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Proteins function through their interactions, and the availability of

protein interaction networks could help in understanding cellular

processes. However, the known structural data are limited and

the classical network node-and-edge representation, where

proteins are nodes and interactions are edges, shows only which

proteins interact; not how they interact. Structural networks

provide this information. Protein–protein interface structures can

also indicate which binding partners can interact simultaneously

and which are competitive, and can help forecasting potentially

harmful drug side effects. Here, we use a powerful protein–

protein interactions prediction tool which is able to carry out

accurate predictions on the proteome scale to construct the

structural network of the extracellular signal-regulated kinases

(ERK) in the mitogen-activated protein kinase (MAPK) signaling

pathway. This knowledge-based method, PRISM, is motif-

based, and is combined with flexible refinement and energy

scoring. PRISM predicts protein interactions based on structural

and evolutionary similarity to known protein interfaces.

Addresses
1 Center for Computational Biology and Bioinformatics and College of

Engineering, Koc University Rumelifeneri Yolu, 34450 Sariyer Istanbul,

Turkey
2 Basic Science Program, SAIC-Frederick, Inc., National Cancer

Institute, Center for Cancer Research Nanobiology Program, Frederick

National Laboratory for Cancer Research, Frederick, MD 21702, United

States
3 Sackler Inst. of Molecular Medicine, Department of Human Genetics

and Molecular Medicine, Sackler School of Medicine, Tel Aviv University,

Tel Aviv 69978, Israel

Corresponding author: Nussinov, Ruth (ruthnu@helix.nih.gov)

Current Opinion in Structural Biology 2012, 22:367–377

This review comes from a themed issue on

Sequences and topology

Edited by Christine Orengo and James Whisstock

Available online 9th May 2012

0959-440X/$ – see front matter

# 2012 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.sbi.2012.04.004

Introduction
Protein–protein interactions and ‘classical’ protein

interaction networks

Proteins function through interactions, and protein–
protein interactions (PPIs) play a crucial role in all bio-

logical processes. An interaction with another protein

physically perturbs the structure, and the perturbation

(or, signal) propagates in the cell [1]. To understand how
www.sciencedirect.com 
signals propagate and how regulation takes place, we

need to know the interactions of the proteins. Among

the first steps toward this goal is the identification of PPIs.

Experimentally, identification of pairwise PPIs has been

addressed by techniques such as yeast two-hybrid system

[2], phage display [3], protein arrays [4], and affinity

purification [5], and databases like DIP [6], MINT [7],

BIND [8], BioGrid [9], and IntAct [10], have usefully

compiled these data. On the basis of these, protein

interaction networks (PINs) have been constructed

[11,12], on a pathway [13–15] or proteome scale [16–
18]. Despite these efforts, 10% the human interactome

is known [19]. In PINs, proteins and their interactions are

represented as nodes and edges, respectively. Figure 1a

presents the mitogen-activated protein kinase (MAPK)

signaling pathway. This representation depicts direct and

indirect interactions, and signals transmitted from a per-

turbed source node (a protein) to a sink node (another

protein) can be straightforwardly traced through the net-

work edges. Node-and-edge networks help in under-

standing the communication and functional

identification on a large-scale. However, because they

do not provide the essential structural details, they are not

able to help in figuring out the regulatory mechanisms.

Structural protein–protein interaction networks

A key drawback of high-throughput experiments is in the

possible presence of many false positives [20,21].

Methods such as X-ray crystallography [22], nuclear mag-

netic resonance (NMR) spectroscopy [23], and cryo-elec-

tron microscopy (cryo-EM) [24] can provide high

resolution structural data. The Protein Data Bank

(PDB) [25] provides the structures of proteins and their

complexes (over 80 000 structures as of March 2012);

however, it is incomplete and does not cover all struc-

tures. In addition, it may contain non-biological crystal-

lographic packing interactions [26]. NMR is limited in

size [27]. Cryo-EM is informative at relatively low resol-

ution [28]. These limitations can be addressed by comp-

lementary experimental and computational techniques.

