
Our findings reveal that TLR signaling is not
required for robust antibody responses to antigen
when given in four commonly used adjuvants, in
particular FCA,which iswidely thought to depend
on TLR signaling for its adjuvant effect (10).
However, ligands that signal through the MyD88
and TRIF pathways can costimulate these
responses and affect the antibody class of the
response, as has been known for LPS for many
years (3), and is indicated by the modest boost
seen in C57BL/6 mice immunized with Ribi
adjuvant (Fig. 2). By exclusion, our data suggest
the likelihood that non-TLR–mediated “innate”
signals may be involved in the augmentation of
adaptive antibody responses. It is also formally
possible that MyD88/TRIF–independent modes
of TLR signaling are yet to be discovered,
possibly through TRAM and TIRAP, although
so far there is no evidence for this.

Our results extend and clarify previous studies.
A recent paper involving MyD88-deficient mice
asserted that T cell–dependent antibody responses
require activation of TLRs inB cells (4). However,
that inference was based on the use of LPS as an
adjuvant rather than more commonly used
adjuvants such as FCA or alum. Indeed, an earlier
study found that although MyD88-deficient mice
failed to make an IgG2a response to ovalbumin
given in FCA, they still made good IgG1 and IgE
antibody responses, and antigen given in alum
could promote an IgE response (11). However, in
those studies, the remaining antibody responses in
MyD88-deficient mice could conceivably have
involved TLR signaling through TRIF-dependent
pathways, a caveat that does not apply to our data.
We clearly find that IgG2c (also known as IgG2ab)
responses to protein antigen given in alum or
FCA are robust in Myd88−/−;Trif Lps2/Lps2 mice,
in apparent contradiction to both studies of
MyD88-deficient mice mentioned (4, 11) and
other studies implicating a requirement of
MyD88 or TLR signaling in the generation of
IgG2a antibodies. It may be that TLR ligand–
driven suppression of IgG2c/a production oc-
curs in mice with intact TRIF signaling that lack
MyD88; for example, through cytokine-driven
polarization of the T helper response (11, 12).
The IgG2c/a response is promoted by IFN-a/b
or IFN-g (13, 14). In viral infection, the IgG2c/a
response is lost in mice lacking both IFN-a/bR
and IFN-gR (15). Becausewe found good IgG2c
responses upon immunization of Myd88−/−;
Trif Lps2/Lps2 mice, our results may indicate
that these immunizations can stimulate TLR-
independent IFN production.

The antibody response to the T cell–
independent type II antigen TNP-Ficoll was
relatively normal in Myd88−/−;Trif Lps2/Lps2 mice,
although it was slightly lower at later time points.
Interestingly, the IgG3 component of the antigen-
specific response of Myd88−/−;Trif Lps2/Lps2 mice
was not significantly lower than normal despite
their reduced preimmune total serum IgG3 levels.
It has been argued that the class switch to IgG3
requires cytokines produced by accessory cells

(16). If this is so, it is clear from these results that
production of the cytokines in question does not
require TLR stimulation of B cells or accessory
cells.

That B cells can respond to autologous DNA
and RNA through TLR signaling (17, 18) raised
the possibility that TLRs could affect preim-
mune development or maintenance of B cell
subsets, particularly the marginal zone and
B-1 compartments. However, our findings that
Myd88−/−;Trif Lps2/Lps2 mice generate abundant
B-1 and marginal zone B cells appear to rule
out definitively a required role for TLR signal-
ing in their development.

Our data do not contest the long-held under-
standing that TLR ligands can augment antibody
responses. However, it is surprising, given the
recent emphasis on the importance of TLRs in
the initiation of the adaptive immune response,
that we fail to find a deficit in the early antibody
responses of Myd88−/−;Trif Lps2/Lps2 mice using
conventional antigens and immunization regi-
mens. Our data are more consistent with a model
in which TLRs play roles in early microbial
suppression, regulation of the antibody class,
and sustaining antibody secretion at late times
after immunization, rather than as an essential
component of the self/nonself discrimination of
the adaptive immune response. These data have
implications for vaccine design because they
indicate that robust antibody responses to mod-
erate doses of antigens can be achieved when
given in the total absence of TLR ligands.
Because TLR-mediated signals can be toxic,
our findings raise the possibility that unwanted

side effects of adjuvants may be avoided by
excluding TLR ligands from adjuvants.
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Relating Three-Dimensional
Structures to Protein Networks
Provides Evolutionary Insights
Philip M. Kim,1 Long J. Lu,1 Yu Xia,4,5 Mark B. Gerstein1,2,3*

Most studies of protein networks operate on a high level of abstraction, neglecting structural and
chemical aspects of each interaction. Here, we characterize interactions by using atomic-resolution
information from three-dimensional protein structures. We find that some previously recognized
relationships between network topology and genomic features (e.g., hubs tending to be essential
proteins) are actually more reflective of a structural quantity, the number of distinct binding
interfaces. Subdividing hubs with respect to this quantity provides insight into their evolutionary
rate and indicates that additional mechanisms of network growth are active in evolution (beyond
effective preferential attachment through gene duplication).

