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Abstract

Graphical models are powerful in modeling
a variety of real-world applications. Com-
puting the partition function of a graphical
model is known as an NP-hard problem for
a general graph. A few sampling algorithm-
s like Markov chain Monte Carlo (MCMC),
Simulated Annealing Sampling (SAS), An-
nealed Importance Sampling (AIS) are de-
veloped to approximate the partition func-
tion. This paper presents a new Langevin
Importance Sampling (LIS) algorithm to ad-
dress this challenge. LIS performs a ran-
dom walk in the configuration-temperature
space guided by the Langevin equation and
estimates the partition function using all the
samples generated during the random walk at
all the temperatures, as opposed to the other
configuration-temperature sampling method-
s, which use only the samples at a specific
temperature. Experimental results on sev-
eral benchmark graphical models show that
LIS can obtain much more accurate partition
function than the others. LIS performs espe-
cially well on relatively large graphical mod-
els or those with a large number of local op-
tima.

1 INTRODUCTION

Undirected graphical models, also known as Markov
Random Fields (MRFs), or general Boltzmann ma-
chines, are powerful tools for modeling of the corre-
lation among random variables. The partition func-
tion of a graphical model plays an important role in a
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number of problems [13, 6, 16]. When the graphical
model has low treewidth, the partition function may
be calculated exactly using methods based on tree de-
composition [23]. The partition function for planar
graphs with binary variables and no external field can
also be computed in polynomial time [18]. However, in
many real-world applications, it is intractable to exact-
ly calculate the partition function because it requires
enumeration over exponential number of possible con-
figurations for general graphs.

MCMC sampling is a general strategy for the parti-
tion function estimation. When the distribution func-
tion does not contain many local optima, the partition
function can be estimated by samples independently
drawn from the distribution. In theory, by conducting
an infinite number of MCMC samplings, the estimat-
ed partition function will converge to the true value.
However, empirically it may take a very long time for
MCMC sampling to reach the detailed balance equilib-
rium. Further, no simple methods exist to tell whether
equilibrium has been reached or not and thus, the esti-
mated partition function usually has a large variance.

Simulated Annealing Sampling (SAS) [10] is anoth-
er method that can be used to compute the par-
tition function through random walk in the whole
temperature-configuration space. Instead of draw-
ing samples independently from the distribution un-
der consideration, SAS draws samples from a series
of temperature-dependent distributions. In particu-
lar, SAS starts from a very high temperature (e.g.,
infinity), and then gradually decreases the tempera-
ture following a particular annealing schedule. SAS is
originally designed to find the minimum-energy con-
figuration in statistical physics, inspired by the obser-
vation that if a liquid material cools very quickly, the
material will solidify into a sub-optimal configuration
and that if the liquid material cools slowly, the materi-
al will solidify optimally into a minimum-energy state.
However, as the temperature decreases, SAS suffers
from the problem of being trapped in local optima.
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To avoid being easily trapped to local optima, Neal [14]
proposed another sampling method called Annealed
Importance Sampling (AIS) for the partition function
estimation by combining the importance sampling and
the simulated annealing. AIS starts from an initial dis-
tribution with a tractable partition function and then
gradually moves to the target distribution using a s-
trategy similar to SAS. AIS is different in that it as-
signs an importance weight to each sample and cal-
culates the partition function by averaging over the
set of importance-weighted samples. One drawback of
AIS is that when one Markov chain terminates, AIS
restarts another new Markov chain starting from the
initial distribution. When a new Markov chain starts,
AIS needs a burn-in stage before reaching the desired
distribution. As such, AIS wastes a lot of computing
time by starting many Markov chains.

Another sampling method to address the local trap
problem in computing the partition function is the
Wang-Landau (WL) algorithm [24]. It is originally
designed for graphs with discrete labels and later gen-
eralized to graphs with continuous labels [11, 12, 3].
For each energy level Ei of the graph, the WL algo-
rithm calculates the number of configurations Ni with
that energy. After all the values of Ni are calculated,
we can estimate the partition function by summing up
all the terms of Niexp(−Ei). The main issue of the
WL algorithm is that it requires the knowledge of al-
l the possible discrete energy levels before sampling
is conducted, which is infeasible for some problems.
Therefore the WL algorithm can only be applied to
some special graph models such as the Ising model.
One possible way to obtain the discrete energy levels
is to divide the whole energy space into many smal-
l bins [11], but this requires estimation of the ener-
gy lower and upper bounds. Inaccurate estimation of
the bounds may lead to missing of some energy lev-
els and/or introduction of many empty energy levels.
Consequently, the sampling algorithm may be very in-
efficient and the resultant partition function may be
inaccurate.

