is the attractiveness of larger batches to the
crowd. A possible explanation of this observation is related
to the overhead of searching for new batches to work on,
thus the preference given to larger batches. Next, we opti-
mized for reducing context switches, as it is a well-studied
problem and has a direct impact on workers’ e�ciency.

From our experimental results, we conclude that the most
appropriate scheduling technique among the ones we consid-
ered is the WCFS variant, which allows HIT batches to be
fairly treated on the crowdsourcing platform and also takes
into account the needs of workers to have some continuity in
the HIT they focus on rather than potentially causing them
to constantly switch context.

On the worker side, we identify two key features that make
crowd workers execute tasks very di↵erently compared to
machines: i) crowd workers su↵er from context switch after
changing the type of task they work on, and ii) they are
attracted by large HIT batches that guarantee a continuous
stream of HITs and, thus, of revenue.

We note that to obtain better execution times it is possi-
ble, for example, to increase the monetary reward attached
to the HITs. However, such reward increases would make
the crowdsourcing cost rise thus hindering the scalability of
the approach. Moreover, increasing the monetary reward
opens up the door to spammer workers who are exclusively
interested in the monetary reward and not in honestly com-
pleting the HITs.

To summarize, the main observations that we draw from
our experiments are:

• Large HIT batches are preferred by crowd workers;
Thus, large batches attract a larger workforce which
implies a higher throughput;

• Individual workers perform slightly better when work-
ing on homogeneous batches (compared to batches re-
grouping di↵erent types of HITs);

• HIT-BUNDLE have overall a positive impact on task la-
tency as they tend to attract bigger workforces;

• Scheduling techniques make it possible to prioritize
HIT batches as needed while being fair with all running
batches and all involved workers; In particular, FS and
WCFS equally distribute the available workforce over
the di↵erent batches;

• The techniques we evaluated can be applied on top
of existing micro-task crowdsourcing platforms in a
scalable fashion without the need of new push crowd-
sourcing mechanisms or systems, thus leveraging large
crowds of people already engaged on existing plat-
forms.

7. RELATED WORK

Micro-task Crowdsourcing. Paid micro-task crowdsourc-
ing has been used for a wide range of applications including
entity resolution [35, 37], schema matching [40], entity link-
ing and instance matching [7, 8], word sense disambiguation
[28], relevance judgements [1] etc.

We can distinguish two types of crowdsourcing paradigms:
pull-crowdsourcing and push crowdsourcing [22]. The key
di↵erence is that pull-crowdsourcing platforms allow the
workers to browse and choose among available tasks posted
by the requesters, while push-crowdsourcing assigns tasks
to workers by considering selection criterias such as skills,
location or interests in order to assign tasks to the best
available workers. In [13, 5], for example, authors leverage
online social network profiles and activities to find better
suited candidates and push tasks to them.

In this paper, we instead propose the use of a HIT-BUNDLE,
that is, a unique batch of heterogeneous tasks generated by
a multi-tenant system. This allows to apply task scheduling
techniques within the HIT-BUNDLE and to decide which task
should be served to the next available worker. In this way,
we rather focus on improving the crowd e�ciency without
the need of deploying a dedicated crowdsourcing platform
but rather allowing us to reuse popular crowdsourcing plat-
forms (e.g., Amazon MTurk).

863

In our work, we have observed that latency and through-
put can be controlled with the crowd size and pricing dimen-
sions. Optimal payment strategies, reward schemes, and in-
centive mechanisms for crowdsourcing have been studied [19,
29] and may also be applied in combination to crowdsourc-
ing scheduling techniques in order to maximize throughput
as well as the quality of the results.

Task Assignment and Scheduling. Scheduling tasks for
the crowd has been recently discussed in the context of work
quality mostly, while we focus on e�ciency. In CrowdCon-
trol [25], authors propose a scheduling approach to assign
tasks to workers based on their history and how they learn
doing tasks. Instead, we focus on the requester needs for
scheduling and look at priorities of batches, while still taking
into account the human dimension of crowdsourcing. More-
over, [25] evaluates the proposed approaches by means of
simulation while in our work we assess the e↵ectiveness of
the proposed algorithms over a real deployment over the
crowd.

Similarly, SmartCrowd [26] considers task assignment as
an optimization problem based on worker skills and their
reward requirements. As compared to this, we rather focus
on the system-side requirements for scheduling, by making
sure that all competing batches are completed appropriately
by the crowd.