Computational approaches can help to verify experimen-

tal observations and predict new ones. Docking and

knowledge-based methodologies are the main compu-

tational PPI prediction protocols. Docking strategies con-

sider possible structural combinations of query proteins to

find the ‘best’, native bound state. The critical assessment

of predicted interactions (CAPRI) [29] demonstrates the

performance of docking strategies, and helps in following

their progress. ZDock [30], PIPER [31] and GRAMM-X

[32] use the Fast Fourier Transform (FFT) approaches in
Current Opinion in Structural Biology 2012, 22:367–377
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Figure 1
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MAPK signaling pathway and ERK interacting proteins. (a) Classical node-and-edge representation, where proteins are nodes and interactions are

edges. The network is taken from the KEGG database. Gray lines represent the membrane. Gray box indicates the scaffold for the proteins on it. (b)

The ERK interacting proteins in the node-and-edge representation. (c) The structural network of the ERK interacting proteins. Protein interactions are

found using PRISM. Edges which are connected to a node through the same black box imply that the proteins bind through the same binding site, that

is, they are competitive. They are connected to different black box on the node, if the binding sites are different. If a binding site overlaps two other

binding sites, the edge attaches to the corresponding two black boxes and has a fork shape. Two binding sites are considered as overlapping if the

common residues are more than 20% of the smaller binding site. MP1 is discarded from the scaffold shown as a gray box, since the binding sites of

MP1 and MEK2 overlap and the complex of ERK, MEK1 and MEK2 can be constructed.
the global search for the binding mode of proteins.

RosettaDOCK [33] is generally preferred in the high-

resolution refinement step. ATTRACT [34] and Fiber-

Dock [35] use normal mode analysis (NMA) to sample

conformational backbone variability. Some methods uti-

lize different experimental data to increase their accuracy.

MolFit [36] and ATTRACT consider experimentally

determined interface residues. ZDock and pyDock [37]

block non-interface residues. PROXIMO [38] and Multi-

Fit [39] use radical probe mass spectrometry (RP-MS)

and EM data in docking, respectively. HADDOCK [40]

utilizes experimental data, mainly NMR, to extract inter-

face information including contacts and relative orien-

tations. PatchDock [41] uses the entire surface; however,

if experimental constraints are available they can limit the

search. Predicting PPIs by docking is computationally
Current Opinion in Structural Biology 2012, 22:367–377 
very expensive. Protein size affects the computation time,

which makes docking of larger proteins much slower [42].

Moreover, scoring functions in the docking algorithms are

still not optimal to predict which proteins interact and

how they interact on the interactome scale [43,44]. Con-

sequently, docking approaches are not appropriate for

large-scale studies [45,46]. Data derived from known

interactions can restrict the solution space in knowl-

edge-based approaches. Homology-based methods can

be powerful in predicting interactions (even for unstruc-

tured proteins) as shown by the pioneering work of Aloy

and Russel [47], who also created a web server (Inter-

PreTS [48]) which scores the predictions based on empiri-

cal potentials derived from known interactions. More

recently, Kundrotas et al. [49] have also predicted the

structures of interacting proteins based on sequence
www.sciencedirect.com
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homology. The GWIDD database [50] usefully provides

experimental and homology-based models, WSsas [51]

functional residues in structural homologs, and IBIS

[52,53] considers both structure and sequence conserva-

tion. Finally, Multiprospector [54] utilizes multimeric

threading, independent of sequence similarity and M-

Tasser considers certain protein flexibility [55].

Domain information has also been utilized in protein

interaction prediction. Shoemaker et al. [56] showed that

members of domain families can dock in the same way.

Davis et al. [57] matched the overall domains and scored

predictions by statistical potentials derived from the

known interactions. Aloy and coworkers [58] combined

the overall structural fold and sequence similarities and

developed the 3DID web server [59] which identifies

domain-based interactions.

In interface-based approaches, an interaction between

query proteins can be achieved fairly reliably if the

structure of a similar interface is available, based on

the similarity of query protein surfaces to interfaces of

known interacting proteins [60]. This concept is similar to

homology modeling for structure prediction. Using

known data lowers substantially the computational time,

making PPI prediction on a large-scale possible. PRotein

Interactions by Structural Matching (PRISM) [60,61] is

the pioneer interface-based PPI prediction method,

which is applicable to structural interactome data. ISearch

[62] is based on a similar concept but has a template set of

domain–domain interactions. Sinha et al. [63] use a tem-

plate-based docking independent of sequence homology

and consider local structural alignments rather than global

structural alignments.