In this paper, we present a Langevin Importance Sam-
pling algorithm to approximate the partition function
of a graphical model. Similar to SAS and AIS, LIS
also performs a random walk in the configuration-
temperature space. Different from AIS, LIS generates
all the samples in a single Markov chain while stil-
l sampling at the whole temperature space. Different
from SAS and AIS, which only decrease the tempera-
ture during sampling, LIS changes the temperature in
both directions guided by the Langevin equation (Uh-
lenbeck and Ornstein 1930). Therefore, LIS can jump
out of local optima much more easily. When reaching
a local optimum, LIS has a certain chance to increase

the temperature and then move out of it. We have
compared LIS with several state-of-the-art sampling
methods in terms of the accuracy and the variance of
the estimated partition function using several bench-
mark graphical models. LIS has the highest accuracy
when the running time is fixed. It also takes the least
amount of time to reach a given accuracy. In the fol-
lowing sections, we first briefly review related work
including MCMC sampling, SAS and AIS. Then we
describe our LIS algorithm for partition function esti-
mation. We also present our evaluation of LIS and the
other state-of-the-art methods in estimating the par-
tition functions. Finally we conclude and discuss the
future work.

2 Probabilistic Model and the
Partition Function

In this section, we briefly review the concept of graphi-
cal models and three popular methods for the partition
function estimation: MCMC sampling, Simulated An-
nealing Sampling (SAS), Annealed Importance Sam-
pling (AIS). Given a probabilistic graphical model, the
probability of one configuration x can be naturally ex-
pressed as a Gibbs distribution as follows,

pθ(x|β) =
1

Zθ(β)
exp{−Uθ(x)β} (1)

Here θ is the model parameter, Uθ(x) is the ener-
gy of the configuration x characterized by θ, β is
a free parameter known as the inverse of the tem-
perature and Zθ(β) =

∑
x∈χ{−Uθ(x)β} is the par-

tition function. Given S independent observations
x = {x1, x2, . . . , xS}, The parameter θ can be found by
the maximum log-likelihood estimation (MLE), which
can be expressed as follows,

L(x|θ) =

S∑
i=1

logp(xi|θ) (2)

We choose θ∗ = arg maxθ L(x|θ) as our estimator. In
this paper, we focus on computing the partition func-
tion Z given θ so we assume it is known and omit it
in all the formulas in the following sections.

To approximate the partition function, a simple way is
to sum up all the configurations of the graphical mod-
el, which may require exponential running time. A
more efficient way is to use MCMC sampling. Let N
denote the total number of configurations in a graphi-
cal model, which sometimes can be estimated exactly.
Then we have,

Z = N ∗ Ex∼p(x|β)[exp{−U(x)β}] (3)

Empirically we can generate S samples from distribu-
tion p(x|β) using MCMC sampling and compute the
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expectation term in the right hand side of Eq. (3) as
follows.

Ex∼p(x|β)[exp{−U(x)β}] ≈ 1

S

S∑
i=1

exp{−U(xi)β} (4)

When S → ∞ the expectation term approaches to
the exact value, so is the partition function. The is-
sue is that it may take MCMC sampling a very long
time to reach the equilibrium state due to the rugged
landscape of the distribution defined by the graphical
model.

Instead of sampling the configuration space at a fixed
temperature, several tempering methods such as Sim-
ulated Annealing Sampling (SAS) [10] perform sam-
pling in the configuration-temperature space. SAS s-
tarts initially from a very high temperature, and then
decreases the temperature gradually following a par-
ticular cooling schedule. The partition function is cal-
culated using the samples generated from the original
distribution (i.e., the distribution when the tempera-
ture is 1). By contrast, our LIS algorithm uses samples
generated at all temperatures to compute the partition
function.

