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INTRODUCTION

RaptorX is totally different from our previous threading program RAPTOR,

which aligns a sequence to a template by using linear programming to minimize a

given threading scoring function.1,2 By contrast, RaptorX uses a statistical learning

method to design a new threading scoring function, aiming at better measuring the

compatibility between a target sequence and a template structure. In addition to

single-template threading, RaptorX also has a multiple-template threading compo-

nent and contains a new module for alignment quality prediction. Our results show

that RaptorX indeed has much better alignment accuracy than RAPTOR.3,4

RaptorX is designed to address two ‘‘alignment’’ challenges facing template-

based protein modeling. One is how to align a target to its template when they

have a sparse sequence profile (i.e., no sufficient amount of information in

homologs). In this case, a profile-based alignment method may not work well.

The other is how to improve sequence-template alignment accuracy using more

reliable template structural alignments as bridge when at least two similar tem-

plates are available for a target. RaptorX addresses these two challenges by

exploiting template structure information in several unique ways.

Many homology modeling and protein threading methods have been developed

for sequence-template alignment.5–20 These methods have two major issues in

dealing with distantly related sequence and template. One is that these methods

use a linear scoring function to guide the alignment of a sequence to its template.

A linear function cannot deal well with correlation among protein features,

although many features are indeed correlated (e.g., secondary structure vs. solvent

accessibility). The other issue is that these methods heavily depend on sequence

profile. Sequence profile has proved to be very powerful in detecting remote

homologs and generating accurate alignments, as demonstrated by the excellent

HHpred program.7 However, information in a sequence profile may not be suffi-

cient especially when the profile is sparse. To address these two issues, RaptorX
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ABSTRACT

This work presents RaptorX, a sta-

tistical method for template-based

protein modeling that improves

alignment accuracy by exploiting

structural information in a single

or multiple templates. RaptorX

consists of three major compo-

nents: single-template threading,

alignment quality prediction, and

multiple-template threading. This

work summarizes the methods used

by RaptorX and presents its CASP9

result analysis, aiming to identify

major bottlenecks with RaptorX

and template-based modeling and

hopefully directions for further

study. Our results show that tem-

plate structural information helps a

lot with both single-template and

multiple-template protein threading

especially when closely-related tem-

plates are unavailable, and there is

still large room for improvement in

both alignment and template selec-

tion. The RaptorX web server is

available at http://raptorx.uchica-

go.edu.
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uses a nonlinear scoring function to combine homolo-

gous information (i.e., sequence profile), and structure

information in a very flexible way. When proteins under

consideration have high-quality sequence profile, Rap-

torX counts more on profile information, otherwise on

structure information to improve alignment accuracy.

