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Abstract

Motivation: Protein–RNA interactions, which play vital roles in many processes, are mediated

through both RNA sequence and structure. CLIP-based methods, which measure protein–RNA

binding in vivo, suffer from experimental noise and systematic biases, whereas in vitro experi-

ments capture a clearer signal of protein RNA-binding. Among them, RNAcompete provides

binding affinities of a specific protein to more than 240 000 unstructured RNA probes in one experi-

ment. The computational challenge is to infer RNA structure- and sequence-based binding models

from these data. The state-of-the-art in sequence models, Deepbind, does not model structural

preferences. RNAcontext models both sequence and structure preferences, but is outperformed by

GraphProt. Unfortunately, GraphProt cannot detect structural preferences from RNAcompete data

due to the unstructured nature of the data, as noted by its developers, nor can it be tractably run on

the full RNACompete dataset.

Results: We develop RCK, an efficient, scalable algorithm that infers both sequence and structure

preferences based on a new k-mer based model. Remarkably, even though RNAcompete data is

designed to be unstructured, RCK can still learn structural preferences from it. RCK significantly

outperforms both RNAcontext and Deepbind in in vitro binding prediction for 244 RNAcompete ex-

periments. Moreover, RCK is also faster and uses less memory, which enables scalability. While

currently on par with existing methods in in vivo binding prediction on a small scale test, we dem-

onstrate that RCK will increasingly benefit from experimentally measured RNA structure profiles as

compared to computationally predicted ones. By running RCK on the entire RNAcompete dataset,

we generate and provide as a resource a set of protein–RNA structure-based models on an unpre-

cedented scale.

Availability and Implementation: Software and models are freely available at http://rck.csail.mit.

edu/

Contact: bab@mit.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Protein–RNA interactions play vital roles in many processes in the

living cell (Rinn and Ule, 2014). These include modulation and ef-

fect of a wide variety of cellular processes, including RNA replica-

tion, repair, recombination and post-transcriptional regulation

(Rinn and Ule, 2014). More than 1500 genes in the human genome

are thought to code for RNA-binding proteins (RBPs), making this

family one of the largest families in the human proteome

(Gerstberger et al., 2014). Most RBPs bind RNA through both

sequence and structure. Thus, better characterization of RBP

sequence- and structure-specific binding preferences can improve

our understanding of post-transcriptional gene regulation.

RNA structure is commonly considered at the level of secondary

structure (Washietl et al., 2012). RNA secondary structure is repre-

sented by base-pairing of nucleotides, and can be efficiently pre-

dicted from its sequence when only tree-like structures are allowed.

A single RNA molecule may fold into different conformations,

termed its ‘ensemble’ of structures, where the most likely one is the

minimum free energy structure (Steffen et al., 2006). These ensem-

bles can be represented as either different combinatorial structures
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(represented as graphs by RNAshapes (Janssen and Giegerich,

2014)) or average probabilities over the ensemble (represented as

position-specific probability vectors by RNAplfold (Lorenz et al.,

2011)). New experimental methods for protein–RNA binding, such

as icSHAPE, can probe RNA structure both in vitro and in vivo

(Spitale et al., 2015). In many cases, the exact base-pairing is not as

informative as the structural context: whether the binding site is in a

loop, external region or base-paired (Leontis et al., 2006). A com-

mon assumption is that most proteins prefer to bind accessible sites

(i.e. those that are unlikely to be base-paired), and a few prefer a

specific structural context (Li et al., 2014; Ray et al., 2009).

New experimental high-throughput (HTP) techniques have been

developed to uncover protein–RNA interactions on a genome-wide

scale at single-nucleotide resolution. For example, HITS-CLIP,

CLIP-seq and RIP-seq measure protein–RNA interactions in vivo in

a HTP manner (König et al., 2012). However, protein RNA-binding

is influenced by a variety of factors, such as other RBPs, which either

compete for the same binding site or co-bind as a complex, and

RNA structure. In addition, experimental output is significantly af-

fected by technological artifacts and noise (Fu and Ares, 2014;

Kishore et al., 2011). While the end goal is to understand and pre-

dict in vivo binding, in vitro experiments currently have higher reso-

lution and less noise. Moreover, as accurate experimental

measurements of RNA structure are scarce, methods rely on compu-

tational prediction of RNA structure, which is more accurate

in vitro than in vivo (Rouskin et al., 2014). Thus, in vitro experi-

ments provide valuable complementary information that may enable

us to learn intrinsic protein RNA-binding preferences.