Annealed Importance Sampling is another method to
calculate the partition function. Instead of gener-
ating samples in only one Markov chain, AIS gen-
erates one Markov chain for each sample. During
each Markov process, AIS anneals through a series
of slowly-changing distributions that link the target
distribution to one with a tractable partition func-
tion. Formally, AIS generates S independent sam-
ples x1, x2, . . . , xS and their corresponding weights
w1, w2, . . . , wS . It also defines a sequence of probabil-
ity distributions p0, p1, . . . , pT where p0 is the target
distribution and pT is a distribution with a tractable
partition function. Also assume function fj(x) is pro-
portional to pj(x). The function fk (0 ≤ k ≤ T ) is
calculated as follows,

fk = fβk

0 f1−βk

T (5)

Where 1 = β0 > β1 > . . . > βT = 0. Once the
sequence of intermediate distributions is defined, AIS
generates the sample xi as follows,

1. Generate T + 1 samples vT , vT−1, , v0 sequentially
as follows,

• Sample vT using pT
• . . .

• Sample v0 from v1 using p0
• Set xi = v0

2. Set the corresponding wi as follows,

wi =
f0(v0)

f1(v0)

f1(v1)

f2(v1)
. . .

fT−1(vT−1)

fT (vT )
(6)

AIS approximates the partition function by summing
over a set of importance-weighted samples. Although
AIS is quite successful, it generally demands for ten-
s of thousands of annealing distributions in order to
yield accurate results even for a small graphical mod-
el. Therefore, AIS is not very suitable for estimating
the partition function of a very large graphical model.

3 Langevin Importance Sampling
Approach

Algorithm overview. In this section, we describe
our Langevin Importance Sampling (LIS) method to
compute the partition function. Similar to SAS and
AIS, LIS also performs sampling in the configuration-
temperature space. LIS first performs MCMC sam-
pling to generate some configurations by distribution
p(x|β) at a given temperature 1/β. Then it calculates
the expected energy at current β using all the samples
and randomly moves to the next β based the Langevin
equation [21] (which contains one item for the expected
energy). After sufficient number of steps, the config-
urations and temperatures sampled by this procedure
will approach the joint distribution p(x, β). The key
step in LIS is how to move to a new temperature based
upon the sampled configurations we currently have. S-
ince both SAS and AIS only cool the temperature as
the simulation proceeds, whenever they are trapped at
a local optimum, their chance of jumping out of the
trap becomes smaller as the temperature goes down.
In contrast, LIS will not only decrease the tempera-
ture, but also increase it during the simulation process
by some chance. In particular, LIS uses the Langevin
equation to guide the temperature change in a contin-
uous space as follows,

d(1/β)

dt
=
d(−lnp(x, β))

dβ
+

√
2

β
ξ (7)

Here, ξ is a Gaussian white noise satisfying that
〈ξ(t), ξ(t′)〉 = δ(t − t′) and t is the time scale for
integrating the Langevin equation. The Langevin
equation can be derived from the Newtons law by
assuming a Brown motional system with total free
energy −lnp(x, β). Using the production rule we
have p(x, β) = p(x|β)w(β) where w(β) is the prior
distribution of β. Substituting it to Eq. (7) and
computing the derivative with respect to β, we have,

d(1/β)

dt
= U(x)− Ũ(β)− d(lnw(β))

dβ
+

√
2

β
ξ (8)

Where Ũ(β) is the average energy at the current tem-
perature. Ignoring the prior of β and the white noise
term, from Eq. (8), we can see that the change rate of
temperature depends on the difference between the in-
stantaneous energy and the average energy at the cur-
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Figure 1: An illustration of the Langevin Importance
Sampling (LIS) algorithm. At temperature 1/βj , the algo-
rithm performs MCMC sampling to generate some configu-
rations. Then we use the configurations sampled at βj plus
those sampled at βi and βk to estimate the expected en-
ergy at βj and move to a new temperature 1/βs according
to Eq. (8).

rent temperature. In particular, we tend to raise the
temperature when the instantaneous energy is above
the average energy at the current temperature. Other-
wise, we lower the temperature. Intuitively, when you
heat up the water, it gains some extra energy and the
temperature increases and vice versa. The Langevin
equation tells us how much the temperature should
change with respect to the change in energy. From the
statistical point of view, the Langevin equation com-
putes the amount and direction that the temperature
should change based upon the energy of the current
configuration.