Further pieces of work recently studied scheduling ap-
proaches focused on work quality: [20] shows, by means of
simulations, how approaches that take into account worker
skills outperform standard scheduling approaches, while [24]
suggests scheduling tasks according to the required skills and
the previous feedback from the requesters.

A di↵erent type of scheduling has been addressed in [9],
where authors look at crowdsourcing tasks that need to take
place in a specific real-world geographical location. In this
case, it is necessary to schedule tasks for workers in order
to minimize spatial movements by taking into account their
geographical location.

Task allocation in teams has been studied in [2], where
authors defined the problem, studied its complexity, and
proposed greedy methods to allocate tasks to teams and
accordingly adjust their size. Team formation given a task
has been studied in [3] looking at worker skills. In our work,
we rather focus on assigning tasks to individual workers to
balance the load on the crowdsourcing platform.

The Effect of Switching Tasks. When scheduling tasks for
the crowd, it is necessary to take the human dimension into
account. Recent work [21] showed how disrupting tasks con-
tinuity degrades the e�ciency of crowd workers. Taking this
result into account, we designed worker-conscious schedul-
ing approaches that aim at serving tasks of the same type
in sequence to crowd workers in order to leverage training
e↵ects and to avoid the negative e↵ects of context switching.

Studies in the psychology domain have shown that switch-
ing between di↵erent tasks types has a negative e↵ect on
worker reaction time and on the quality of the work done
(see, for example, [6]). In addition to this, in our work we
show how context switch leads to an overall larger latency in
work completion (Section 5.2) and propose scheduling tech-
niques that take this human factor into account. The au-
thors of [38] study the e↵ect of monetary incentives on task
switching concluding that providing such incentives can help

in motivating quality work in a task switching situation. In
our work, we rather aim at reducing task switching by con-
sciously scheduling tasks to workers.

8. CONCLUSIONS
In a shared crowd-powered system environment, multiple

users (or tenants) periodically issue queries that trigger
predefined crowd-operators, resulting in independent
crowdsourcing tasks published on the target crowdsourcing
platform. In this paper, we pose and experimentally show
that the divide strategy is not optimal, and that the
crowd-powered system can increase its overall e�ciency
by bundling requests into a single batch that we call:
HIT-BUNDLE, and then taking control of the distribution
process of the tasks i.e., scheduling. Our experiments show
that this approach has two benefits i) it creates larger
batches that have a higher throughput, and ii) it gives to
the system control on what HIT to push next—a feature
that we leverage to push high-priority requests for example.
Moreover, controlling the task execution makes it possible
to develop more sophisticated crowdsourcing operators e.g.,
workflow execution, collaborative tasks.

Fairness is an important feature that shared environments
(including multi-tenant crowd-powered systems) should sup-
port. Thus, we explored the problem of scheduling HITs
using weighted Fair Scheduling algorithms, where priority
is expressed as a function of price. However, human indi-
viduals behave very di↵erently from machines, they are sen-
sitive to the context switch that a regular scheduler might
cause. The negative e↵ects of context switching were visible
in our experiments and are also supported by related stud-
ies in psychology. In that context, we proposed a Worker
Conscious Fair scheduling (WCFS), a new scheduling vari-
ant that strikes a balance between minimizing the context
switches and the fairness of the system.

We experimentally validated our algorithms over
real crowds of workers on a popular paid micro-task
crowdsourcing platform running both controlled and
uncontrolled experiments. Our results show that it is
possible to achieve i) a better system e�ciency—as we
reduce the overall latency of a set of batches—while ii)
providing fair executions across batches, resulting in iii)
non starving small jobs.

To the best of our knowledge, this is the first piece of
work giving crowd-powered systems control over their HIT
execution schedule, with the goal of improving their overall
e�ciency. Our architecture, and its AMT-tailored imple-
mentation, can be leveraged in a number of ways for query
optimization, and for powering complex SLAs.

9. ACKNOWLEDGMENTS
This work was supported by the Swiss National Science

Foundation under grant number PP00P2 153023, by a
Google Research Award, and by the UK EPSRC grant
number EP/N011589/1.

10. REFERENCES
[1] O. Alonso and R. A. Baeza-Yates. Design and

Implementation of Relevance Assessments Using
Crowdsourcing. In ECIR, pages 153–164, 2011.