When multiple similar templates are available for a

single target, RaptorX improves pairwise target-template

alignment accuracy through exploiting template struc-

tural similarity (i.e., geometrical information), in addi-

tion to increase alignment coverage for the target (by

copying the most similar regions from different tem-

plates). Nearly all existing multiple-template methods

generate an alignment between the target and its multiple

templates by either simply assembling pairwise align-

ments into a single multiple alignment using the target

as an anchor21,22 or using some multiple sequence

alignment tools such as T-Coffee23, MUSCLE,24 and

ProbCons.25 Neither way effectively uses template struc-

tural alignments, which are more reliable than sequence-

template alignments, as bridge to build sequence-to-mul-

tiple-template alignments, so they usually do not fare

much better than when only a single template is available

for the target. By contrast, RaptorX takes advantage of

template structural alignments to align a target sequence

simultaneously to multiple templates through a novel sta-

tistical inference method. Two multiple protein alignment

programs 3DCoffee26 and PROMAL3D,27 which can

also be used to align a single sequence to multiple tem-

plates, indeed take advantage of template structural align-

ments in building a multiple alignment, but our experi-

mental results show that they do not fare well when the

target and templates are not closely related.28

METHODS

Following PSI-BLAST and HHpred, we use NEFF to

measure the amount of information in the sequence pro-

file of a protein. NEFF ranges from 1 to 20 and can be

interpreted as the expected number of amino acid substi-

tutions at each sequence position. A sparse sequence pro-

file (i.e., a profile with a small NEFF value) usually leads

to less accurate secondary structure prediction and less

accurate alignment.29

Single-template protein threading

We use a probabilistic model to formulate the pairwise

sequence-template alignment problem. See Peng and

Xu3,4 for the technical details. Our probabilistic model

uses a regression-tree-based nonlinear scoring function to

measure the similarity between two proteins. A regression

tree consists of a collection of rules to calculate the proba-

bility of an alignment. One rule can be as simple as ‘‘if

(mutation score < 250), then the log-likelihood of

two residues being aligned is ln 0.9’’ or as complex as ‘‘if

(250 < mutation score < 210) and (secondary structure

score > 0.9) and (solvent accessibility score > 0.6), then

the log-likelihood of two residues being aligned is ln 0.7".

Our scoring function is much more sensitive than the

widely used linear function, because our function can

model protein feature correlation. Our method also ena-

bles us to use different criteria to align different regions of

the sequence and template. This is analogous to the posi-

tion specific scoring matrix, which has different mutation

potentials for the same amino acid at different positions.

Our method differs from others in that we use NEFF

to adjust the relative importance of homologous and

structure information so that the former will not domi-

nate the latter. When proteins have large NEFF, RaptorX

counts more on sequence profile information; otherwise,

structure information. Our method uses both context-

specific and position-specific gap penalty and then use

NEFF to determine their relative importance. If NEFF is

large, we will rely more on position-specific gap penalty

derived from the alignment of sequence homologs; other-

wise, context-specific gap penalty. Our context-specific

gap penalty depends on (predicted) secondary structure

type, (predicted) solvent accessibility, amino acid identity,

hydropathy count, and if a residue is in the core region

or not.

Alignment quality prediction

We predict the absolute quality of a pairwise sequence-

template alignment using neural network and then use

the predicted quality to rank all the templates for a spe-

cific target. The quality of a pairwise sequence-template

alignment is defined as the TMscore30 of the 3D model

built from this alignment by MODELLER (with default

parameters). However, our method does not need to

actually build a 3D model in order to predict alignment

quality, because only information in an alignment is used

for quality prediction. This saves time for 3D model

building, and, thus, we can predict alignment quality

very quickly. Our old RAPTOR program uses an SVM

method to predict the number of correctly aligned posi-

tions in an alignment.31 RaptorX differs from RAPTOR

in that RaptorX predicts TMscore, a better quality mea-

sure, and also uses a better set of alignment features.

Let A(i) denote the target residue aligned to the ith

template residue. A(i) is empty if the template residue is

not aligned to any target residue. Let PSSM and PSFM

denote the position-specific scoring matrix and position

specific frequency matrix for the template and the

sequence, respectively. PSSM and PSFM are two slightly

different representations of sequence profile. Let PSSMi

and PSFMi denote sequence profiles at template position

i and sequence position i, respectively. Both PSSMi and

PSFMi are a vector of 20 real values encoding occurring

frequency of the 20 amino acids.
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NEFF values

See description at the beginning of this section.

Sequence profile similarity

At one aligned position, the sequence profile similarity

score is calculated as the inner product of the template

and target profile vectors. The total profile similarity

score is the sum of scores at all the aligned positions. We

also calculate the histogram distribution of the per-posi-

tion profile similarity scores by dividing the score into

eight equal-width intervals. The scores are normalized by

the number of aligned positions and the target length,

respectively. Using these two different normalizations, we

can take into consideration the impact of the gap length.

Statistical potential-based sequence similarity

We use the CC50 matrix developed by Kihara group32

to calculate sequence similarity. CC50 is a symmetric ma-

trix and derived from statistical potentials. Each element

CC50[a][b] measures the similarity between two amino

acids a and b. We use an array of 20 values, denoted as

v[20], to store the sequence similarity scores, each corre-

sponding to an amino acid type. For a given amino acid

a, v[a] is calculated as
P

io[s(i) 5 a]3CC50[a][t(i)],

where i runs over all aligned positions and s(i) and t(i)

are the target and template amino acids at i. o[s(i) 5 a]

is an indicator function and equal to 1 if and only if s(i)

is a. The 20 values (i.e., v[20]) are normalized by the tar-

get length and the number of aligned positions, respec-

tively, to generate 40 features.

