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ABSTRACT It is widely believed that the folding of the chromosome in the nucleus has a major effect on genetic expression.
For example, coregulated genes in several species have been shown to colocalize in space despite being far away on the DNA
sequence. In this manuscript, we present a new, to our knowledge, method to model the three-dimensional structure of the
chromosome in live cells based on DNA-DNA interactions measured in high-throughput chromosome conformation capture
experiments and genome architecture mapping. Our approach incorporates a polymer model and directly uses the contact prob-
abilities measured in high-throughput chromosome conformation capture experiments and genome architecture mapping exper-
iments rather than estimates of average distances between genomic loci. Specifically, wemodel the chromosome as a Gaussian
polymer with harmonic interactions and extract the coupling coefficients best reproducing the experimental contact probabilities.
In contrast to existing methods, we give an exact expression of the contact probabilities at thermodynamic equilibrium. The
Gaussian effective model reconstructed with our method reproduces experimental contacts with high accuracy. We also
show how Brownian dynamics simulations of our reconstructed Gaussian effective model can be used to study chromatin orga-
nization and possibly give some clue about its dynamics.
INTRODUCTION
Although the chromosome has been classically seen as the
carrier of the genetic information, there has been increasing
evidence that its folding is a determinant of genetic regula-
tion (1,2). In particular, coexpressed genes were found to be
more often in contact than unrelated genes (3–5), and the
epigenetic state of the chromatin was shown to be related
to its folding (6). The advent of chromosome conformation
capture (3C) experiments has provided unprecedented in-
sights on chromosome architecture in live cells (7), and
the combination of 3C techniques with high-throughput
sequencing methods (high-throughput chromosome confor-
mation capture experiments; Hi-C) has enabled the mea-
surement of contacts between thousands of loci on the
chromosome. Extensive Hi-C data have now been generated
for several eukaryotic cells including human (8,9), yeast
(10), and fly (11) but also bacteria (12–14). In eukaryotes,
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the patterns observed in contact matrices generated from
Hi-C experiments have revealed a high-level organization
in sub-megabasepair topologically associated domains
(15,16). This organization displays significant changes
throughout the cell cycle (17) but also during cell differen-
tiation (18) and in the context of cell pluripotency (19) or
cell senescence (20). More recently, the genome architec-
ture mapping (GAM) technique was developed, represent-
ing an alternative way to measure interactions between
chromosomal loci (21). Its application to mouse embryonic
stem cells confirmed that actively transcribed genes some-
times separated by large genomic distances were more often
in contact. Based on these experimental findings, several
studies have suggested that chromosome architecture and
genetic expression are intimately connected (22–28).

Several methods have been proposed to reconstruct the
chromosome folding from Hi-C data (see Supporting Mate-
rials and Methods, Section 2 for a short review). A first class
of models aimed at reconstructing chromosome configura-
tions such that the distances dij between chromosomal loci
take prescribed values, inferred from the Hi-C contact prob-
abilities cij (10,12,29–31). Those studies generally assumed
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Chromosome Architecture Reconstruction
that these average distances would scale like dij � 1/cij. Yet
a scaling analysis tells us that dij � c�g

ij , with g ¼ 0.3 for a
self-avoiding chain (see Supporting Materials and Methods,
Section 3). Another class of models aimed at finding an
ensemble of chromosome configurations that reproduces
the experimental contact probabilities, cexpij (32,33). Yet,
most of these methods did not incorporate a realistic poly-
mer model of the chromosome. Thus, the configurations ob-
tained may violate topological constraints imposed by the
chain structure of the chromosome.

Here, we model the chromosome as a Gaussian polymer
and introduce harmonic interactions to constrain its folding
(see Fig. 1). The rigidity of these interactions will be deter-
mined by the cross-linking frequency between pairs of
genomic loci obtained from the Hi-C protocol. This defines
our Gaussian effective model (GEM). The inverse problem
to solve consists in finding the effective couplings such that
the contact probabilities of the model, cij, reproduce the con-
tact probabilities obtained from a Hi-C experiment, cexpij ,
similarly to previous studies (34–36). Yet, in those methods,
the contact probabilities of the model could only be
computed through Monte Carlo or Brownian dynamics
(BD) simulations. In contrast, we provide an exact relation
between the contact probabilities and the harmonic cou-
plings of our model. Based on this relation, we propose a
minimization scheme to find a physical GEM with contact
probabilities as close as possible to the experimental ones.
We then apply our method to Hi-C and GAM data,
thus demonstrating that experimental contact probability
matrices can be quantitatively reproduced by our effective
polymer model.