Towards this aim, high-throughput in vitro methods have been

developed to study the binding preferences of RBPs (Lambert et al.,

2014; Ray et al., 2009). A prime example is RNAcompete (Ray

et al., 2009), in which a specific protein binds to a set of pre-designed

oligos and binding is measured by hybridization to complementary

probes on a microarray. The experimental output includes binding

intensities to more than 240 000 probe sequences. These sequences,

divided uniformly into Set A and Set B, together cover each RNA 9-

mer at least 16 times. The first study of 9 experiments included sets

of sequences from some structured RNA probes (Ray et al., 2009). In

the second study the probes were designed as unstructured to be ac-

cessible for the protein to bind (Ray et al., 2013). The latter study re-

ported the binding of more than 200 human RBPs and provided the

first-of-its-scale dataset of protein–RNA binding measurements (Ray

et al., 2013). However, only sequence-based binding models were

inferred from those due to the probes’ unstructured design.

Several methods have been developed to infer sequence- and

structure-based models for protein–RNA binding. MEMERIS was

the pioneer method (Hiller et al., 2006) to explore binding sites in un-

paired regions by extending the well-known MEME (Bailey et al.,

2015) to incorporate unpaired nucleotide probabilities. A more re-

cently developed method, RNAcontext, infers a PWM model and

structural context preferences from RNAcompete and CLIP data

(Kazan et al., 2010). RNA structure is represented as probabilities of

structural contexts (paired, hairpin loop, multi loop, inner loop and

external), predicted by RNAplfold (Lorenz et al., 2011). The state-

of-the-art in discovering structure- and sequence-based binding pref-

erences is GraphProt (Maticzka et al., 2014). The secondary structure

of each RNA sequence is represented as combinatorial graphs. Up to

three most-probable structures are predicted per sequence using

RNAshapes (Janssen and Giegerich, 2014). Graph-based support

vectors (Costa and De Grave, 2010) are used to train a model, where

the features are local subgraphs (representing base-paired and adja-

cent nucleotides) and hyper-graphs (representing structural contexts).

Unfortunately, both GraphProt and RNAcontext have clear limi-

tations in predicting protein–RNA binding. The prediction of highly

probable combinatorial structures, as in GraphProt, while saving

time, may not reveal the full ensemble of possible structures; the ag-

gregation of less likely structures has been shown to be more inform-

ative of RNA-binding than minimum free energy structures (Li

et al., 2014). On the other hand, while RNAcontext uses structural

context probabilities to represent the complete ensemble of possible

structures, its sequence model is a position weight matrix (PWM),

which is inherently position independent; every position in the

model contributes independently to binding. Thus, PWMs cannot

model dependencies between binding site positions, as opposed to

GraphProt, where subgraph features encode sets of nucleotides with

their structural relationships.

To resolve these issues, we present a new algorithm RCK (short

for RNAcontext-k-mer) (see Fig. 1). We follow the intuition that

RNA-binding preferences require more complex models, incorporat-

ing both sequence and structure. The algorithm extends

RNAcontext by a k-mer sequence- and structure-based binding

model. In particular, RCK uses the same input and optimization

procedure as RNAcontext to infer model parameters, but in a k-mer

based context that better captures local preferences, and a more effi-

cient implementation. We applied our algorithm to RNAcompete

data and inferred, for the first time, structure-based models from

this large-scale data of protein–RNA binding, as previous methods

were not applied due to design limitations based on the unstructured

nature of the data. We show that our method significantly outper-

forms both the sequence-based and structure-based state-of-the-art

methods for in vitro binding prediction. It is also much more effi-

cient, both in running time and memory usage, which is what en-

ables scalability to larger datasets and more complex binding

models. While in our limited tests RCK is on par with extant meth-

ods in predicting in vivo binding based on predicted RNA structure,

we demonstrate that RCK can easily incorporate experimentally

measured RNA structure to improve in vivo binding prediction.