Protein interaction networks are principal
components of a systems-level description
of the cell (1–4). Many previous studies

have explored global aspects of network to-
pology, clearly linking it to protein function, ex-
pression dynamics, and other genomic features
(5–9). In particular, a protein’s degree (number of
interaction partners) is an important factor, and
proteins with high degree (hubs) have been found

to be essential (3, 7). However, most network
studies have not considered the structural and
chemical aspects of interactions; only recently
have there been proposals to use structural in-
formation for systems biology (10). One specific
problem with the current treatment is that protein
interaction networks do not differentiate between
many types of relationships—e.g., high-affinity
and direct versus loose and transient. Sometimes,
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in fact, interactions are reported that connect two
proteins that never touch each other physically but
are only linked through a third protein (11, 12).

Here we address this problem by combining
structural modeling with network analysis. In
particular, we compiled a consensus yeast in-
teraction network from various sources (13),
filtering out low-confidence interactions by using
statistical methodologies (4). We then annotated

many of the edges in this network structurally on
the basis of sequence similarity to known com-
plexes (Fig. 1). We used simple three-dimensional
(3D)–structural exclusion to distinguish the inter-
faces of each interaction. Consider two or more
proteins interacting with a common partner pro-
tein. If they use the same interface on the partner
(as known from the structures), the interactions
are classified as mutually exclusive. Conversely,
if they use different interfaces, the interactions are
simultaneously possible (Fig. 1). The network
resulting from this analysis (the structural inter-
action network, SIN) contains 873 nodes (pro-
teins) and 1269 edges (interactions), 438 of which
are mutually exclusive (fig. S1). It contains parts
of 147 complexes, suggesting that it covers a
representative range of interactions. [For the SIN
data set and further discussion, see SOM Text,
tables S1 and S3, and (13)]

After building the SIN, we examined its two
different kinds of interactions with respect to the
properties of the linked proteins. As shown in
Table 1, proteins connected by simultaneously
possible interactions are more likely to share the
same function than are those connected bymutually
exclusive ones [in terms of Gene Ontology (GO)
cellular component, molecular function, and bi-
ological process designations]; also, they are more
likely to be expressed at the same time. Conse-
quently, we expect most of the mutually exclusive
interactions to be temporary or transient, because
they cannot occur at the same time. Likewise, the
simultaneously possible interactions are enriched in
permanent associations, connectingmembers of the
same complex (table S4).

Turning to global statistics of the SIN, we find
that it has a degree distribution with a notably
shorter tail than either the complete yeast inter-
actome or a core, filtered subset of this (fig. S2). In
particular, hubs in the SIN have a maximum of 14
interaction partners. This is similar to the number of
close-packed neighbors in crystal lattices (12 in
hexagonal packing) and reflects the direct, physical
constraints on interactions in the SIN. In contrast, in
early yeast interactomes some hubs had >200
interaction partners, and even in newer data sets,
>30 partners are noted for some proteins (7, 14).

Within hubs in the SIN, we compared those
with many physical interfaces (as detected by our
approach) to those with a few—to uncouple de-
gree from interface number (which are corre-
lated). We defined hubs by setting an arbitrary
cutoff of ≥5 interaction partners; variations in this
cutoff did not affect our results (table S5). We
detected differences in the properties between
multi- and single-interface hubs. However, more
statistically significant differences were evident if
we distinguished between hubs with one or two
interfaces (singlish-interface) and those with more

1Department of Molecular Biophysics and Biochemistry,
Yale University, New Haven, CT 06520, USA. 2Department
of Computer Science, Yale University, New Haven, CT
06520, USA. 3Program in Computational Biology and
Bioinformatics, Yale University, New Haven, CT 06520,
USA. 4Bioinformatics Program, Boston University, Boston,
MA 02215, USA. 5Department of Chemistry, Boston
University, Boston, MA 02215, USA.