Secondary structure similarity score

For each type of secondary structure, three different

scoring methods are used:

� Exact match score. It is equal to 1 if the secondary

structure types at an aligned position are identical,

otherwise 0.

� Log-odds score. It is calculated as log(P(ss)), where ss

is the secondary structure type at template position i

and P(ss) is the predicted likelihood of ss at sequence

position A(i).

� Confidence score generated by PSIPRED.

These scores are normalized by the sequence length

and also the number of aligned positions.

Solvent accessibility

The total solvent accessibility score is defined as the

number of aligned positions at which the template and

the target have different solvent accessibility status. The

score is also normalized by the number of aligned posi-

tions to generate another feature.

Contact capacity

The contact capacity potential measures the capability

of a residue making a certain number of contacts with

other residues in a protein. The contact capacity score is

calculated as
P

aCC(a,k)PSFM(A(i)a), where k is the

number of contacts at template position i and CC(a,k) is

the contact potential of amino acid a having k contacts.

We also calculate the histogram distribution of this score

using eight equal-width bins. This score is also normal-

ized by the number of aligned positions and the target

length, respectively.

Environmental fitness

This score measures how well it is to align one

sequence residue to a local structure environment, which

is defined by a combination of three secondary structure

types and three solvent accessibility states. Let F (env, a)

denote the potential of amino acid a being in a local

environment env. The environment fitness score is calcu-

lated by
P

aF(envi, a)PSFM(A(i),a). Again, we calculate

the histogram distribution of this score and normalize it

using the number of aligned positions and the target

length, respectively.

Sequence identity

It is the fraction of identical residues in the alignment.

Alignment length

We use the number of aligned positions and its ratio

to the target length as two features.

Gap

All gap lengths are divided into four intervals: 1–5, 6–

11, 12–20, and [20, 1], and we also differentiate tem-

plate gaps from target gaps. Given an alignment, we cal-

culate the histogram distribution of its gap lengths. The

gaps at the two ends of an alignment are ignored.

Multiple-template protein threading

Instead of simply using the star alignment algorithm

to assemble all the pairwise target-template alignments

into a target-to-multiple-template alignment, RaptorX

realigns the target simultaneously to all the templates to

fix some errors in the pairwise alignments by exploiting

template structure similarity. Given two pairwise align-

ments S-T1 and S-T2, where S is the target sequence and

T1 and T2 are two templates, an alignment between T1

and T2 can be derived from S-T1 and S-T2 using S as an

anchor. Such a T1–T2 alignment should be consistent

with the T1–T2 alignment generated by a structure align-

ment program. Otherwise, there may be errors in S-T1

and S-T2 alignments, because template–template

structure alignment usually is more accurate than
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sequence–template alignment. That is, we can use tem-

plate–template structure alignment to improve sequence–

template alignment by enforcing consistency among all

pairwise alignments. See Peng and Xu28 for the details of

our realignment algorithm, and here we only briefly

summarize the major procedure.

Our method consists of two major components: selec-

tion of multiple templates and alignment of the target to

multiple templates. Currently, RaptorX uses a simple and

conservative strategy to choose templates for a specific

target, based upon the template ranking list generated by

the predicted alignment quality (from high to low). We

first exclude all the templates not among the top 20 from

consideration. Second, a template with predicted align-

ment quality 10% less than the highest is also excluded.

Finally, a template is removed if its TMscore with the

first-ranked template is less than 0.65 or the highest pre-

dicted quality. By using only mutually similar templates,

we can avoid introducing large inconsistency into our

alignment algorithm and MODELLER.

To realign the target to multiple templates, we build an

initial probabilistic alignment matrix (PAM) for a target-

template pair using RaptorX single-template alignment

algorithm. Each entry in a PAM is the (marginal) align-

ment probability of two residues, which can be calculated

using the forward-backward algorithm.4 One PAM encodes

all possible alignments of two proteins by probability and,

thus, contains more information than a single deterministic

alignment. We also generate a PAM, consisting of binary

values, for any two templates using structure alignment

programs TMalign33 and/or Matt.34 Then, we run our

probabilistic-consistency transformation algorithm to itera-

tively adjust all the PAMs, to maximize the consistency

among all PAMs, and to improve the alignment between

two proteins using the others. Finally, we generate a target-

to-multiple-template alignment from the updated PAMs

using progressive alignment and iterative refinement.