2 Methods

2.1 RCK k-mer model for protein–RNA binding
We extended the model of RNAcontext (Kazan et al., 2010) to ac-

count for k-mer sequence and structure preferences. First, we define

a structural probability vector for sequence s to be a vector of length

jsj where each element is a distribution over the possible structural

contexts (e.g. paired and unpaired) in that position. The model as-

sumes that the binding intensity to k-mer w with structural probabil-

ity vector p is a multiplication of its sequence and structure

preferences, modeled by H:

Nðw;p;HÞ ¼ Nseqðw;HÞ � Cðw; p;HÞ (1)

where Nseqðw;HÞ is the sequence binding score, given by:

Nseqðw;HÞ ¼ rðbs þ /wÞ (2)

in which /w is the sequence k-mer score of w and bs is the sequence

bias.

Cðw;p;HÞ is the structure binding score, given by:

Cðw; p;HÞ ¼ rðbp þ
X
a2A

Cw;a �
Xk

i¼1

pa;iÞ (3)

where Cw;a is the structural preference of k-mer w to structural con-

text a, pa;i is the probability of position i in w to be in structural

i352 Y.Orenstein et al.
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context a, and bp is the structure bias. In both (2) and (3), r is the lo-

gistic function: rðxÞ ¼ ð1þ expð�xÞÞ�1. The bias terms, bs and bp,

are meant to scale the sequence and structure preferences. For ex-

ample, if structure does not play a significant role in binding, bp

may take a large positive value.

The binding score of sequence S with structural probability vec-

tor P is:

f ðS;P;HÞ ¼ 1�
YjSj�k

t¼0

1�NðStþ1:tþk;Ptþ1:tþk;HÞ (4)

where Stþ1:tþk and Ptþ1:tþk are the k-long sub-vectors starting at

index tþ1 of S and P, respectively. The assumption is that every

position in sequence S has an independent probability of being

bound. The probability of sequence S not being bound, is the prod-

uct of not binding at any position.

2.2 Parameter inference
The model parameters are inferred to reduce the error in probe in-

tensity prediction. For N sequences S ¼ s1; . . . ; sN
� �

with structure

probability vectors P ¼ p1; . . . ; pN
� �

, measured binding intensities

R ¼ r1; . . . ; rN
� �

and predicted intensities bR ¼ br1; . . . ;brN
n o

, where

bri ¼ a � f ðsi; pi;HÞ þ b, we optimize the parameters H to minimize

the sum of squared errors:

EðH; a; bÞ ¼
XN
i¼1

ðri � briÞ2 þ d
X

/w2H
rðbs þ /wÞ (5)

The least squares cost function EðH; a; bÞ is minimized using

the L-BFGS method (Byrd et al., 1995). Note that we modified the

regularization term to suit the new model. Regularizing by the sum

of k-mer sequence scores is intended to have few k-mers with high

scores and most k-mers with close-to-zero scores.

2.3 RNA secondary structure prediction
RNA secondary structural context profiles were predicted

using a variant of RNAplfold (Lorenz et al., 2011). In this vari-

ant, probabilities for four structural contexts are calculated per

position: hairpin loop, inner loop, multi loop and external

region (Kazan et al., 2010). The probability for a position being

paired is assigned, so that the total sum is 1. These probabilities,

represented as 5 vectors, each the length of the sequence, are pro-

vided together with the sequences as input to RCK and

RNAcontext.

Fig. 1. A flowchart depicting the input, output and function performed by RCK. To infer a new binding model, RCK receives as input an RNAcompete dataset (Ray

et al., 2009), containing thousands of sequences and corresponding binding intensities, together with predicted structure probabilities of the probe sequences

(by RNAplfold (Lorenz et al., 2011)). RCK learns a sequence- and structure-based binding model, which can be later used to predict binding intensities of new

RNA sequences, for which structure has been experimentally measured (Spitale et al., 2015) or computationally predicted

RCK: inference of protein-RNA binding models i353
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2.4 Evaluating model performance
To evaluate the new k-mer model, we used the original dataset on

which RNAcontext was developed (Kazan et al., 2010). This dataset

included nine paired experiments, each pair testing a different pro-

tein (Ray et al., 2009). For each pair, we trained the model on ex-

periment A and tested on experiment B. We gauged the performance

by the Pearson correlation of measured and predicted binding inten-

sities. To be able to see the performance gain irrespective of model

width (i.e. k), we ran RCK and RNAcontext on width 5.