We suggest that our reconstructed GEM can be used to
study chromatin organization. Typically, coarse-grained
models of the chromosome are simulated by BD (37,38).
Because of the complexity of the DNA-DNA and DNA-
protein interactions, practical implementations generally
require some dimensional reduction or arbitrary choices for
unknown parameters such as binding energies or protein
binding sites. In contrast, BD simulations of the recon-
structedGEMoffer a simple alternative that reproduces faith-
fully the contacts observed in Hi-C or GAM experiments.
METHODS

GEM

We model the chromosome as a beads-on-string polymer comprising Nþ 1

monomers with coordinates {ri}i ¼ 0...N, each monomer corresponding to

a genomic bin with size b, which, depending on the resolution, may repre-

sent from 5 kbp to 1 Mbp. Despite some controversy (39), euchromatin is

generally regarded as a fiber of diameter 30 nm and persistence length

lp ¼ 60 nm z 6 kbp (40). Thus, we choose to neglect the bending rigidity

of the chromosome and consider the Gaussian chain potential for the chro-

mosome backbone:

bU0½frig� ¼ 3

2b2

XN
i¼ 1

ðri � ri�1Þ2; (1)

where b ¼ (kBT)
�1 is the inverse temperature.
FIGURE 1 (A) Configurations adopted by a

chromosome in a cell population are retrieved us-

ing 3C techniques. (B) We use the count matrix

generated by the Hi-C protocol, containing infor-

mation on the ensemble of chromosome configura-

tions, to reconstruct a GEM. Harmonic interactions

with elastic coefficients kij are added on top of a

Gaussian polymer model and adjusted to reproduce

the experimental contacts. To see this figure in

color, go online.
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The Hi-C protocol uses a cross-linking agent to induce proximity liga-

tions between DNA fragments that are close to each other in the nucleus

(Fig. 1 A). The matrix of contacts generated subsequently encodes informa-

tion on the ensemble of configurations adopted by the chromosome

(Fig. 1 B). We represent the underlying interactions that constrain its

folding as harmonic springs with rigidity 3kij/b
2, leading to the interaction

potential

bUI½frig� ¼ 3

2b2

X
0%i < j%N

kij
�
ri � rj

�2
: (2)

The probability of a particular configuration at equilibrium is given by a

Boltzmann weight. Namely, if we denote the total energy as U ¼ U0 þ

UI, we have

PrðfrigÞ ¼ 1

Z
e�bU½frig�: (3)

Actually, the total energy is quadratic in the ri variables and may be written
bU rif g½ � ¼ 3

2b2

X
i;j

s�1
ij ri$rj : (4)

As a result, the probability distribution in Eq. 3 is Gaussian, hence the

name GEM. The GEM is completely determined by its covariance matrix
S ¼ ½sij�i;j¼1.N or equivalently its two-point correlation functions. In

particular, we have hri,rji ¼ sijb
2 and hr2i i ¼ sii, where the brackets

denote an average taken over the Gaussian distribution in Eq. 3. Its inverse

is expressed as

S�1 ¼ T þW; (5)

where T is a tridiagonal matrix enforcing the chain structure from Eq. 1

and W is a matrix of reduced couplings enforcing the interactions from
Eq. 2. The matrix W has the structure of a Kirchhoff (or valency-adja-

cency) matrix as defined in graph theory (41). These matrices read as

follows:

T ¼

2 �1 . 0 0

�1 2 . 0 0

« « 1 « «
0 0 . 2 �1

0 0 . �1 1

0BBBB@
1CCCCA;

W ¼

0BBBBBBBBBBB@

X
j¼ 0

js1

k1j �k12 . �k1N�1 �k1N

�k21
P
j¼ 0

js2

k2j . �k2N�1 �k2N

« « 1 « «
�kN�11 �kN�12 .