Building 3D models from alignments

We tested our methods through three different CASP9

servers. RaptorX-MSA and RaptorX-Boost use MODEL-

LER and Skolnick’s TASSERLite35 to build 3D models

from a given alignment, respectively. RaptorX-Boost per-

formed worse than RaptorX-MSA in CASP9, maybe

because we did not correctly use TASSER. RaptorX is a

combination of RaptorX-MSA and RaptorX-Boost. When

the target appears to be easy, RaptorX used the results

from RaptorX-MSA, otherwise from RaptorX-Boost.

When no reliable templates can be identified for a target,

RaptorX used our in-house free modeling program36 to

generate five models (for only two targets). We also use

this free modeling program to fold the unaligned two

ends of a protein target. When doing so, for the middle

region, we fix only the Ca positions but not the other

atoms. This is why our CASP9 models have very good Ca

accuracy, but bad full-atom accuracy. This work focuses

only on RaptorX-MSA results and does not evaluate our

free-modeling procedure since generally it does not help.

Summary of methods

For a specific target, RaptorX first aligns it to each of

the templates using the single-template alignment algo-

rithm. Then, RaptorX predicts the alignment quality and

ranks all the templates by predicted quality descendingly.

If the target is not suitable for multiple-template thread-

ing, RaptorX builds a 3D model for the target from the

pairwise alignment with the highest predicted quality.

Otherwise, RaptorX runs multiple-template threading for

the target and builds a corresponding 3D model.

RESULTS

Evaluation of single-template alignment
accuracy

We evaluate our single-template alignment algorithm

using 38 TBM (template-based modeling) CASP9 targets

for which RaptorX submitted single-template models. To

evaluate how much room is left for improvement in

alignment, for a given target and its first-ranked template

(according to the ranking by RaptorX), we use TMalign

to generate their pairwise structure alignment, assuming

that the native structure of the target is known. We com-

pare the 3D models built by MODELLER from the TMa-

lign alignments with the 3D models built from RaptorX

single-template alignments, as shown in Figure 1. For

many targets, RaptorX alignments are still significantly

Figure 1
This figure compares RaptorX alignments with TMalign alignments for

38 CASP9 targets. A point above the diagonal line indicates that the

RaptorX alignment is worse than the corresponding TMalign alignment.

[Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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worse than TMalign alignments. This implies that there

is still large improvement room for single-template align-

ment, especially for those targets without close templates.

Our single-template alignment algorithm failed to gen-

erate accurate alignments for a bunch of targets such as

T0568 and T0603. The best template RaptorX identified

for T0568 is 2p9rA and the 3D model built from Rap-

torX alignment to this template has TMscore of 0.354.

However, the 3D model built from TMalign alignment to

this template has TMscore 0.572. We can improve the

RaptorX model by using two templates 2p9rA and

2p5nA, which yield a 3D model with TMscore 0.441.

The best template identified by RaptorX for T0603 is

3godaA and the 3D model built from RaptorX alignment

has TMscore 0.633. However, the 3D model built from

TMalign alignment has TMscore 0.700. If another two

top templates 2yzsA and 3lfxF are combined with 3godA,

RaptorX can generate a 3D model with TMscore 0.748.

RaptorX did not submit multiple-template models for

T0568 and T0603, because RaptorX misclassified them as

single-template targets. Therefore, it is important to de-

velop a better strategy to decide if a target is suitable for

multiple-template modeling or not.

Evaluation of alignment quality prediction

As shown in the following sections, alignment quality

prediction is a very important component for RaptorX. To

evaluate how well we can predict the quality (TMscore) of

a pairwise sequence-template alignment, we compare the

real and predicted quality of the models built from the

first-ranked templates for 111 targets, as shown in Figure 2.

The predicted quality is highly correlated with the real

quality (correlation coefficient 5 0.85). However, for a

good percentage of targets, the absolute prediction error

is still larger than 0.05. For some targets, the absolute

prediction error is larger than 0.10 or even 0.20. We also

observed that when the real model quality is less than

0.6, the predicted quality tends to slightly underestimate

the real value; otherwise overestimate.