2.5 Running time evaluation
We measured RNAcontext, GraphProt and RCK training runtimes

and memory usage on the RNCMPT00001:setA dataset. We gauged

the user running time, excluding structure prediction times. Time

and memory usage were measured using the /usr/bin/time com-

mand in Unix. User time and maximum resident set size are re-

ported. Running times and memory usage were benchmarked on a

single CPU of a 20-CPU Intel Xeon E5-2650 (2.3 GHz) machine

with 384 GB 2133 MHz RAM.

We ran GraphProt in the following way: perl GraphProt.pl

-mode regression -fasta <sequence file> -affinities

<intensities file>. RCK and RNAcontext were run with de-

fault parameters and model width 5.

2.6 In vitro binding prediction evaluation
To evaluate the performance of algorithms on in vitro binding pre-

diction we used the RNAcompete dataset (Ray et al., 2013). The set

includes 244 experiments, each containing binding intensities to

more than 240 000 sequences. The sequence set was designed as a

union of two sets, A and B, such that each has similar k-mer cover-

age. For each experiment, we trained a model on sequences from set

A and predicted the intensities on set B. Performance was deter-

mined by the Pearson correlation of predicted and measured inten-

sities of set B. Outlier intensities were clamped as done in the

Deepbind study (Alipanahi et al., 2015): all intensities above the 0.5

percentile were clamped to the value of the 0.5 percentile.

Five methods were compared in this evaluation. Sequence-based

methods included: PWMs from Ray et al. (Ray et al., 2013),

MatrixREDUCE (Foat et al., 2006) and Deepbind (Alipanahi et al.,

2015). Results were taken from (Alipanahi et al., 2015). Structure-

based methods included RCK and RNAcontext. For both, model

width was optimized by a simple 2-fold cross-validation on the

training set. Width ranges of RNAcontext and RCK were 4–12 and

4–6, respectively.

2.7 In vivo binding prediction evaluation
To evaluate the performance of algorithms on in vivo binding pre-

diction we used the dataset curated in the GraphProt study

(Maticzka et al., 2014). 24 CLIP experiments were collected, each

providing a set of in vivo binding sites. For them, control sequences

were extracted from unbound regions of the same bound transcripts.

Both binding sites and control sequences were flanked by 150nt on

both ends. The overlap with RNAcompete in vitro data included 23

pairs of CLIP and RNAcompete experiments, covering 10 proteins

(Supplementary Table S3). We trained a model on a complete

RNAcompete experiment and tested its prediction accuracy in rank-

ing binding sites higher than control sequences. We reported the

average AUC over the pairs of experiments for each protein.

RCK and RNAcontext model width was optimized in a conven-

tional 2-fold cross-validation. Width ranges were 4–6 and 4–12, re-

spectively. To account for different sequence lengths, scores for each

sequence were assigned by averaging over the k-mer scores in that

sequence. RNAplfold was run on the sequences and its flanks, while

only the sequence and its predicted probabilities were used for test-

ing. Deepbind was run with the ‘–average’ option to average k-mer

scores over a sequence. Its pre-computed models were publicly avail-

able (Alipanahi et al., 2015).

2.8 Structural source evaluation
To evaluate the effect of different RNA structure sources, we used

CLIP and icSHAPE data (Spitale et al., 2015). Probability vectors of

experimentally-measured RNA structure and CLIP-seq data were

downloaded from the GEO database (accession numbers GSE60034

and GSE64168, respectively). Binding site peaks were extracted as

in the original study (Spitale et al., 2015) using a 40nt window size.

We selected peaks that had measured structure both in vivo and

in vitro over all nucleotides, summing up to 4102 positive sequences.

As a control, we randomly selected 4102 40nt-long sequences that

had measured RNA structure. For computational structure predic-

tion, we flanked binding sites and control sequences by 150nt on

each end, which were only used for structure prediction by

RNAplfold (Lorenz et al., 2011) and later discarded for the testing

(as done in (Maticzka et al., 2014)).

2.9 Model visualization
To visualize the model in an interpretable way, we collapsed it into

a PWM and structure parameters in the following way. For each

pair of k-mer and structure context (w, a), we calculated its score by:

Mðw; a;HÞ ¼ rðbs þ /wÞ � rðbp þ Cw;aÞ (6)

We defined the (w, a) with the highest score as the consensus. To

derive a PWM, we used all k-mers at Hamming distance 1 from w,

and used their score in the structural context a as the weight in the

position of difference. For structure preferences, we used k-mer w

scores in different structural contexts as the weights. Sequence logos

were plotted using motifStack (Developer J and Developer L, 2015).