P
j¼ 0

jsN�1

kN�1j �kN�1N

�kN1 �kN2 . �kNN�1

P
j¼ 0

jsN

kNj

1CCCCCCCCCCCA

:

(6)

As an essential feature of the GEM, the pair distances have Gaussian

distributions:
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Pr
�
rij ¼ r

� ¼
 
2p
�
r2ij
�

3

!�3=2

exp

 
� 3

2

r2�
r2ij
�!; (7)

where the mean-square distance hr2iji is related to the covariance matrix

through the classical identities hr2iji ¼ hr2i iþ hr2j i� 2hri,rji.
We now formally express the contact probability between monomers i

and j as

cij ¼ �
m rij
� ��

;

¼ R
d3r m rð Þ�d rij � r

� ��
:

(8)

In Eq. 8, m(rij) is the probability that a cross-link is formed between
monomers i and j that are separated by a distance rij. The cross-linking

agent used in Hi-C experiments, namely formaldehyde, is known to poly-

merize in solution, resulting in cross-links of variable lengths (42). There-

fore, in this work, we have considered a Gaussian form factor

mxðrÞ ¼ exp

�
� 3

2

r2

x2

�
; (9)

where the threshold x represents the typical distance under which two

monomers can be cross-linked. With this definition, we can compute the
thermodynamic average in Eq. 8 and obtain (see Supporting Materials

and Methods, Section 5) the following:

cij ¼
 
1þ

�
r2ij
�

x2

!�3=2

: (10)

We have thus expressed explicitly the contact probability between mono-

mers i and j as a function of their mean-square distance. As might be ex-
pected, the contact probability cij is a decreasing function of hr2iji. Similar

expressions can be obtained for other choices of form factors (see Support-

ing Materials and Methods, Section 5).

In summary, Eqs. 5 and 10 define a unique correspondence between

the coupling matrix [kij]i, j ¼ 0...N and the contact probability matrix

[cij]i, j ¼ 0...N. The only free parameter is the threshold x. We can there-

fore reconstruct the GEM reproducing a given contact probability ma-

trix. For example, we have successfully applied this method to contact

probabilities obtained by sampling configurations of a predefined GEM

through BD simulations (see Supporting Materials and Methods, Section

5). We note that our model does not take into account excluded volume

effects.
Reconstruction of an admissible GEM

We realized that the presence of noise in the contact probabilities could lead

to an unstable GEM having a covariance matrix with negative eigenvalues

and therefore a nonfinite free energy (see Supporting Materials and

Methods, Section 6). To solve this issue, we reasoned that although a

GEM is unstable, there may exist a stable GEM with very close contact

probabilities. We therefore introduce the least-square estimator (LSE) be-

tween some experimental contact probability matrix and the one of a candi-

date (stable) GEM:

LSE ¼ 1

ðN þ 1Þ2
X
i;j

�
cij � cexpij

�2
: (11)

In Eq. 11, the LSE is a function of the kij variables because the cij are

computed from the coupling matrix using the GEM mapping introduced
above. Our goal is then to minimize the LSE under the constraint that the

GEM is stable. A rigorous enforcement of this principle would be to ensure
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that its covariancematrixS has strictly positive eigenvalues, which is difficult

to implement in practice. Instead, we consider the more restrictive condition

kijR0; (12)

which is a sufficient condition of stability of the GEM.
Implementation

We use a steepest descent algorithm with projection to minimize Eq. 11

under the constraint in Eq. 12 (see Supporting Materials and Methods, Sec-

tion 7). We thus obtain the positive couplings k�ij , minimizing the LSE. As

seen earlier, computing the cij as a function of the kij relies on the choice of a

threshold x. Therefore, we repeat the above minimization procedure for

several values of x and choose the one with the smallest LSE. In fine, the

reconstructed couplings koptij define the best physically admissible GEM

with contact probabilities coptij , reproducing the experimental values of the

contact probabilities.
FIGURE 2 Application of the GEM reconstruction method to Hi-C data

from (9) for chromosome 8 at bin resolution 5 kbp. The best GEM is obtained

for values of x andNc that minimize the LSE between experimental and GEM

contact probabilities. The maximal number of contacts detected among (i, j)

bin pairs is denoted as max(nij). To see this figure in color, go online.
RESULTS