When the sytem reaches a local minimum in the con-
figuration space, we have U(x) < U (β). In this case
the white noise in Eq. (8) may increase the temper-
ature and thus, help move out of the local trap. The
difference between U(x) and U (β) is correlated with
temperature. That is, the higher the temperature, the
bigger the difference is likely to be. However, since
the noise term is also scaled by the temperature (i.e.,√

2/β), the system has a chance of jumping out of a
local trap regardless of the temperature. When the
temperature is high, the variance of the noise is al-
so large, which makes the system more likely to jump
to other temperatures. It makes sense since when the
temperature is high we need fewer samples to obtain
an accurate estimation of the average energy. We have
tried several scales for the white noise and found out
that the scale

√
2/β did perform the best.

Algorithm details. We divide the entire range of β
into many small bins and treat the β in a bin as a
constant. Let βi denote the β for the ith bin. In or-
der to make the sampling procedure more efficient in
the configuration-temperature space it is necessary to
evaluate the average energy Ũ(x) in Eq. (8) at each

temperature accurately. The straight-forward way to
do so is to use the samples generated at each tem-
perature bin and calculate the average. However, the
number of samples in some bins may be too small to
derive an accurate average energy. This is a very seri-
ous issue especially at the beginning of the simulation.

To solve this problem, we estimate the average energy
at one temperature bin by also using the samples at the
others. Given the samples at βi, applying importance
sampling, we may calculate the average energy at βj
as follows,

Ũ(βj) = Ex∼p(x|βi)[exp{U(x)∆β}Z(βi)

Z(βj)
U(x)] (9)

Where ∆β = βj−βi. According to Eq. (9), in order to
compute the importance weight we need to calculate
the ratio of two partition functions Z(βi)/Z(βj), which
can be rewritten as follows [9],

Z(βi)

Z(βj)
= Ex∼p(x|βj)[exp{−U(x)(∆β)}] (10)

That is, the ratio of the partition functions at two dif-
ferent temperatures can be written as an expectation
of some quantities with respect to the distribution we
want to estimate. Remember we want to use the sam-
ples at βi to estimate the average energy at βj . Eq.
(10) needs to compute an expectation with respect to
the distribution defined by βj . Empirically there is no
guarantee that there are always some samples at the
jth bin. However, the inverse of this ratio is an expec-
tation with respect to the distribution defined by βi.
Therefore, instead of calculating this ratio we calculate
its inverse since there are always samples at βi.

When our LIS algorithm converges, we have sam-
ples for most of the temperature bins. We can use
a second-order expansion approach to compute the
partition function by making use of all the sam-
ples at all the temperatures. First we compute the
lnZ(β) difference between two adjacent temperatures,
say lnZ(βi+1) and lnZ(βi). The desired log-partition
function lnZ(β = 1) can be calculated by adding these
differences from lnZ(β = 0), which is equal to the nat-
ural log of the number of configurations. The differ-
ence of the log-partition functions between two adja-
cent temperature bins is computed as follows,

lnZ(βi+1)− lnZ(βi) =

∫ βi+1

βi

Ũ(β)dβ (11)

In Eq. (11), the average energy is a function of β. By

the Taylor expansion for Ũ(β) at point βi and only
keeping the zero and first order terms, we have,∫ βi+1

βi

Ũ(β)d(β) ≈ Ũ(βi)∆β −
1

2
V ar(βi)∆β

2 (12)
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Here, ∆β = βi+1−βi and V ar(βi) represents the vari-
ance at βi. Both U (βi) and V ar(βi) can be evaluated
using approach proposed by Eq. (9).

By Eq. (12), the difference between the partition func-
tions at two adjacent temperatures is a function of
the energy mean and variance. We do not include
the higher-order terms because empirically the zero-
order and first-order terms are sufficient for accurate
estimation of the partition function. To estimate the
partition function at β = 1 using Eq. (12), we need
to estimate the mean and variance at each bin from
β = 0 to β = 1. According to Eq. (11), we use sam-
ples generated at all the temperatures to estimate the
partition function. LIS never throws away any gener-
ated samples and all the samples are used to calculate
the average energy.