*To whom correspondence should be addressed. E-mail:
mark.gerstein@yale.edu

Fig. 1. The creation of the
structural interaction net-
work (SIN) data set. All
interactions from the fil-
tered protein interaction
data set are mapped to
Pfam domains (30). The
Pfam domains are mapped
to known structures of pro-
tein interactions by means
of iPfam (31). Only those
interactions in which both
interaction partners (or a
homologous domain of ei-
ther) can be found in a 3D
structure of a protein com-
plex are kept. All interac-
tions are then classified
into mutually exclusive and
simultaneously possible by
3D structural exclusion.
When a protein has more
than one simultaneously
possible interaction, the
number of interaction inter-
faces is counted.

Interactome

Simultaneously
possible
interactions:
Multi-interface
hub

Mutually exclusive
interactions:
Singlish-interface
hub

Interaction with
structurally
resolved interface

Map all interactions to
available homologous
structures of interfaces

Distinguish overlaping
from non-overlapping
interfaces

Simultaneously
possible
interaction

Multi-interface
hub

Mutually
exclusive
interaction

Singlish-
interface hub

PDB

Table 1. Differences of simultaneously possible
versus mutually exclusive interactions with respect
to GO annotations (shared by the interacting
proteins) and coexpression correlation coeffi-
cients. GO biological process, molecular function,
and cellular component are taken from SGD lite
(26) and coexpression correlation from the com-
pendium expression data set (27). All differences
are significant, with P << 0.01.

Simultaneously
possible

interactions

Mutually
exclusive

interactions
Fraction with

same biological
process 14% 24%

Fraction with
same molecular
function 18% 33%

Fraction with
same cellular
component 12% 27%

Coexpression
correlation 0.17 0.23
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than two interfaces (multi-interface). First, we
examined the essentiality of both kinds of hubs.
Although hubs in general aremore likely than other
proteins to be essential for cellular viability (3), as
shown in Table 2, multi-interface hubs are twice as
likely to be essential as singlish-interface ones,
which, in turn, are no more likely to be essential
than the average protein in the SIN. This result
suggests the notion of hubs having a higher
essentiality due to their network centrality is

somewhat incomplete: It is the number of interac-
tion interfaces that leads to higher essentiality.

Furthermore, Table 2 shows thatmulti-interface
hubs are more likely to be coexpressed with their
neighbors than are singlish-interface ones. This
provides a straightforward structural explanation
for the existence of two types of expression
dynamics for hubs (10), date and party hubs (7).
In particular, singlish-interface hubs seem to
correspond to date hubs (which are expressed at

different times than their interaction partners; table
S7), and multi-interface hubs correspond to party
hubs (which are expressed at the same times as
their interaction partners). It is quite reasonable that
the interaction partners of singlish-interface hubs
are not coexpressed, because they would compete
for the same binding interface. On the other hand,
for the partners of multi-interface hubs, it makes
sense to be expressed simultaneously, because they
bind to different interfaces. Multi-interface hubs, in
fact, correspond to central members of protein
complexes, as is evident from cross-referencing
them with known complexes (table S8). A
representative multi-interface hub, for example, is
Arp2p, a member of the Arp2/3 complex.
Conversely, a good example for a singlish-interface
hub is Snf1p, a central protein kinase (see SOM
Text and table S6).

There has been some controversy over wheth-
er hubs are slower-evolving than other proteins
(15–18). A commonly used measure of evolu-
tionary rate is the dN/dS ratio (the ratio of non-
synonymous to synonymous substitutions, also
referred to as Ka/Ks ratio). Table 2 shows that it is
significantly lower for multi-interface hubs than
for the average SIN protein, but not so for
singlish-interface hubs. Although the dependence
of evolutionary rate on protein degree has been
attributed to an underlying effect of expression
level (18), we find that the relationship of evo-
lutionary rate to the number of interfaces is
independent of expression level (whereas that to
the degree is not) (fig. S4). The aforementioned
controversy may have arisen because previous
studies did not differentiate between singlish and
multi-interface hubs. A larger number of inter-
faces may give rise to a lower evolutionary rate
because a larger fraction of residues participate in
interactions. Indeed, Fig. 2 shows that the vari-
ation in a protein’s evolutionary rate can be ac-
counted for better by changes in the fraction of its
accessible surface area involved in interactions
than by degree. This result can be explained sim-
ply from a structural point of view: The average
mutational rate for exposed surface residues is
more than twice as high as for those at an
interface, which, in turn, is slightly higher than
the one for buried residues (table S9) (19). Thus,
as suggested previously (20) and shown in our
analysis, the proportion of a protein's available
surface area involved in interactions should cor-
relate inversely with evolutionary rate.