We have applied our reconstruction method to Hi-C
data generated from human lymphoblastoid cells (type
GM12878) (9). For a given chromosome, these data come
under the form of count matrices, in which each entry nij
corresponds to the number of contacts detected between
bins i and j on the chromosome. To compute the contact
probability matrix, we applied a global normalization factor
Nc to the Hi-C count matrices, cij ¼ nij/Nc (see Supporting
Materials and Methods, Section 4). One may picture Nc as
the number of cells in the experimental sample. Because
this normalization is not known, we adjusted both free pa-
rameters x and Nc when applying our reconstruction method
so as to minimize the LSE between experimental and GEM
contact probabilities. For data of chromosome 8 at a bin res-
olution of 5 kbp, the best reconstructed GEM was obtained
for Nc ¼ 103 and x ¼ 0.96 (see Fig. 2).

The typical discrepancy between experimental and
GEM contact probabilities was small, LSE1/2 ¼ 0.022,
suggesting that this chromosome region can be well repre-
sented by a GEM. Much of the structure found in the
experimental contact probability matrix was indeed well
captured in the reconstructed model (Fig. 3 A). This
agreement was also readily seen when considering the
average contact probability hciji at a given contour length
(Fig. 3 C).

Other methods, more sophisticated than the one used
above, have been proposed to estimate contact probabilities
from Hi-C count matrices (9,43–45). For completeness, we
have also applied our reconstruction procedure to contact
probabilities generated from the same Hi-C data but using
the matrix balancing normalization, which produces a sto-
chastic matrix of contact probabilities (see Supporting Ma-
terials and Methods, Section 4). In this case, the only free
parameter to adjust was the threshold x. We found that the
reconstructed GEM also reproduced well the experimental
contact probabilities (see Fig. S11). Yet, the LSE was larger
than for the previous normalization. A possible explanation
for this increased value may be that a stochastic contact
probability matrix is a poor representation of a cross-linked
polymer.

To demonstrate that the effectiveness of our method is not
limited to Hi-C data only, we have also applied our recon-
struction procedure to GAM experimental data of mouse
embryonic stem cells (21). Briefly, with this technique, sli-
ces of cell nuclei are obtained by making cryosections, and
their DNA content is sequenced. The main output is an array
of cosegregation frequencies, representing the probability
for two genomic bins to be present in the same slice. We
developed a normalization scheme to convert these cosegre-
gation frequencies into contact probabilities (see Supporting
Materials and Methods, Section 4). This does not introduce
additional parameters, so when applying our reconstruction
procedure, we only had to adjust the threshold x. For
example, we applied our method to GAM data generated
from mouse embryonic stems cells for chromosome 19
with a bin resolution of 30 kbp (Fig. 4). Again, the recon-
structed model well reproduced the experimental contact
probabilities, with a typical discrepancy LSE1/2 ¼ 0.032.
Although this value is slightly greater than in the Hi-C
case presented above, the size of the corresponding polymer
is larger, with N ¼ 1000. Therefore, the quantitative agree-
ment between experiment and reconstructed model remains
very good. Note that the optimal threshold of the reconstruc-
tion was quite small, xopt ¼ 0.48. Yet it appears that the pre-
cise value of the threshold is not critical. Indeed, below
x<e1:0, the relative variations of the LSE became very small
Biophysical Journal 115, 2286–2294, December 18, 2018 2289



FIGURE 3 Best reconstructed GEM for Hi-C data of human chromosome 8 at 5 kbp resolution (9). (A) A comparison between experimental (lower left) and

GEM(upper right) contact probabilities. (B) A comparison of experimental andGEMcontact probabilities (two-dimensional (2D) histogram).We give the Pear-

son correlation coefficient. (C) A comparison of the average contact probability as a function of the contour length. To see this figure in color, go online.
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(see Fig. S17). Hence, the threshold may actually be seen as
a regularization parameter for the reconstructed contact
probability matrix.

We have applied our reconstruction procedure to various
chromosomes and bin resolutions from either Hi-C or GAM
data sets (see Table S1 together with Figs. S1–S25). Overall,
the contact probabilities of the reconstructed GEMs quanti-
tatively reproduced the experimental ones. We found in gen-
eral that the typical distance between experimental
and reconstructed model contact probabilities was LSE1/2

� 0.01–0.05. Thus, we conclude that our method allows
us to represent to a quantifiable accuracy the ensemble of
configurations adopted by the chromosome.