Prior distribution for β. The prior distribution of
β determines the visiting frequency at each tempera-
ture bin, so it may impact sampling efficiency. Here
we propose an self-adaptive approach to choose the
prior distribution w(β). We can calculate Eq. (11) in
another way as follows,

lnZ(1)−lnZ(0) = −
∫ 1

0

Ũ(β)dβ ≈ 1

S

S∑
i=1

U(x)

w(βi)
(13)

That is, we can independently draw S samples from
the joint configuration-temperature distribution and
estimate the log-partition function. Note that Eq.
(13) is a general form for all the methods sampling the
configuration-temperature space. Both Eq. (13) and
Eq. (11) can be used to compute the partition func-
tion. If the temperature bin size is sufficiently small,
the sum of all differences defined in Eq. (11) is equiv-
alent to Eq. (13). Nevertheless, Eq. (13) explicitly
shows the relationship between the prior distribution
of β and the partition function. One way to evaluate
a sampling method is to see whether its resulting es-
timation has a small variance or not. Therefore, we
choose the prior distribution to minimize the variance
of the estimation. Let λ and λ̂ denote the true and es-
timated log-partition function values, respectively. By
Eq. (13), the variance of λ̂ can be written as follows,

var(λ̂) = var(
1

S

S∑
i

−U(xi)

w(βi)
)

=
1

S
{E[−U(x)w(β)]− λ2}

=
1

S
{
∫ 1

0

Eβ [U(x)2w(β)dβ − λ2} (14)

Here Eβ is the expectation of the energy at a particular
temperature 1/β. Minimizing the variance is equiva-
lent to minimizing the first term of the last formula in
Eq. (14). Following the approach in [8] and using the

Cauchy-Schwarz inequality, we have,∫ 1

0

Eβ [U(x)2w(β)dβ ≥ (

∫ 1

0

√
Eβ [U(x)]dβ)2 (15)

The right hand side above does not depend on w(β)
and the equality holds when

w(β) =

√
Eβ [U(x)]∫ 1

0

√
Eβ [U(x)]dβ

(16)

In addition, the relationship between the posterior dis-
tribution and prior distribution of β is as follows [27],

p(β) =
Z(β)

Z̃(β)
w(β) (17)

Here, p(β) is the posterior distribution, Z(β) is the

true partition function and Z̃(β) is the estimated parti-
tion function. By Eq. (17), if the ratio of the partition
functions is around a constant, the prior distribution
is proportional to the posterior distribution. Empiri-
cally the average energy at low temperature is harder
to estimate than at high temperature especially at the
beginning of the simulation. Another observation is
that the energy variance is usually big at low temper-
ature. If we set the prior distribution for β by Eq.
(16), the prior distribution will be high at low temper-
ature. By Eq. (17), the posterior probability of visit-
ing low-temperature regions is also high. The intuition
underlying the choice of the prior distribution for the
temperature is as follows. When the temperature is
high, the landscape of the corresponding distribution
is flatter, which means that the energy variance is al-
so smaller. Therefore we can compute the statistical
quantities more accurately at high temperature with-
out using many samples. Eq. (16) indicates that the
probability of visiting a particular temperature should
be propotional to the square root of the variance of the
partition function at that temperature in order to ob-
tain a stable estimation of the log-partition function.

Notice that the Langevin equation includes the deriva-
tive of lnw(β). Empirically we use the following for-
mula to approximate the derivative of lnw(βi),

dlnw(βi)

dβi
≈ lnw(βi+2/βi+1)

2∆βi
+
lnw(βi/βi−1)

2∆βi
(18)

Remark. To reduce the impact of some bad samples
especially at the beginning of the simulation, empiri-
cally we pre-generate a few samples at 1/10 of all the β
bins (uniformly distributed in [0, 1]) before LIS starts.
At the beginning of the simulation, we also move along
the β slowly and set the integration time scale to be
small. Therefore, the impact of the bad samples will
not be big since the new β will not be very different
from the old one. In addition, we do not update β af-
ter generating each sample, instead we sample at the
same β bin until enough samples are accepted. This
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will further reduce the impact of the bad samples.