Comparison of the knowledge-based methods is not

straightforward because they use different benchmark

datasets. Nevertheless, their individual performance

shows their success. In the work of Aloy and Russel

[47], 59 of 2590 predicted interactions are experimentally

verified. Multiprospector [54] predicts 36 homodimers

and 15 heterodimers correctly among 40 homodimers

and 15 heterodimers. In the work of Davis et al. [57],

270 binary and eight multi complexes are experimentally

verified among 3387 binary and 1234 multi complexes

predicted. ISearch [62] can predict a model for 45 of 59

cases. Sinha et al. [63] correctly predict 56% of 372

complexes in their bound forms. PRISM can predict 87

of 88 cases of a docking benchmark dataset [64].

Prediction of PPIs on a large-scale using PRISM, a motif-

based PPI modeling method

Proteins have many partners; on average, 5–12 interactions

per protein are listed in human PPI databases [65�]. The

proteins interact via contacting binding sites. Binding sites

are distinct and have limited surfaces [66,67]. Although

there are many proteins in nature, the structural variety of
www.sciencedirect.com 
their interfaces is limited, which suggests that proteins

share binding site structural motifs [68–70]. Protein inter-

faces can be classified into three groups according to their

structures and the global structures of the interacting

protein pairs [71]. Type I interfaces are the most common:

similar interfaces formed by proteins whose global struc-

tures and functions are also similar. The interfaces’ archi-

tectures are evolutionarily more conserved than the rest of

their surfaces [66,72�]. Type II includes similar interfaces

formed by proteins whose global structures and functions

are different. In Type III, only one side of each interface is

similar and the binding sites of the complementary part-

ners are somewhat different. Hub proteins interacting

through shared binding sites are good examples of this

type [69]. In all cases, interfaces have conserved motifs

even if the interacting proteins are structurally and func-

tionally different. This evolutionary feature of interfaces

can be used to predict PPIs.

PRISM is an efficient motif-based PPI modeling method

[60,61,73��]. Interactions among a group of proteins are

predicted based on known PPIs. All known PPIs are

assembled into a template set. The interfaces of non-

redundant binary interactions in the PDB are extracted

and clustered according to the similarity of their struc-

tures. Representatives of each group constitute the tem-

plate set (Figure 2, Step 0). PRISM proposes a potential

interaction between two query proteins in a target set

based on structural and evolutionary similarity of their

surfaces to the complementary sides of a known interface

in the template set (Figure 2, Step 2). The structural

similarity is determined via geometrical alignment of the

structures using MultiProt [74]. If it is known that protein

A interacts with protein B (i.e. if there is a representative

structure similar to the interface of complex AB in the

template set), and the surfaces of proteins A0 and B0 are

structurally similar to those of proteins A and B, a poten-

tial interaction between A0 and B0 is proposed. The

evolutionary similarity is checked by the conservation

of hot spots. Hot spots are the residues which are mainly

responsible for the affinity and stability of the interaction

by contributing significantly to the binding free energy

[75]. The strong correlation between hot spots and con-

served residues on structurally similar interfaces [76,77�]
indicates the importance of hot spots in determining

binding sites. Computational hot spots are found via

the HotPoint web server [78], and PRISM requires that

at least one computational hot spot at each side of the

template interface matches structurally with a residue of

each target protein when the structures are aligned.

Moreover, the matched residues from each interface side

should preferably be against each other to guarantee

correct matching of the left and right partners. The

physical and biological feasibilities of the potential

interaction are also queried. If there are many clashes

between residues of interacting proteins, the complex is

eliminated (Figure 2, Step 3). Flexible refinement is
Current Opinion in Structural Biology 2012, 22:367–377
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Figure 2
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Flexible Refinement

Eliminate Clashing
Structures

Flowchart of the PRISM algorithm. PRISM consists of five steps. Step 0: template set organization. Similar interfaces of binary protein complexes are

grouped in the same cluster (0A). All interfaces in the same cluster are structurally similar to the representative of the cluster. Red lines represent

representative interfaces. Computational hot spots of representative interfaces are found using HotPoint web server, and shown as red dots (0B).