Evaluation of template selection

RaptorX uses the predicted alignment quality to rank

templates. To evaluate the ranking performance of the

predicted alignment quality, we examine how well Rap-

torX can identify the best available template for a given

target. To conduct a rigorous evaluation, we have to

build a 3D model from each pairwise target-template

alignment using MODELLER, which is time-consuming,

because there are >20,000 templates. Instead, for each

target, we build 3D models only from the top 10 tem-

plates (according to the ranking by RaptorX) and then

examine ranking of the models built from the frist-

ranked templates, using the models from the top 10 tem-

plates as reference.

As shown in Figure 3, for a large percentage of targets

(even some hard targets), the models built from the first-

ranked templates is or very close to the best out of the

top 5 or 10 models. That is, the predicted alignment

quality can rank the templates very well. However, Rap-

torX indeed failed to identify the best available templates

for some hard targets, as shown in Figure 3(b). For

example, RaptorX identified a very bad template for

T0576, which leads to a 3D model with TMscore only

�0.2, although RaptorX generated a model with TMscore

�0.7 from the top 10 templates. The reason RaptorX

failed is that T0576 has a sparse sequence profile and the

traning data set for our quality prediction algorithm does

not contain enough number of sequences with sparse

sequence profile.

Multiple-template models versus
single-template models

RaptorX generated multiple-template models for 48

CASP9 targets, each of which has at least two good tem-

plates. There are also several other targets suitable for

multiple-template modeling, but RaptorX only submitted

single-template models for them. As shown in Figure 4,

using multiple-template threading, RaptorX can generate

models for most of the 48 targets better than single-tem-

plate models even if the best template is used. Here by

‘‘best’’ we mean the best out of the multiple templates

used by RaptorX to build a multiple-template model. In

particular, the accumulative TMscores of the first-tem-

plate models, the best-template models, and the multi-

ple-template models are 34.042, 34.770 and 35.473,

Figure 2
This figure compares the predicted and real quality of the models built

from the first-ranked templates. A point above the diagnoal line

indicates that for a specific model its predicted quality overestimates the

real value. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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respectively. This result indicates that using multiple tem-

plates, RaptorX can indeed improve modeling accuracy

for most targets.

The improvement in modeling accuracy by multiple-

template threading arises from three factors: inclusion of

the best single templates, better alignment, and larger

coverage. Table I shows the modeling results on the 99

CASP8 and CASP9 targets with multiple good templates.

The models built from the first-ranked single templates

with alignments generated by single-template threading

in total have TMscore 72.86 and GDT 6265.68, respec-

tively. The models built from the best single templates

Figure 4
This figure illustrates the advantage of multiple-template models over single-template models: (a) multiple-template models versus first-ranked

template models; (b) multiple-template models versus the best single-template models. A point under the diagonal line indicates that the multiple-

template model is better. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 3
This figure illustrates the quality of the models built from the first-ranked templates and those from the best out of the top 5 or top 10 templates.

A point on or close to the diagnoal line indicates that the first-ranked model is (or very close to) the best out of the top 5 or 10 models. [Color

figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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with alignments generated by single-template threading

in total have TMscore 74.06 and GDT 6381.54, respec-

tively. Therefore, by using the best single templates, we

can gain �1.20 and �116 for TMscore and GDT, respec-

tively. When alignments generated by multiple-template

threading are used, the models built from the best single

templates have TMscore 74.85 and GDT 6465.12, respec-

tively. That is, the TMscore and GDT improvements

from better alignment are �0.79 and �84.0, respectively.

Table I also shows that the models built from multiple

templates (i.e., best single templates plus others) in total

have TMscore 75.68 and GDT 6585.70, respectively. This

indicates that the TMscore and GDT improvements from

larger coverage are 0.83 and 120.0, respectively. If only

the 48 CASP9 targets are evaluated, the improvement

from inclusion of the best single templates is larger than

that from better alignment, which in turn is larger than

that from larger coverage.