[2] A. Anagnostopoulos, L. Becchetti, C. Castillo, A. Gionis,
and S. Leonardi. Power in unity: forming teams in
large-scale community systems. In Proceedings of the 19th

864

ACM international conference on Information and
knowledge management, pages 599–608. ACM, 2010.

[3] A. Anagnostopoulos, L. Becchetti, C. Castillo, A. Gionis,
and S. Leonardi. Online team formation in social networks.
In WWW, pages 839–848. ACM, 2012.

[4] J. P. Bigham, C. Jayant, H. Ji, G. Little, A. Miller, R. C.
Miller, R. Miller, A. Tatarowicz, B. White, S. White, et al.
Vizwiz: nearly real-time answers to visual questions. In
UIST, pages 333–342. ACM, 2010.

[5] A. Bozzon, M. Brambilla, S. Ceri, M. Silvestri, and
G. Vesci. Choosing the right crowd: expert finding in social
networks. In EDBT ’13, pages 637–648. ACM, 2013.

[6] M. J. Crump, J. V. McDonnell, and T. M. Gureckis.
Evaluating amazon’s mechanical turk as a tool for
experimental behavioral research. PloS one, 8(3):e57410,
2013.

[7] G. Demartini, D. E. Difallah, and P. Cudré-Mauroux.
ZenCrowd: leveraging probabilistic reasoning and
crowdsourcing techniques for large-scale entity linking. In
WWW, pages 469–478, 2012.

[8] G. Demartini, D. E. Difallah, and P. Cudré-Mauroux.
Large-scale linked data integration using probabilistic
reasoning and crowdsourcing. The VLDB Journal,
22(5):665–687, 2013.

[9] D. Deng, C. Shahabi, and U. Demiryurek. Maximizing the
number of worker’s self-selected tasks in spatial
crowdsourcing. In Proc. SIGSPATIAL/GIS, pages 324–333.
ACM, 2013.

[10] E. Diaz-Aviles and R. Kawase. Exploiting twitter as a
social channel for human computation. In CrowdSearch,
pages 15–19, 2012.

[11] D. E. Difallah, M. Catasta, G. Demartini, and
P. Cudré-Mauroux. Scaling-up the crowd: Micro-task
pricing schemes for worker retention and latency
improvement. In Second AAAI Conference on Human
Computation and Crowdsourcing, 2014.

[12] D. E. Difallah, M. Catasta, G. Demartini, P. G. Ipeirotis,
and P. Cudré-Mauroux. The dynamics of micro-task
crowdsourcing: The case of amazon mturk. In WWW,
pages 238–247. ACM, 2015.

[13] D. E. Difallah, G. Demartini, and P. Cudré-Mauroux.
Pick-a-crowd: Tell me what you like, and i’ll tell you what
to do. In WWW, pages 367–374, 2013.

[14] S. Faradani, B. Hartmann, and P. G. Ipeirotis. What’s the
right price? pricing tasks for finishing on time. In Human
Computation, 2011.

[15] M. J. Franklin, D. Kossmann, T. Kraska, S. Ramesh, and
R. Xin. CrowdDB: answering queries with crowdsourcing.
In SIGMOD ’11, pages 61–72. ACM, 2011.

[16] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski,
S. Shenker, and I. Stoica. Dominant resource fairness: fair
allocation of multiple resource types. In NSDI’11, pages
24–24. USENIX Association, 2011.

[17] P. G. Ipeirotis. Analyzing the amazon mechanical turk
marketplace. XRDS: Crossroads, The ACM Magazine for
Students, 17(2):16–21, 2010.

[18] P. G. Ipeirotis and E. Gabrilovich. Quizz: Targeted
crowdsourcing with a billion (potential) users. In WWW,
pages 143–154. ACM, 2014.

[19] R. Jurca and B. Faltings. Mechanisms for making crowds
truthful. J. Artif. Intell. Res. (JAIR), 34:209–253, 2009.

[20] R. Khazankin, H. Psaier, D. Schall, and S. Dustdar.
Qos-based task scheduling in crowdsourcing environments.
In Service-Oriented Computing, pages 297–311. Springer,
2011.

[21] W. S. Lasecki, A. Marcus, J. M. Rzeszotarski, and J. P.
Bigham. Using Microtask Continuity to Improve
Crowdsourcing. Technical Report, 2014.