Representative interfaces construct the template set (0C). Step 1: surface extraction of target proteins. Multimeric target proteins are split into their

monomers, and homologous chains are counted only once. Surface of each non-homologous monomers of target proteins (green, pink, purple, blue

and orange proteins) are extracted. Step 2: structural alignment. Target surfaces are aligned onto template structures given in 2A, the same set as in

0C. Green and purple molecules have similar structure to left side of a representative interface. Blue molecule is similar to the right side of that

interface. Orange and pink molecules are structurally similar to another representative interface. Structural similarity is not observed for the other

template interfaces. Orange dots represent residues matched with a hot spot of the template interface in the structural alignment (2B). Candidate

complexes, green-blue and purple-blue proteins, are assigned between two structures similar to each side of a template interface. A complex of

orange and pink proteins is not considered, since any residue of the pink protein does not match with a hot spot of the corresponding template

interface (2C). Step 3: physical evaluation of candidate complexes. If the residues of the proteins clash, as in the complex of purple and blue proteins,

the candidate complex is eliminated. Step 4: flexible refinement. Side chains of interacting proteins are oriented in order to prevent clashes among

them. Potential complexes are given as the results, like the complex of green and blue protein.
performed using FiberDock [35] (Figure 2, Step 4). The

global energy of the complex is calculated to evaluate the

potential complex biologically. PRISM gives the 3D

structure of the predicted interactions and can be used

to predict PPIs on the proteome scale [73��].

Constructing structural signaling pathways

In the node-and-edge network representation, interaction

data are given as binary relation; two proteins are con-

nected by an edge if they interact, and are not connected

otherwise. The ERK pathway protein interactions are

shown in this representation in Figure 1b, where the

interaction data are taken from the KEGG database
Current Opinion in Structural Biology 2012, 22:367–377 
[79]. However, the binary representation cannot help

to elucidate the mechanism in detail, which is essential

for figuring out their roles, how the signal flows, and how

the function and the regulation are executed in the cell.

Structural interaction networks present the nature of the

interactions; thus, ‘how proteins interact’ is characterized

in the structural network, in addition to ‘which proteins

interact’ in the classical representation [44,45,80,81��].

Structural networks illustrate the proteins, and the inter-

faces through which they interact. The structural network

of the ERK interacting proteins is represented in

Figure 1c, where the interactions are found using PRISM
www.sciencedirect.com
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and the PDB IDs of proteins are taken from the KEGG

database (Supplementary Data, Table S1). PRISM pre-

dictions with lowest energy values are selected (Supple-

mentary Data, Table S2). In addition to what the classical

node-and-edge representation provides, the structural

network also shows which partners of a protein are in

contact through the same, shared binding sites, and which

are in contact through different binding sites of the

protein. If two partners bind the same protein surface,

it is physically impossible that both partners bind to the

protein at the same time. In this case, at any given time,

one of these interactions is excluded while the other may

exist. However, if two partners interact through different

protein binding sites, the protein can bind both partners

simultaneously, unless the interacting proteins collide

elsewhere. Interface data can be used to elucidate such

multi-partner protein interactions. Network studies show
Figure 3
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that although most of the proteins have one interacting

partner or a few partners, a relatively small number of

proteins, which are called hubs, have a large number of

partners [82]. These hub proteins do not have as many

distinct binding sites as the number of their interacting

partners [67]. Therefore, some interactions occur through

the same binding site, even though the interacting part-

ners can be structurally and functionally different

[83,84��]. Identifying overlapping and non-overlapping

interfaces [85] helps to determine the interaction beha-

vior in the network, and regulation. The different inter-

faces also lead to different binding affinities [86��].
Furthermore, it is also physically impossible for two

proteins to interact with the third simultaneously, if their

residues clash while contacting with the third protein. In

such broad, proteome-scale approaches, flexibility and

allosteric effects cannot be taken into account.
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. Predictions with lowest global energy values are selected. (a) Interacting

s interactions of MEK1 and cPLA2 proteins with ERK. They bind through

i5zA-1lebA) and ERK–MEK1 (1pmeA-3eqcA) interactions onto each other.