RaptorX failed on one target T0589, for which Rap-

torX identified four mutually similar templates 3lc0A,

1httD, 1z7mD, and 1wu7A (their pairwise TMscore >
0.8). These four templates yield four single-template

alignments with predicted quality �0.8, but the best tem-

plate 1wu7A was not ranked first. By combing these four

templates, RaptorX generated a 3D model with TMscore

0.752, significantly lower than the quality (TMscore

0.852) of the model built from 1wu7A. To examine what

went wrong with our multiple-template method, we

extract the pairwise T0589-1wu7A alignment from Rap-

torX’s multiple-template alignment and run MODELLER

to generate a 3D model from this extracted pairwise

alignment. Such a 3D model has TMscore 0.853, which

indicates that RaptorX did not worsen the T0589-1wu7A

alignment by doing multiple-template threading. The rea-

son that MODELLER did not produce a good 3D model

from the multiple-template alignment is more likely that

MODELLER was misled by three not-so-good templates

3lc0A, 1httD, and 1z7mD. The single-template models

built from 3lc0A, 1httD, and 1z7mD have TMscore

0.742, 0.638, and 0.602, respectively, much worse than

the single-template model from 1wu7A. However,

according to the predicted alignment quality, 1wu7A is

not significantly better than the other three templates,

and so RaptorX used 4 templates instead of only 1wu7A

to build the model. To overcome this issue, we need a

better alignment quality prediction algorithm to tell

1wu7A apart from the other three templates. Otherwise,

we may have to use a 3D model building tool that is

more robust to bad templates than MODELLER.

Evaluation of multiple-template alignment
accuracy

A natural question to ask is if there is still any

improvement room for multiple-template threading

method, especially for the hard targets? First, we want to

point out that template selection is still challenging for

multiple-template threading. Different combinations of

templates may lead to models with very different quality

(e.g., T0589). Here, we focus on the alignment aspect of

multiple-template threading.

To examine the multiple-template alignment quality,

we conduct an experiment using 48 TBM targets for

which RaptorX submitted multiple-template models. For

each target, we use our in-house multiple structure align-

ment tool 3DCOMB (submitted for publication) to gen-

erate its alignment to the same set of templates used by

RaptorX, using the native structures of all the proteins

under consideration. Then, we run MODELLER to pro-

duce a 3D model for the target from the 3DCOMB align-

ment. We compare the 3D models built from the

3DCOMB alignments with those generated by RaptorX

multiple-template threading. The accumulative GDT of

the 3DCOMB models are much higher than that of the

RaptorX models. In particular, the 3DCOMB models for

more than 20 targets on average have GDT at least five

units better than their corresponding RaptorX models

(see Fig. 5). This result indicates that there is still large

improvement room for multiple-template alignment.

Comparison with HHpred

In this subsection, we compare RaptorX with the best

profile–profile alignment method HHpred using two

datasets: CASP9 data and a large PDB25 dataset. The

PDB25 set consists of 6125 nonredundant protein chains

generated by the PISCES server (http://dunbrack.fccc.

edu/PISCES.php). Any two chains in this set share no

more than 25% sequence identity. All the proteins in this

PDB25 set are used as templates and 1000 of them are

randomly chosen as our test targets. We run both Rap-

torX (single-template method) and HHpred to predict

the 3D structure for each of the 1000 target proteins

using the 6125 templates. Note that when predicting

structure for one target protein, we remove itself from

the template list.

Figure 6 shows the GDT-TS of the 3D models

generated by both RaptorX and HHpred for all the

Table I
Quality (TMscore and GDT) of Models Generated for CASP Targets

from Different Alignments and Templates

Method

48 CASP9 targets
99 CASP8 and
CASP9 targets

TMscore GDT TMscore GDT

Multi-template 35.4730 3068.50 75.686 6585.70
First-single-templatea 34.0422 2909.37 72.8633 6265.68
Best-single-templatea 34.7702 2980.76 74.0657 6381.54
Best-single-templateb 35.2572 3046.95 74.8564 6465.12

aAlignment is generated by single-template threading.
bAlignment is generated by multiple-template threading.
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CASP9 targets. The GDT-TS scores are directly taken

from Zhang’s CASP9 assessment website (http://zhan-

glab.ccmb.med.umich.edu/casp9/). Each target is eval-

uated by the whole chain instead of by domains, so that

we can exclude impact of different domain parsing meth-

ods. As shown in Figure 6, RaptorX is obviously better

than HHpred for hard targets with GDT-TS less than 30.