3 Results

3.1 RCK: a new algorithm to infer protein–RNA

binding preferences
We developed a new model for sequence and structure protein–

RNA binding preferences (Fig. 2A). The model is an extension of the

model used by the RNAcontext algorithm (Kazan et al., 2010),

which is based on a PWM and a vector of structure preferences. Our

new model is more complex, both in sequence and in structure.

Sequence-wise, each k-mer is assigned a unique sequence score.

Structure-wise, each k-mer, where the optimal value of k is typically

five for RNAcompete data (Supplementary Fig. S2), is assigned a

vector of structural preferences. See Section 2 for details and formal

definitions.

To demonstrate the improvement achieved by these model

changes, we ran RNAcontext on the original RNAcompete dataset

on which it was developed (Ray et al., 2009). This benchmark in-

cludes nine pairs of RNAcompete experiments. The sequences were

designed so that together they cover all 9-mers in unstructured re-

gions and all 7-mers in hairpin loops. We inferred a model from ex-

periment A and tested it on experiment B as in the original study

(Kazan et al., 2010). Performance was gauged by Pearson correl-

ation of predicted and measured intensities.

Results show that the new RCK model performs significantly

better than the old model. First, we demonstrate the benefit of using

i354 Y.Orenstein et al.
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k-mer sequence scores (Fig. 2B). Pearson correlation is higher by

more than 0.01 for 5 out of the 9 proteins, and on average by 0.043

(P-value¼ 3:91� 10�3, Wilcoxon rank-sum test). The improvement

is particularly high for protein YB1. According to our results

(Fig. 2B), YB1 prefers to bind GU-rich k-mers on top of the known

literature motifs CAUC and CACC (Wei et al., 2012; Wu et al.,

2015). Secondly, we observe the benefit of having specific structure

preferences for each k-mer. The average Pearson correlation

increased by 0.045 as compared to the k-mer model with global

structure preferences (P-value¼ 1:95� 10�3), and by more than

0.01 in 5 out of the 9 proteins. For Fusip1, which regulates splicing,

the improvement is remarkable (0.17 in Pearson correlation). In the

original RNAcontext study, alignment of predicted binding sites re-

vealed that Fusip1 prefers to bind an unpaired region next to a

paired region (Fig. 2C). Notably, such a hybrid preference cannot be

modeled by global structure preferences, which assign the same

structural preference for all k-mers. For complete results, see

Supplementary Table S1.

3.2 RCK is much faster and memory-efficient

than the state of the art
We compared the running times and memory usage of the different

algorithms to infer sequence and structure protein–RNA binding

preferences: RCK, RNAcontext and GraphProt. For this task, we

ran each algorithm on RNAcompete experiment RNCMPT00001:

setA. We used default parameters and excluded the running time of

the parameter optimization (see Section 2 for details). In addition,

we excluded the running time of the structure prediction for two

reasons. First, it is negligible compared to the runtime of the algo-

rithm. RCK and RNAcontext use RNAplfold (Lorenz et al., 2011),

which takes less than 20 min on this sequence set. GraphProt uses

RNAshapes (Steffen et al., 2006), which takes less than 10 min. In

addition, since each RNAcompete experiment is performed on the

same set of sequences, the structure prediction needs to be run only

once.

Results show that RCK is slightly faster than RNAcontext and

much faster than GraphProt in model training (Supplementary Fig.

S1). For a complete run on RNCMPT00001:setA, RCK and

RNAcontext terminated in less than 2 h (101 and 107 min, respect-

ively), while GraphProt required more than 7 days (10 660 min).

Despite the fact that RCK trains a model that is exponentially greater

in size than RNAcontext’s model, it is slightly faster thanks to our im-

proved implementation of the L-BFGS optimization. In our imple-

mentation, the change in the parameters is calculated by one pass

over the data, as opposed to the original implementation where a pass

was made for each parameter. This reduces each iteration’s runtime

to be linear in the size of the input, instead of the size of the input

times the size of the model, as done in the original implementation.

RCK and RNAcontext are much faster than GraphProt, which is

based on support vector regression to learn the binding models.