P and Rsk2 proteins. Although PTP and Rsk2 proteins do not bind through

rotein at the same time. The figure is drawn by aligning ERK–PTP (2ojgA-

teracting to PTP is shown. (d) Interactions of ERK, MEK1, MEK2 and MP1

h the same site of the MEK1 protein. The figure is drawn by aligning MEK1–

eA) interactions onto each other. Only MEK1 interacting to MEK2 is shown.

Current Opinion in Structural Biology 2012, 22:367–377
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Figure 3 shows the interactions of the ERK protein.

Seven proteins bind at different ERK sites (Figure 3a).

Proteins which bind at different sites, like MEK1 and

cPLA2, can interact with ERK simultaneously

(Figure 3b). However, PTP and Rsk2 cannot bind to

ERK at the same time, even though their interactions

with ERK are at different sites; this is because of steric

clash elsewhere (Figure 3c). Moreover, ERK, MEK2 and

MP1 cannot interact with MEK1 simultaneously, because

MEK2 and MP1 share a binding site (Figure 3d). In the

same manner interface data can be used to construct

protein assemblies [81��,87��]. Assemblies are important

for cell functions; they increase the effective local con-

centration of substrates/products, and the efficiency in

signaling and cell response. Using pair-wise interactions

and steric restrictions, complexes larger than two proteins

can be constructed. The complex of MEK1, MEK2, ERK

and MP1 given in the KEGG is illustrated in a gray box in

Figure 1, and the interactions are shown in Figure 3d.

The model structure of the complex is obtained by

combining the interactions MEK1–MEK2, MEK1–
ERK and MEK1–MP1 which are found by PRISM.

The binding sites of MP1 and MEK2 overlap; therefore,

it is physically impossible to construct a complex of these

four proteins. However, complexes of MEK1–ERK–
MEK2 and MEK1–ERK–MP1 can exist.

Introducing mRNA expression data into structural net-

works further helps in figuring out functional relevance

[88]; however, in the absence of structural interaction

data, mRNA expression data cannot distinguish between

direct and indirect interactions [89].

Structural networks are useful for elucidation of network

dynamics; and residue (and atom) level detail can be used

to understand their dynamics in the cell [90,91,92��]. At

the same time, a main limitation in constructing a knowl-

edge-based structural network derives from the incom-

pleteness of the PDB. About 20 000 PDB structures (as of

March 2012) are of Homo sapiens. The ones that have a

role in signaling processes are just over 3300. Proteins

with no PDB structures create ‘holes’ in the map. How-

ever, the number of structures in the PBD is progressively

increasing, and as the PDB gets larger the maps will

eventually be completed, either with the missing struc-

tures, or with highly homologous ones. Until then, these

holes can be filled with the help of structural modeling of

complexes and the component chains. Single-chain

protein structures can be modeled from their sequences

using modeling tools, like I-Tasser [93], Swiss-Model

[94], Phyre [95], and RaptorX [96].

Drug design based on protein interfaces

Identification of protein interactions at the residue-level

is also important for drug discovery. Although increas-

ingly drugs target allosteric sites [97,98], most are orthos-

teric [99��,100]. Peptide inhibitors can mimic the
Current Opinion in Structural Biology 2012, 22:367–377 
complementary partner of the protein [101,102].