4 Experimental Results

We compare our LIS algorithm with several state-of-
the-art methods in terms of the accuracy of the esti-
mated partition function using several different types
of graphical models. It is challenging to evaluate the
absolute accuracy because it is usually hard to obtain
the exact partition function for many graphical mod-
els. Here we use the Ising model to test our methods
since we can calculate its exact partition function using
the program isinf [18], which uses the minimum cost
perfect matching algorithm. In addition, we evaluate
our algorithm using grid graphs with general potential-
s with many more local optimal configurations. The
exact partition function is calculated by a parallelized
dynamic programming method.

We compare our LIS with MCMC sampling, SAS, AIS
and FocusedFlatSAT [7]. FocusedFlatSAT is an im-
proved version of the Wang-Landau algorithm [24],
which uses a flat histogram sampling strategy from
statistical physics. FocusedFlatSAT was reported to
perform very well on the Ising model. However, Fo-
cusedFlatSAT needs to know the exact energy levels
of a graphical model. To show the importance of the
Langevin equation, we have also implemented a vari-
ant of our LIS algorithm, denoted as Annealing Sched-
ule Sampling (ASS). ASS is different from LIS only in
that the former uses a simple annealing strategy in-
stead of the Langevin equation to guide the temper-
ature change. In particular, ASS gradually cools the
temperature by a fixed value. The performance differ-
ence between LIS and ASS clearly shows the advantage
of the Langevin equation-based temperature change.
Both ASS and LIS perform 2000 MCMC samplings at
each temperature bin. To reduce auto-correlation, we
pick up one sample from the MCMC process every 20
samplings. The integration time scale is set to 0.0001
for all the experiments. We run all the experiments
on a CentOS Linux workstation with 8-core 2.4 GHz
AMD Opteron and 32 GB RAM. We use the Ising
models with 8 different grid graph sizes to test the
methods: 30 × 30, 40× 40, 50× 50, 60× 60, 70× 70,
80× 80, 90× 90 and 100× 100. The accuracy is mea-
sured by the absolute difference between lnZ and lnZ∗

where Z and Z∗ are the estimated and exact partition
function values, respectively.

Experiment I. We run all the tested methods for
a sufficient long time until they converge. In total
3× 107 (both accepted and rejected) samples are gen-
erated by AIS, ASS and LIS. For FocusedFlatSAT we
used its default settings and generated 6 × 108 sam-
ples. As shown in Fig. 2, when the Ising model is s-

Figure 2: The absolute error of the log-partition function
value with respect to the size of a Ising model. The X-axis
is the size and Y-axis is the absolute errors of the log-
partition function. Z and Z∗ are the estimated and true
partition function values, respectively.

mall (= 40× 40), all the methods converge to the true
partition function. When the Ising model is large, LIS
has much smaller estimation errors than others. ASS,
the variant of LIS, has smaller errors than SAS. This
indicates that our strategy of using samples generated
at all the temperatures to estimate the partition func-
tion indeed works. The only difference between LIS
and ASS lies in their strategy of temperature change.
Their performance difference clearly shows that the
Langevin equation helps LIS jump out of local opti-
ma and thus, improve the sampling efficiency. Our
LIS algorithm also outperforms FocucedFlatSAT even
if the latter uses many more samples (and thus, takes
a much longer time to converge). FocucedFlatSAT is
better than AIS and SAS because it uses the Wang-
Landau algorithm to perform sampling at all the en-
ergy levels, so in principle it will not be trapped to
local optima. However, the Wang-Landau algorithm
runs too slowly to be useful for a very large graphical
model. To speed up, FocusedFlatSAT uses two tricks
Energy Saturation and Focus Move to avoid sampling
at those energy levels contributing little to the par-
tition function. This strategy works fine for a small
problem, but it may result in accuracy loss for a large
problem due to ignorance of too many energy levels.
That is, the accumulative contribution of the ignored
energy levels to the partition function is not small any
more. We do not show the result of the MCMC sam-
pling method in Fig. 2 because it has a much larger
error.