To illustrate possible applications of our method to study
chromosome organization, we used the reconstructed
coupling matrices to perform BD simulations of the chro-
mosome (see Supporting Materials and Methods, Sec-
tion 8). To do so, we replaced the Gaussian chain
potential in Eq. 1 with a finitely-extensible non-linear
elastic bond potential, we took into account the polymer
bending rigidity, and we introduced excluded volume inter-
FIGURE 4 Best reconstructed GEM for GAM data of mouse chromosome 19

left) and GEM (upper right) contact probabilities. (B) A comparison of experim

correlation coefficient. (C) A comparison of the average contact probability as
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actions. We then performed BD simulations and used the
sampled configurations to compute the equilibrium contact
probabilities, which we compared to the ones of the GEM
(see Fig. 5 A; Figs. S26 and S27). In the presence of
excluded volume and semiflexibility, the obtained contact
probabilities were not as close to the GEM ones. Yet, the
essential structure of the contact probability matrix re-
mained. In Fig. 5 B, we show a typical configuration for
human chromosome 16.
DISCUSSION

In this article, we have proposed a polymer model con-
strained by Hi-C or GAM experimental measurements to
represent the chromosome. We modeled the DNA as a flex-
ible polymer (because the resolution is much larger than
the persistence length of the DNA), with harmonic interac-
tions between chromosomal loci encoding the contact
frequency in Hi-C and GAM experiments. The spring con-
stants are chosen so as to best reproduce the experimentally
measured contact probabilities. We computed the explicit
at 30 kbp resolution (21). (A) A comparison between experimental (lower

ental and GEM contact probabilities (2D histogram). We give the Pearson

a function of the contour length. To see this figure in color, go online.



FIGURE 5 BD of the reconstructed GEM for Hi-C data of human chro-

mosome 16 (9) (5 kbp resolution). (A) Contact probability matrices ob-

tained through BD simulation of 1) the GEM, 2) the GEM with bending

rigidity, and 3) the GEM with bending rigidity and with excluded volume.

The contact probabilities were computed from BD trajectories and are

compared with the theoretical values for the GEM. (B) A snapshot of a

configuration obtained by BD of the reconstructed GEM with bending ri-

gidity and excluded volume. The couplings are represented by tie lines,

from weak couplings (in blue) to strong couplings (in red). (C) LSE as a

function of the threshold x between contact probabilities computed from

the BD trajectory and the theoretical values. To see this figure in color,

go online.
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mapping defined in Eqs. 5 and 10, which relates the harmonic
couplings to the contact probabilities between monomers.
We then used this property to reconstruct a physically
admissible GEM of the chromosome by minimizing the
distance between experimental and model contact probabili-
ties. We applied this method to many chromosomes and data
sets. Overall, the quantitative agreement obtained suggested
that the GEM offers a good representation of the chromo-
some. To illustrate potential applications of our method, we
then used the reconstructed GEM to perform BD simulations
of the chromosome. Although it is not a substitute for first-
principles molecular dynamics simulations, this approach
is valuable because the trajectories simulated by BD repro-
duce the experimental contact probabilities.
Models for cross-linked polymer

Properties of cross-linked polymers have been extensively
studied (46–48). However, in those studies, the rigidities
of the harmonic interactions were uniform (i.e., kij ¼ k in
Eq. 4). A similar model was also reintroduced to account
for the particular scaling of the radius of gyration of
the chromosome in the interphase nucleus, in which the
kij were distributed as Bernoulli variables and hence
defined random loops (49,50). Recently, another model
with quadratic interactions was proposed to obtain polymer
states with arbitrary fractal dimension (51), in which the
harmonic couplings followed a power law of the contour
distances. Yet, these studies did not attempt to compute
Hi-C contact probabilities or to predict chromatin confor-
mations. Our model also presents some similarities with
the Gaussian elastic network model used in the context of
protein folding (52,53).
Do the reconstructed couplings represent
biological interactions?