Figure 4c and d shows the interaction of the Bcl-2 protein

with the Bax protein and an orthosteric drug-like ligand,

ABT-737. Bcl-2 is a member of the B-cell lymphoma 2

(Bcl-2) family of proteins which includes pro-apoptotic

and anti-apoptotic proteins. They are central regulators of

programmed cell death and their protein interactions

have roles in the apoptosis pathway. Pro-apoptotic

proteins like Bax and Bad, propagate death signal which

activates the family of caspases, cysteine proteases. Anti-

apoptotic proteins, like Bcl-2 and Bcl-XL, have protective

roles and sequester pro-apoptotic proteins by directly

binding to them [103]. They are overexpressed in many

cancers, inhibit apoptosis and play a role in tumor

initiation, progression and resistance to therapy. Inhi-

bition of these anti-apoptotic proteins targets abnormal

cell deaths and offers alternative targets for drug thera-

pies. The interaction of Bcl-2 and Bax proteins is shown

in Figure 4c. This interaction is mimicked by the ligand

ABT-737 (Figure 4d). It interacts with Bcl-2 through the

binding site of Bax. It does not directly initiate apoptosis,

but enhances the effect of death signals. It causes tumor

regression, increases survival and cures animal models

[104].

Drug effects were recently considered on a large scale,

pathway-wide or proteome-wide [105,106]. The interact-

ing protein gains or loses a function and the effects

propagate in the system. Network analysis can be used

to select drug targets and it helps in understanding its

global drug effects [107,108]. Perturbing the network by

drug combinations can be more effective than targeting

individual proteins. Polypharmacology considers cellular

robustness and focuses on multi-target drugs [109]. While

network analyses increasingly help drug discovery, the

absence of network-scale structural data can hamper

these efforts. Structural networks, as compared to the

classical node-and-edge interaction networks, are more

powerful for predictive approaches [81��,110�]: first,

because drugs are mostly designed to interact through

the binding site of the protein, interface data can dramatic-

ally help efficient targeting. The function of the protein

can be activated or inhibited by mimicking the interface

structure of the complementary protein partner; second,

protein–protein and protein–ligand interactions are con-

served and often overlap [111�,112], even if the sequences

or global structures are not similar. A drug can recognize

similar protein interfaces; on average a drug interacts with

six protein targets [113]. Interaction with off-targets can be

beneficial or harmful to the living organism. Network

structural data can help to figure out such potential syner-

gestic or harmful side effects [114�,115].

Figure 4 shows the inhibition of Bcl-2 and Bcl-XL proteins

with the same drug-like ligand, ABT-737. This example

illustrates that a drug can bind to different proteins

with structurally similar interfaces. The overall sequence
www.sciencedirect.com



Signaling pathways on the proteome scale Kuzu et al. 373

Figure 4
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ABT-737 inhibition of Bcl-2 and Bcl-XL proteins. (a) ‘Pathways in cancer’ map is taken from the KEGG database. (b) Interactions of Bcl-2/Bax and Bcl-

XL/Bad on the network. (c) Interaction of Bcl-2 and Bax proteins and their contacting residues (PDB ID: 2xa0AC). Cyan structure: Bcl-2 protein, purple

structure: Bax protein, blue atoms: interacting residues of Bcl-2 protein, pink atoms: interacting residues of Bax protein. The interacting residue

numbers of Bcl-2 are 100, 104, 107, 108, 110, 112, 115, 118, 119, 133, 136, 137, 139, 140, 143, 144, 145, 146, 148, 153, 200, 201, 202, 204 and 205;

and the interacting residue numbers of Bax are 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 69, 70, 71, 73, 74, 75, 77, 78 and 81 (underlined ones are

computational hot spots found by HotPoint web server). 64th, 68th, 74th and 78th residues of Bax are found experimentally as hot spots [116]. (d)

Interaction of Bcl-2 protein and ABT-737 ligand, and their contacting residues (PDB ID: 2o21A). Cyan structure: Bcl-2 protein, green structure: ABT-

737 ligand, blue atoms: interacting residues of Bcl-2 protein. The interacting residue numbers of Bcl-2 are 97, 100, 101, 105, 109, 112, 130, 133, 134,

141, 142, 143, 145, 146, 149, 150, 195 and 199. (e) Interaction of Bcl-XL and Bad proteins and their contacting residues (PDB ID: 1g5jAB). Blue

structure: Bcl-XL protein, orange structure: Bad protein, magenta atoms: interacting residues of Bcl-XL protein, Tan atoms: interacting residues of Bad

protein. The interacting residue numbers of Bcl-XL are 97, 100, 101, 105, 108, 112, 115, 116, 126, 129, 130, 133, 134, 142, 143, 145, 146, 150, 198,