Fig. 2. A new k-mer based model for protein–RNA binding (RCK). (A) The new k-mer model with k-mer specific sequence and structure preferences. Each k-mer

has a sequence score and a vector of structural preferences. In the old model, k-mers were assigned scores according to a position weight matrix and global

structural preferences. (B) The benefit of newly using sequence k-mer scores. For nine pairs of experiments, a model was trained on set A of the pair and tested

on set B using RNAcontext and different sequence and structure models. Pearson correlation was used to evaluate prediction accuracy. Average Person correl-

ation improved from 0.514 to 0.557. YB1 prefers to bind to several distinct k-mers, which are not modeled well by a single PWM. (C) The benefit of using k-mer

specific structural preferences (on top of k-mer sequence scores). Average Person correlation improved from 0.557 to 0.602. The same datasets were used as in

(B). In Fusip’s model, the k-mer with the highest ratio of binding in unpaired compared to paired context is AGAGG, as was also observed by alignment of binding

sites (Kazan et al., 2010)

RCK: inference of protein-RNA binding models i355
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In terms of memory usage, RCK is more efficient than both

RNAcontext and GraphProt (Supplementary Fig. S1). The memory

demand of GraphProt on RNCMPT00001:setA is more than 12GB,

while RCK and RNAcontext require 700 MB and 2 GB, respect-

ively. RCK is more efficient than RNAcontext thanks to our im-

proved implementation that allocates less memory for data and

parameters, despite the increased model size.

3.3 RCK is more accurate in in vitro binding prediction

than the state of the art
To gauge the performance of RCK compared to extant methods, we

used the comprehensive dataset of RNAcompete, which includes

244 experiments (Ray et al., 2013). We clamped outlier intensities

of each experiment as described in the Deepbind study (Alipanahi

et al., 2015), and trained a model on set A sequences. Performance

was gauged by Pearson correlation of predicted and measured set B

probe intensities. For sequence-based methods, we used the results

published in the Deepbind study, comparing algorithms Ray et al.

(Ray et al., 2013), MatrixREDUCE (Foat et al., 2006) and

Deepbind (Alipanahi et al., 2015). We added to the comparison the

results of RNAcontext. We did not include GraphProt in the com-

parison as, in addition to its inability to infer structural preference

from RNAcompete data due to the unstructured nature of the data

(Maticzka et al., 2014), it is memory- and time-intensive; it requires

more than 7 days and 12GB of memory to run on Set A of one

RNAcompete experiment. For complete details, see Section 2.

RCK significantly outperformed all methods in in vitro binding

prediction (Fig. 3A). When comparing RCK to sequence-based

methods, it outperformed the state-of-the-art Deepbind, which

achieved an average AUC of 0.409 as compared to 0.460 for RCK

(P-value¼ 3:67� 10�11, Wilcoxon rank-sum test) (Fig. 3B). RCK

outperformed the structure-based method RNAcontext as well (Fig.

3C), which achieved an average AUC of 0.433 (P-value¼
2:36� 10�17). Notably, RNAcontext did not perform significantly

better than Deepbind (P-value¼0.093). For complete results, see

Supplementary Table S2.

3.4 RCK is as accurate at in vivo binding prediction as

the state of the art
To gauge the performance of RCK compared to extant methods on

in vivo binding prediction, we used the dataset curated as part of the

GraphProt study (Maticzka et al., 2014). The dataset includes 24

CLIP experiments, each containing thousands of experimentally

validated in vivo binding sites and control sequences extracted from

Fig. 3. Performance in predicting in vitro binding. For each RNAcompete experiment, a model was trained on Set A sequences and tested on Set B. Results are

over 244 experiments. Performance gauged by Pearson correlation of predicted and measured intensities. (A) Boxplots of correlations for different methods.

RNAcontext and RCK utilize RNA secondary structure. (B, C) Dot-plot comparison of RCK to Deepbind and RNAcontext, respectively. P-values calculated by

Wilcox rank-sum test
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unbound regions of the same transcripts. Each binding site and control

sequence is flanked by adjacent 150nt, both downstream and up-

stream, to allow for accurate structure prediction (using RNAplfold

(Lorenz et al., 2011)). The overlap with RNAcompete’s dataset covers

10 proteins from 21 RNAcompete and 12 CLIP experiments (Ray

et al., 2013). We could not use the curated in vivo dataset of the

RNAcompete study (Ray et al., 2013), as the sequences in it did not in-

clude flanks, and thus structure prediction would be inaccurate. For

the sequence-based method, we used the state-of-the-art Deepbind

(Alipanahi et al., 2015), and for structure-based, RNAcontext. We

trained RCK and RNAcontext models on a complete set of sequences

of each RNAcompete experiment. Deepbind models were publicly

available. We reported the performance in predicting in vivo binding

by average AUC over the pairs of RNAcompete and CLIP experiments

for each protein. See Section 2 for details.