Hi-C data are often generated from a population of cells.
Thus, if a pair of chromosomal loci has a number of contacts
that is statistically significant, it means that specific interac-
tions should favor their colocalization. Therefore, the cou-
plings kij can be seen as defining coarse-grained potentials
representing the superimposition of many microscopical in-
teractions, such as the bridging by divalent proteins, and
used as effective interactions in coarse-grained models
of the chromosome. Yet, the mean pair potentials eij ¼
3=2kijhr2iji, expressed in kBT, provide a more physical inter-
pretation of the reconstructed interactions. Eventually, the
effective model obtained can give clues about where the ma-
jor constraints that determine the folding of the chromosome
are applied.
Fractal globule scaling of the contact
probabilities

It is believed that the so-called fractal globule model (or
crumpled polymer) provides a more realistic framework to
describe the chromosome than classical polymer models
(54,55). In short, the presence of excluded volume and
confinement results in high energy barriers from one config-
uration to the other, leading to a behavior different from an
ideal polymer. In particular, the fractal globule was shown to
reproduce the scaling for the mean contact probability as a
function of the contour length, cij f ji � jj�1, observed in
Hi-C experiments (8). We note that although our GEM
does not incorporate excluded volume, it reproduces the
experimental scaling because the couplings are recon-
structed from the experimental contacts.
Robustness of the method

To investigate the robustness of the reconstructed GEM, we
repeated the minimization procedure but considered only
a subset of the experimental contacts in the sum from
Eq. 11. Specifically, we retained only the top fraction of
the experimental contact probabilities. In Fig. 6 A, we
compared the contact probabilities of the original recon-
structed GEM for human chromosome 8 with the contact
probabilities of the GEMs reconstructed by considering
only the top 90, 50, and 10%. Starting from 50%, we noticed
Biophysical Journal 115, 2286–2294, December 18, 2018 2291



FIGURE 6 Robustness of GEM reconstruction for Hi-C data of human

chromosome 8 (9) (5 kbp resolution). For all GEM reconstructions, we

used a threshold x ¼ 1 and a normalization factor Nc ¼ 103. (A) A compar-

ison of the contact probabilities of the reconstructed GEM with those of a

GEM obtained by performing the minimization only on the top 90, 50, and

10% experimental contacts. (B) 2D histograms corresponding to the

matrices shown in (A). We give the Pearson correlation coefficients. The

thresholding quantiles are represented by vertical dashed lines. (C) A com-

parison of the GEMs reconstructed from a decreasing fraction of the exper-

imental contacts with the original GEM. LSE1/2 is the Euclidean distance

between contact probabilities divided by (N þ 1). (D) Average contact

probability as a function of the contour length for GEMs reconstructed

from a decreasing fraction of the experimental contacts. To see this figure

in color, go online.
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that some artifacts appear in the reconstructed GEM for
long-range contacts. These are located in regions that are
sparse in contacts in the experimental contact probability
matrix. As a result, very few significant contacts are
retained in those regions for the minimization procedure.
In fact, contacts below the thresholding quantile, which
were discarded from the reconstruction, tend to be overesti-
mated in the newly reconstructed GEM (Fig. 6 B). This sug-
gests that regions of the contact probability matrix that
contain little meaningful information (significant contacts
in our case) will be poorly reconstructed. Overall, Fig. 6 C
shows that the distance to the original reconstructed GEM
increases as the fraction of contacts retained shrinks, and
Fig. 6 D illustrates that long-range contacts are indeed the
first to suffer from reconstruction artifacts. The same anal-
ysis for other data sets is given in Figs. S28 and S29.
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Future improvements

A first improvement to our model would be to explicitly
include semiflexibility in the polymer structure. This can
be done by adding harmonic interactions extending to sec-
ond-nearest neighbors in Eq. 1. However, this refinement
might appear superfluous as long as we consider bin resolu-
tions beyond �5 kbp. A second improvement would be to
extend the method to several chromosomes by adjusting
the matrix T, which defines the chain structure.

The code used to perform the reconstruction of a GEM by
minimization is available at https://github.com/gletreut/
gem_reconstruction. Other data and code involved in this
study are available upon request.
SUPPORTING MATERIAL

Supporting Materials and Methods, 37 figures, one table, and one data

file are available at http://www.biophysj.org/biophysj/supplemental/

S0006-3495(18)31225-6.
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