For easy targets, HHpred is slightly better than RaptorX.

Figures 7 and 8 show the quality of the first-ranked

3D models generated by RaptorX and HHpred. On aver-

age, RaptorX obtains a TMscore of 0.534, while HHpred

0.516 and their difference is significant (P-value 5 1.77E-

09). Figures 7 and 8 show that RaptorX outperforms

HHpred on targets across almost the whole TMscore

range, which is different from what is displayed in Figure

6. The discrepancy is due to two reasons. One is that all

the templates in the PDB25 set are not so close to the

target while some CASP9 targets have very close tem-

plates. RaptorX tends to perform better when close tem-

plates are not available. The other is that HHpred in

CASP9 uses a better method to build a 3D model from

an alignment, and RaptorX in CASP9 also uses multiple-

template threading, while Figures 7 and 8 are based upon

only single-template models generated by MODELLER.

As shown in Figure 8, the numbers of targets for which

RaptorX generates models with TMscore at least 0.05

and 0.10 better than HHpred are 255 and 133, respec-

tively. In contrast, the numbers of targets for which

HHpred generates models with TMscore at least 0.05 and

0.10 better than RaptorX are 133 and 67, respectively.

Figure 7 shows that both RaptorX and HHpred did very

badly on a small number of targets. For example, for

about eight targets, HHpred generates 3D models with

TMscore around 0.6 while RaptorX obtains TMscore

Figure 6
This figure illustrates the quality of the models built by RaptorX and

HHpred for the CASP9 targets. Each point represents one target. A

point above the diagnoal line indicates that RaptorX generated a better

3D model than HHpred. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]

Figure 5
This figure illustrates the quality of the models built from RaptorX

multiple-template alignments and 3DCOMB alignments. A point above

the red line indicates that the 3DCOMB model is at least 5 GDT units

better than the RaptorX model. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]

Figure 7
This figure illustrates the quality of the models built by RaptorX and

HHpred for 1000 proteins. Both methods use only single templates to

generate alignments and build models (with MODELLER). The

template set consists of more than 6000 nonredundant protein chains

generated by the PISCES server while the target set includes 1000

proteins randomly chosen from these 6000 proteins. Each point

represents one target. A point above the diagnoal line indicates that

RaptorX generated a better 3D model than HHpred. [Color figure can

be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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between 0.2 and 0.4. Similarly, for about 15 targets,

RaptorX generates 3D models with TMscore around 0.6,

while HHpred only obtains TMscore between 0.2 and

0.4. We will do further study on these targets and hope-

fully can fix them.

Issues with building 3D models from
alignments

Even if we can generate a pretty good alignment,

sometimes, it is very challenging to build a high-quality

3D model from the alignment. We identified three targets

for which RaptorX generated very good alignments, but

failed to obtain good 3D models by running MODEL-

LER. One possible reason may be that we did not use

MODELLER in the best way.

1. T0566. The best available template for this target is

1usvF or 1usuB. RaptorX was able to identify the best

template 1usvF and produced a 3D model with

TMscore 0.759, which is not ranked well among all

the server models. The structure alignment generated

by TMalign for T0566 and 1usvF has TMscore 0.740.

The 3D model built by MODELLER from the TMa-

lign alignment has TMscore 0.751, even slightly worse

than the RaptorX model. This may imply that the

RaptorX alignment is good, but MODELLER failed to

build a good 3D model from it.

2. T0586. RaptorX identified a good template 3by6A and

generated a model with TMscore 0.7390, which is bet-

ter than the model (TMscore 0.699) built by MODEL-

LER from TMalign alignment. However, many other

groups generate much better models than RaptorX. In

particular, chunk-TASSER37 submitted the best server

model using only 3by6A as the template.