Results show that the performance of all methods is comparable.

On 10 proteins, no method outperforms the other two on the major-

ity of proteins (Fig. 4A). RCK performs the best (albeit not signifi-

cantly), achieving a median AUC of 0.803, compared to 0.791 and

0.778 for Deepbind and RNAcontext, respectively (Fig. 4B). In a

pairwise comparison between RCK, Deepbind and RNAcontext, no

method is significantly better (P-values >0.279, Wilcoxon rank-sum

test). Two reasons may hamper the accuracy of in vitro models in

predicting in vivo binding. First, in vivo data is known to be noisy

and suffer from experimental biases (Fu and Ares Jr, 2014; Kishore

et al., 2011). Moreover, RNA structure prediction is less accurate

in vivo than in vitro (Rouskin et al., 2014). At this stage, more data-

sets with higher quality are needed in the overlap between CLIP and

RNAcompete to derive more definitive conclusions. For complete

results, see Supplementary Table S3.

3.5 RCK can easily be applied to experimentally

measured RNA structure probabilities
One of the benefits of RCK is its ability to incorporate experimen-

tally measured RNA structure probabilities. RCK receives as input

probability vectors of different structural contexts of the input se-

quences in single nucleotide resolution. These can be either

computationally predicted (e.g. by RNAplfold (Lorenz et al., 2011))

or experimentally measured (e.g. by icSHAPE (Spitale et al., 2015)).

To demonstrate the effect of using experimental probabilities, we

used available CLIP and icSHAPE experiments, performed on the

same cells that also had an RNAcompete experiment on the same

protein (see Section 2 for details). Unfortunately, only the HuR pro-

tein, which had five RNAcompete experiments, was found to over-

lap. We compared the effect of five different structural sources:

in vivo icSHAPE, in vitro icSHAPE, in silico (RNAplfold), no proba-

bilities (sequence scores only) and uniform probabilities. Since

icSHAPE reports only unpaired probabilities, we trained a model

based on two structural contexts: paired and unpaired. Performance

was measured by AUC in predicting HuR binding sites.

Results show that RCK can benefit from experimentally meas-

ured RNA structure in predicting in vivo binding (Fig. 5). icSHAPE

in vivo measurements are more accurate than in vitro measurement

in four out of five experiments, and more accurate than predicted

structure in four out of five experiments. When using uniform struc-

ture probabilities or sequence scores alone, performance decreased

substantially. This can likely be explained by HuR’s strong prefer-

ence to bind unpaired regions (Li et al., 2010), which was automat-

ically encoded into RCK’s models. We note that additional

experimental measurements of RNA structure and protein–RNA

binding on the same cells are needed to evaluate the benefit of ex-

perimentally measured RNA structure for the task of in vivo binding

prediction. For complete results, see Supplementary Table S4.

4 Discussion

In this study, we developed RCK, a new algorithm to infer complex

models of protein–RNA binding. RCK uses a k-mer based model for

sequence preferences and specific structural context preferences for

each k-mer based on probability profiles. We demonstrated the ac-

curacy of our algorithm on the most comprehensive set of in vitro

data, where its inferred models were significantly more accurate in

predicting in vitro binding than the state-of-the-art. Moreover, we

showed that RCK is capable of incorporating either predicted or

Fig. 4. Performance in predicting in vivo binding. For each pair of RNAcompete and CLIP experiments on the same protein, a model was trained on the former

and tested on the latter. 23 pairs overlap with the GraphProt study and RNAcompete dataset, covering 10 proteins in 21 RNAcompete and 12 CLIP experiments.

Performance per protein is gauged by average AUC. (A) Bar-plot of average AUCs of different methods per protein; RNAcontext and RCK utilize RNA secondary

structure. (B) Boxplots of methods’ performance

RCK: inference of protein-RNA binding models i357
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experimentally measured RNA structure probabilities to improve

in vivo binding prediction. Unfortunately, in vivo datasets that over-

lap RNAcompete are too few to reach definitive conclusions regard-

ing performance.