Experiment II. In this experiment we examine the
relationship between the estimation errors and vari-
ance of the log-partition function and the number of
generated samples (including both accepted and re-
jected samples). All the tested methods are imple-
mented in the same framework so it takes the same
amount of time to generate a single sample. We use
the Ising model with two different sizes to test the
methods: 30 × 30 and 60 × 60. We run each tested
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(A) (B)

Figure 3: The absolute error of the log-partition function
for a 30 × 30 and 60 × 60 Ising model. The X-axis is the
number of the samples (10× = 10 × 106) and Y-axis is
the absolute error of the log-partition function. Z and
Z∗ are the estimated and true partition function values,
respectively.

method 50 times on all the graphs and compute the
average absolute errors and variances. Fig. 3 (A) and
(B) shows the estimation errors of several sampling
methods on the 30 × 30 and 60 × 60 Ising model. As
shown in Fig. 3 (A), our LIS algorithm uses the fewest
samples to reach the absolute error below 0.8. As the
number of samples increases, all the methods converge
to the true value on this small graph. However it is
still noticeable that LIS has a smaller variance when
the number of samples is large, as shown in Table 1.
Fig. 3 (B) shows the performance of the tested meth-
ods on a relatively large graph, displaying significant
difference between LIS and the others. LIS uses the
fewest samples to reach an error below 10 while the
others have to almost double the number of samples
to reach the same accuracy. When 3 × 107 samples
are used, only LIS can reach an estimation error be-
low 2. In addition, only LIS converges to the true
value. Table 2 shows that LIS also has much smaller
variance. In summary, our LIS algorithm is not im-

Table 1: The variance of the log-partition function for
a 30× 30 Ising model

Methods LIS ASS SAS AIS
5 × 106 0.32264 0.40425 0.64255 0.42425
10 × 106 0.21234 0.33234 0.51234 0.31234
15 × 106 0.15156 0.26156 0.41564 0.25156
20 × 106 0.11642 0.20643 0.31642 0.21642
25 × 106 0.05433 0.17433 0.23334 0.18433
30 × 106 0.01778 0.13778 0.18778 0.14778

Table 2: The variance of the log-partition function for
a 60× 60 Ising model

Methods LIS ASS SAS AIS
5 × 106 3.21515 3.71035 4.56212 3.62098
10 × 106 2.06624 2.54679 3.02463 2.50801
15 × 106 1.42251 2.26156 2.42111 2.25583
20 × 106 0.52533 1.84344 2.30931 1.60283
25 × 106 0.35655 0.90360 1.10154 0.83136
30 × 106 0.11454 0.48340 1.06171 0.47683

pacted much by the Ising model size compared to the

Figure 4: The absolute error of the log partition function
for a 12×12 grid graph with edge strength being randomly
generated from the attractive and mixed interval. The X-
axis is the number of samples (10× = 10×106) and Y-axis
is the absolute error of the log-partition function. Z and
Z∗ are the estimated and true partition function values,
respectively.

other methods. When the Ising model is large, ASS,
SAS and AIS have to use many more temperature bin-
s in order to yield good accuracy. They also have to
trade-off between the number of temperature bins and
the number of samplings at each bin when the total
number of samplings is fixed. By contrast, LIS uses
1000 temperature bins in all the experiments. It also
fixes the integration time to 0.0001 and the number
of sampling iterations used to reduce auto-correlation.
Therefore, there are no parameters to be tuned for LIS
regardless of the Ising model size.

Experiment III. We design some graphs with many
more local optimal configurations to evaluate the per-
formance of the tested methods on more challeng-
ing problems. We construct the graph following the
method in [22]. In particular, we generated 200 sam-
ples of 12 × 12 grid graphs with binary variables
xi ∈ 0, 1. The probability of a configuration X =
{x1, x2, . . . , x144} is calculated as follows,

p(X|θ) =
1

Zθ
exp{

∑
i

θixi +
∑
i<j

θijxixj} (19)

Where θi are uniformly chosen from the interval
[−0.05, 0.05] and θij are either chosen uniformly from
the attractive interval [0, µ] or the mixed interval
[−µ, µ]. Meanwhile, µ indicates the edge strength,
ranging from 5 to 30. The larger the edge strength,
the more closely coupled the variables and thus, the
more challenging to approximate the partition func-
tion. Since the tested methods show insignificant dif-
ference when µ is smaller than 5, here we only present
the results for µ > 5.