3. T0580. RaptorX identified several good templates

1e2bA, 3czcA, 1tvmA, and 2fewA. The predicted quality

of the alignment between T0580 and 1e2bA is much

higher than others (TMscore 0.768). The pairwise

structural similarity between these templates is relatively

low (TMscore � 0.6). Therefore, RaptorX used only

1e2bA to build a single-template model with TMscore

0.728. By using multiple templates, RaptorX can gener-

ate a model with TMscore 0.815, which is still worse

than the model (TMscore 0.901) built by BAKER

group using only 1iibB (same as 1e2bA) as a template.

We are still investigating these three targets and hope-

fully identify plausible reasons for our failures.

CONCLUSIONS

We have presented a new protein modeling program

RaptorX to replace our previous program RAPTOR. Rap-

torX has much better alignment accuracy than RAPTOR

because of several unique features: (1) RaptorX takes

into consideration the correlation among protein fea-

tures; (2) RaptorX deals well with proteins with sparse

sequence profile by leveraging structure information; and

(3) RaptorX employs a novel multiple-template threading

algorithm to exploit template structure similarity to

improve alignment accuracy.

Although RaptorX significantly excels RAPTOR in

alignment accuracy, our analysis of the CASP9 results

indicates that there is still large improvement room for

both single-template and multiple-template threading,

in both template selection and sequence-template align-

ment. We may improve alignment of proteins with

sparse sequence profile by somehow artificially enrich-

ing profile. For example, we can use protein design pro-

grams to generate hypothetical sequences for a given

protein (or family). These sequences then can be com-

bined with natural sequences to build an enriched

sequence profile.38,39 The issue with this method is

that it usually takes a long time to generate sequences

using a protein design program. Very recently, simulated

evolution, a more efficient method, is also proposed to

enrich sequence profile and seems to help.40 Maybe we

can incorporate these methods into our current proba-

bilistic alignment model to further improve alignment

accuracy.

RaptorX demonstrates that when sequence profile is

sparse, we can use structure information to improve

alignment accuracy.3 Because of the enlargement of the

NR database, many proteins now have a very dense

sequence profile. Using a very dense profile may worsen

the alignment accuracy due to lose of specificity, as

reported in Ref. 41. We need to investigate a strategy to

generate a profile best for alignment accuracy.

There is still improvement room for multiple-template

alignment. As shown in Figure 5, there is still a gap

Figure 8
This figure illustrates the TMscore difference distribution of the models

generated by RaptorX and HHpred for 1000 proteins. For both

methods, we generated alignments and builded models (with

MODELLER) using only single templates. The template set consists of
more than 6000 nonredundant protein chains generated by the PISCES

server while the target set includes 1000 proteins randomly chosen from

these 6000 proteins. The blue columns indicate that the numbers of

targets for which RaptorX is better while the red columns indicate that

HHpred is better.
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between RaptorX multiple-template alignments and

3DCOMB structure alignments even for some targets

with good templates, which implies that multiple-tem-

plate alignment may be improved further. Selection of

templates for multiple-template threading is also quite

challenging and needs more investigation. Our current

strategy requires that the TMscore between two templates

is at least 0.65. Can we break this barrier down to a

smaller value, say 0.4? In particular, when the target does

not have a very good template (e.g., the highest predicted

alignment quality is less than 0.5), can we use two tem-

plates with TMscore 0.4–0.65 to improve alignment accu-

racy? Finally, when the first-ranked template of a target is

much better than other templates, can we still use struc-

ture information in other not-so-good templates to help

with the alignment of the first-ranked template? In addi-

tion to align a single target sequence to multiple tem-

plates, can we also improve alignment accuracy by align-

ing multiple sequences (homologous to the target) to

multiple templates?

A more accurate method is also needed for alignment

quality prediction, which is critical for template ranking

and selection of templates for multiple-template thread-

ing. As shown before, because of bad quality prediction,

we used a wrong combination of four templates to build

a multiple-template model for T0589, which generates a

3D model significantly worse than the best-single-tem-

plate model. RaptorX also failed badly in picking up the

best template for an easy target T0576 due to bad quality

prediction.

In summary, our CASP9 results indicate that there is

still large improvement room for RaptorX and template-

based modeling. New methods are needed for the three

major aspects of template-based modeling: sequence-tem-

plate alignment, alignment quality prediction, and tem-

plate ranking.
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