The success of our more complex model shows that protein–

RNA binding is better modeled using a more complex k-mer based

model. The position-independence assumption that is inherent in the

position weight matrix has been challenged for a long time (Eggeling

et al., 2014, 2015). To make no assumptions, we used a list of all

possible k-mers and a score for each one. For structure preferences,

individual k-mers may have different structure preferences; global

preferences common to all k-mers may be too limiting. By incorpo-

rating unique preferences for each k-mer, we allow k-mers to have

unique structural preferences.

The k-mer model is the most comprehensive binding model, but it

also has its disadvantages. The number of parameters increases signifi-

cantly compared to simple models, increasing the risk of over-fitting

the training data. For example, the original model included 4k se-

quence parameters (where k is the width of the model) and RA struc-

ture parameters (where RA is the number of structural contexts). The

k-mer model has 4k sequence parameters, and 4k � RA structure par-

ameters. When comparing different k values, 3 � k � 7 (see

Supplementary Fig. S2), we observed a decrease in performance for

k � 6, which we explain by over-fitting to the training set. For ex-

ample, when k¼7 and RA ¼ 5 the model contains 98 298 parameters

(see below), while the training set has only around 120 000 samples.

To avoid over-fitting, we used a 2-fold cross-validation on the training

set to find the optimal width in the range 4 � k � 6. Another disad-

vantage of the k-mer model lies in its visualization. As the model is

more complex, it is more difficult to visualize the complete landscape

of sequence and structure preferences in an interpretable manner.

On the implementation side, we were able to extend

RNAcontext and make it more efficient both for running time and

memory usage. In our improved implementation, each iteration of

the optimization procedure is linear in the size of the input and num-

ber of parameters, as compared to the size of the input times the

number of parameters in the original implementation (which would

have been very costly with our expanded model of 4k � ðRA þ 1Þ
parameters). Moreover, L-BFGS, the optimization procedure used in

RCK, runs in time OðN þDÞ, where D is the size of the input and N

the number of parameters (Liu and Nocedal, 1989). SVR, used by

GraphProt, requires OðD2NÞ time (Burges, 1998), which is infeas-

ible for large datasets, as in RNAcompete.

We see several potential extensions to this work given the new

model and inferred sequence and structure preferences. First, as we

expanded the model to the k-mer model, we limited it to relatively

small k’s (k � 6) due to the size of the datasets. It may be worth-

while to utilize machine learning algorithms with stricter regulariza-

tion terms that infer sparse models, such as Lasso (Tibshirani, 2011).

In this way, k may be increased without jeopardizing the accuracy of

the models. Second, the current model assumes a single structural

context for the whole k-mer. Structural preferences may be position-

specific in single-nucleotide resolution. Expanding the model to

position-specific structure preferences may be possible by either using

a simpler sequence model (e.g. PWM) or learning a sparse model (as

mentioned above), as imposing such an extension on the k-mer

model increases the number of parameters by a factor of k, the width

of the model. Third, the application of in vitro protein–RNA binding

models to predict in vivo data is still lacking. We believe that by using

experimentally measured RNA structures we can improve in vivo

binding prediction, as we demonstrated here on a small scale. In this

aspect, more CLIP and experimentally measured RNA structure

datasets are needed as well as improvements in their quality.

To summarize, we developed RCK, a new algorithm to infer pro-

tein–RNA binding preferences. RCK is highly accurate at predicting

in vitro binding. By applying it to the RNAcompete dataset, we

were able to newly uncover the structural preferences of more than

200 proteins, which we make available as a resource on the RCK

website. We hope that the new algorithm and its inferred models

will provide a rich platform and resource for future studies to better

understand the binding mechanism underlying and regulatory roles

of protein–RNA binding.
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Fig. 5. Structural sources effect on RCK in vivo binding prediction. HuR binding model was learned from different RNAcompete experiments. As an example, the

sequence and structural preferences learned from RNCMPT00032 are shown (left upper and middle, respectively), as well as the sequence logo and structural

context from (Kazan et al., 2010). RCK models were used to predict in vivo binding based on structural probabilities derived from different sources (right): in vivo

(icSHAPE (Spitale et al., 2015)), in vitro (icSHAPE), in silico (RNAplfold (Lorenz et al., 2011)), no probabilities (sequence scores only) and uniform probabilities.

Performance of HuR binding prediction was gauged by AUC
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