[22] E. Law and L. v. Ahn. Human computation. Synthesis
Lectures on Artificial Intelligence and Machine Learning,
5(3):1–121, 2011.

[23] S. Lazebnik, C. Schmid, J. Ponce, et al. Semi-local a�ne
parts for object recognition. In British Machine Vision
Conference (BMVC’04), pages 779–788, 2004.

[24] V. Nunia, B. Kakadiya, C. Hota, and M. Rajarajan.
Adaptive Task Scheduling in Service Oriented Crowd Using
SLURM. In ICDCIT, pages 373–385, 2013.

[25] V. Rajan, S. Bhattacharya, L. E. Celis, D. Chander,
K. Dasgupta, and S. Karanam. Crowdcontrol: An online
learning approach for optimal task scheduling in a dynamic
crowd platform. In ICML Workshop on ’Machine Learning
meets Crowdsourcing’, 2013.

[26] S. B. Roy, I. Lykourentzou, S. Thirumuruganathan,
S. Amer-Yahia, and G. Das. Optimization in
knowledge-intensive crowdsourcing. CoRR, abs/1401.1302,
2014.

[27] J. M. Rzeszotarski, E. Chi, P. Paritosh, and P. Dai.
Inserting micro-breaks into crowdsourcing workflows. In
HCOMP (Works in Progress / Demos), volume WS-13-18
of AAAI Workshops. AAAI, 2013.

[28] N. Seemakurty, J. Chu, L. von Ahn, and A. Tomasic. Word
sense disambiguation via human computation. In
Proceedings of the ACM SIGKDD Workshop on Human
Computation, HCOMP ’10, pages 60–63. ACM, 2010.

[29] A. Singla and A. Krause. Truthful incentives in
crowdsourcing tasks using regret minimization mechanisms.
In WWW ’13, pages 1167–1178, 2013.

[30] M. Stonebraker, D. Abadi, D. J. DeWitt, S. Madden,
E. Paulson, A. Pavlo, and A. Rasin. Mapreduce and
parallel dbmss: friends or foes? Communications of the
ACM, 53(1):64–71, 2010.

[31] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal,
M. Konar, R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth,
B. Saha, C. Curino, O. O’Malley, S. Radia, B. Reed, and
E. Baldeschwieler. Apache hadoop yarn: Yet another
resource negotiator. In SOCC ’13, pages 5:1–5:16. ACM,
2013.

[32] K. Vertanen and P. O. Kristensson. A versatile dataset for
text entry evaluations based on genuine mobile emails. In
Proceedings of the 13th International Conference on
Human Computer Interaction with Mobile Devices and
Services, pages 295–298. ACM, 2011.

[33] L. von Ahn and L. Dabbish. Labeling images with a
computer game. In CHI ’04, pages 319–326. ACM, 2004.

[34] J. Wang, S. Faridani, and P. Ipeirotis. Estimating the
completion time of crowdsourced tasks using survival
analysis models. Crowdsourcing for search and data mining
(CSDM 2011), 31, 2011.

[35] J. Wang, T. Kraska, M. J. Franklin, and J. Feng.
CrowdER: Crowdsourcing Entity Resolution. Proc. VLDB
Endow., 5(11):1483–1494, July 2012.

[36] F. L. Wauthier and M. I. Jordan. Bayesian bias mitigation
for crowdsourcing. In NIPS, pages 1800–1808, 2011.

[37] S. E. Whang, P. Lofgren, and H. Garcia-Molina. Question
Selection for Crowd Entity Resolution. Proc. VLDB
Endow., 6(6):349–360, Apr. 2013.

[38] M. Yin, Y. Chen, and Y.-A. Sun. Monetary Interventions
in Crowdsourcing Task Switching. In Proceedings of the
2nd AAAI Conference on Human Computation (HCOMP),
2014.

[39] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy,
S. Shenker, and I. Stoica. Delay scheduling: a simple
technique for achieving locality and fairness in cluster
scheduling. In EuroSys ’10, pages 265–278. ACM, 2010.

[40] C. J. Zhang, L. Chen, H. V. Jagadish, and C. C. Cao.
Reducing uncertainty of schema matching via
crowdsourcing. Proc. VLDB Endow., 6(9):757–768, July
2013.

865