We also run all the tested methods until they con-
verge. The exact partition function is calculated using
a parallel dynamic programming method. Fig. 4 (A)
and (B) show the average errors of the tested methods
in estimating the log-partition function on the graphs



Estimating the Partition Function of Graphical Models Using Langevin Importance Sampling

with edge strength in the attractive interval and mixed
interval, respectively. As the edge strength µ goes larg-
er, the number of local optimal configurations in the
graph increases significantly. As such, it becomes more
challenging for the sampling methods to approximate
the partition function. As shown in Fig. 4 (A) and (B),
LIS has significantly smaller estimation errors than the
others. The advantage of LIS over the others even in-
creases along with the edge strength. This confirms
that LIS can jump out of local optima much more eas-
ily than the others.

5 Related Work

LIS is similar to SAS and AIS in the sense that al-
l of them perform samplings in the configuration-
temperature space. However, LIS is better than SAS
and AIS in several aspects. First, LIS uses importance
sampling to more accurately calculate the average en-
ergy at each temperature bin, which is needed by the
Langevin equation to guide sampling more efficiently.
Second, LIS changes the temperature in both direc-
tions so that it can move out of local optima more
easily. This is confirmed by the observations that LIS
performs especially well on the graphs with lots of lo-
cal optima. Thirdly, SAS and AIS do not make full
use of the samples generated at all the temperatures,
so they converge more slowly than LIS. Finally, LIS
determines the visiting frequency of each temperature
bin through minimizing the variance of the estimated
partition function. In contrast, both SAS and AIS use
relatively simple temperature cooling strategy.

The theory and application of using the Langevin e-
quation to guide the temperature space random walk
has been studied in statistical physics and computa-
tional biology, e.g., [4, 26, 19, 5, 20]. Recently the
machine learning community started to explore the
Langevin equation for sampling. For example, [1] us-
es the Langevin equation to calculate the Bayesian
posterior probability for the non-Gaussian distribu-
tion. [25] applies the Langevin equation to optimiza-
tion and stochastic gradient decent. The advantage
of the Langevin equation is that it allows the temper-
ature change in a probabilistic manner. In order to
do this, we need to estimate the statistical quantities
in the equation accurately. Our contribution includes
developing an efficient algorithm to estimate all the s-
tatistical quantities accurately and also applying the
Langevin equation to the partition function estima-
tion. Our work is also influenced by two recent papers
[2] and [17], both of which use importance sampling
to estimate the ratio of the partition function values
corresponding to different parameters.

6 Discussion

In this paper, we have presented a Langevin equation-
based importance sampling algorithm to estimating
the partition function of a graphical model. Our LIS
algorithm is distinct from the others in two aspects.
First, we use the Langevin equation to guide the ran-
dom walk in the temperature space. This allows the
temperature change in both directions, which can help
LIS jump out of local optima much more easily than
the other annealing methods which only decrease the
temperature during the simulation. Second, we use the
importance sampling technique to estimate the aver-
age energy and other statistical quantities so that the
samples generated at all the temperature bins can be
used to estimate the average energy at a single tem-
perature bin. By doing so, we can improve the ac-
curacy of the estimated quantities and also speed up
the simulation. Although this paper focuses on esti-
mating the partition function, LIS can be extended
to attack combinatorial optimization problems with-
out significant revision. Further, LIS can be extended
to calculate the Maximum A Posterior (MAP) of a
graphical model. We may continue to study the LIS
algorithm in several aspects. First, this paper does not
address much about the convergence of our LIS algo-
rithm. Nevertheless, as long as the prior distribution
of the temperature guarantees that every temperature
bin can be visited with a non-zero probability, the esti-
mated average energy shall converge to the true value
when the number of samples approaches to infinity.
Based on Eq. (11), the log-partition function shall al-
so converge to the exact value. The MCMC sampling
used to do random walk at a given temperature can
also be replaced by Hamilton sampling [15] to further
improve the sampling efficiency. Second, we can com-
bine LIS with the particle filter algorithm [2] to reduce
the number of samples needed in learning.
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