199, 203, 204 and 207; and the interacting residue numbers of Bad are 302, 304, 305, 306, 308, 312, 313, 315, 316, 319, 320, 323 and 324 (underlined

ones are computational hot spots found by HotPoint webserver). (f) Interaction of Bcl-XL protein and ABT-737 ligand; and their contacting residues

(PDB ID: 1ysnA). Blue structure: Bcl-XL protein, green structure: ABT-737 ligand, magenta atoms: interacting residues of Bcl-XL protein. The

interacting residue numbers of Bcl-XL are 97, 100, 101, 104, 105, 108, 112, 115, 130, 133, 134, 140, 141, 142, 143, 145, 146, 195 and 199.
identity between Bcl-2 and Bcl-XL is only 49%; however,

their structures are quite similar. MultiProt [74] gives a

root-mean-square-deviation (RMSD) value of 1.41 Å over

131 matched residues when PDB IDs 2xa0A (Bcl-2, 137

residues) and 1g5jA (Bcl-XL, 175 residues) are aligned.

The binding sites of these proteins are also structurally

similar. When the 62 residues of Bcl-2 interact with Bax in

the complex 2xa0, and 70 residues of Bcl-XL interact with

Bad in the complex 1g5j are aligned an RMSD value of

1.26 Å for 50 matched residues is obtained.
www.sciencedirect.com 
ABT-737 inhibits the interaction of Bcl-XL and Bad

proteins, in addition to inhibiting the interaction of

Bcl-2 and Bax proteins. This drug interacts with Bcl-

XL through the binding site of Bad, similar to the

inhibition of the Bcl-2/Bax interaction [104] (Figure 4e

and f). The interacting residues mostly match the com-

putational hot spots and other contacting residues in the

Bcl-2/Bax and Bcl-XL/Bad interactions. Overall, these

examples show that a drug-like ligand inhibits two differ-

ent interactions which have structurally similar interfaces.
Current Opinion in Structural Biology 2012, 22:367–377
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Thus, considering interface similarity, potential side-

effects of drugs can be predicted.

Conclusions
Protein interfaces can provide extremely important and

useful data on protein interactions. They give the

physical contacts, validate the interaction between them,

and illustrate how the proteins interact. A node-and-edge

representation of protein interaction networks illustrates

which proteins interact. By contrast, a structural repres-

entation, which includes detailed interface data of the

protein interactions, can help to understand, how function

is performed. Moreover, because it is physically imposs-

ible for two partners to bind simultaneously at the same

binding site structural networks can differentiate be-

tween potentially co-occurring and competitive inter-

actions of a protein with its partners. Consequently,

structural networks can be used to understand cellular

regulation and signal transmission dynamics. Interface

data are also crucial for drug discovery. Many drugs are

designed to bind at a particular protein interface. How-

ever, the drug can interact with other interfaces which are

similar to that of the target protein, which can lead to

unwanted side effects. Structural networks can help to

detect such off-targets.

To construct structural networks, PPIs should be ident-

ified on a large scale. Because of experimental limitations,

computational methods can be used to complement and

extend experiments. Considering computational feasi-

bility, knowledge-based approaches, like PRISM, appear

more appropriate to map interactome data, as compared to

docking strategies. On the down side, because of tech-

nical limitations which exist when carrying out prediction

on a large scale, PRISM considers query proteins as rigid

bodies; however, in the last flexible refinement step, it

uses a docking refinement tool which allows side chains

and slight protein backbone re-orientation and optimiz-

ation. Flexibility and conformational changes upon bind-

ing are challenging problems in prediction of protein

interactions. Proteins can also change their conformations

because of allostery such as that incurred by prior binding

events or by post-translational modifications, like phos-

phorylation and ubiquitination; however, if the structure

is present in the template set, PRISM can accurately

predict the interactions, and map structural cellular path-

ways. We expect that with time, knowledge-based

approaches will be increasingly used on a large scale.

Because structural motifs recur — in single chain proteins

and in interfaces — methods which are based on these

can be reliable and practical tools.
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