Finally, we examined network evolution from
a structural perspective. The existing scale-free
network topology (the dominance of hubs) may
have evolved through preferential attachment (21).
Gene duplication is one possible cause of such an
evolutionary process (22, 23), but other factors,
such as preferential rewiring, could contribute as
well (23, 24). As depicted in Fig. 3, if a hub
evolves by duplication, its interaction partners are
expected to be enriched in paralogs (products of
homologous genes originating from within-
genome duplications). As expected (25), we found
that two proteins are significantly more likely to be

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
Evolutionary rate (dN/dS ratio)
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Fig. 2. Dependence of the average evolutionary rate (dN/dS ratio) of a protein with the degree and
the interacting accessible surface area (adjusted by protein size, as estimated from molecular
weight). For the degree correlation coefficient, we get r2 = 0.05, and for the adjusted interface
surface area, r2 = 0.12, suggesting that more than twice as much of the variation in dN/dS is
accounted for by adjusted interface surface area (12%) than by the degree (5%).

Table 2. Correlation of genomic features with singlish and multi-interface hubs. The fraction of
proteins that are products of essential genes (28), the average expression correlation with their
neighbors (27), and the evolutionary rate [dN/dS ratio, from (29)] was calculated for the entire
proteome, the entire SIN, singlish-interface protein hubs, and multi-interface protein hubs. The P-
values of the differences between the whole data set and the singlish interface hubs (all-singlish)
and the singlish and multi-interface hubs (singlish-multi) were calculated with the Wilcoxon rank-
sum test (see Methods in the SOM).

Entire
proteome

All in
data set

P-value
(all-singlish)

Singlish-interface
hubs only

P-value
(singlish-multi)

Multi-interface
hubs only

Protein
essentiality 18.6% 32.3% 0.9 31.8% <0.01 64.9%

Expression
correlation 0.20 0.3 0.17 <0.05 0.25

Evolutionary
rate 0.077 0.047 0.5 0.051 <0.01 0.029

Table 3. Fraction of protein pairs that are paralogs of each other. Random pair: randomly chosen
protein pair from our data set (average); Same partner: fraction of pairs with the same interaction
partner that are paralogs; Same partner, same interface: Fraction of pairs that bind to the same
interface that are paralogs; Same partner, different interface: fraction of pairs with the same
interaction partner, but different interacting interface that are paralogs (calculated from the
platinum standard set only; see Methods in the SOM).

Random
pair

Same
partner

Same partner,
same interface

Same partner,
different interface

Fraction paralogs 0.23% 4.10% 8.10% 0.00%
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paralogs if they share a common partner (Table 3).
However, this is true only if they also share an
interaction interface. We did not find enrichment
for paralogs among interaction partners binding to
different interfaces (Table 3). That is, our analysis is
consistent with the evolution of singlish-interface
hubs through duplication-mutation, whereas it
does not support such an evolution of multi-
interface hubs (Fig. 3). Because multi-interface
hubs are often parts of larger protein complexes,
it appears that protein-complex evolution could
follow a different mechanism.

From our 3D structural analysis of protein
interaction networks, we find that we can dis-
tinguish two fundamentally different types of
network edges. On the one hand, we find a group
of interactions that are simultaneously possible and
a set of multi-interface hubs associated with these.
Multi-interface hubs correspond, in many respects,
to our “classic” notion of network hubs. They are
more likely to be essential and more conserved.
They are most likely members of large and stable
complexes. However, they do not follow canonical
models of network evolution, growing through
gene duplication. On the other hand, we find a
second class of interactions, mutually exclusive
ones, which have a transient character and occur in
singlish-interface hubs. Singlish-interface hubs are
distinctly “nonclassical”: They are neither likely to
be essential, nor conserved. However, in respect to
network growth they do follow the canonical
preferential gene duplication model.
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Characterizing a Mammalian
Circannual Pacemaker
Gerald A. Lincoln,1* Iain J. Clarke,2 Roelof A. Hut,3 David G. Hazlerigg4

Many species express endogenous cycles in physiology and behavior that allow anticipation of the
seasons. The anatomical and cellular bases of these circannual rhythms have not been defined.
Here, we provide strong evidence using an in vivo Soay sheep model that the circannual regulation
of prolactin secretion, and its associated biology, derive from a pituitary-based timing mechanism.
Circannual rhythm generation is seen as the product of the interaction between melatonin-
regulated timer cells and adjacent prolactin-secreting cells, which together function as an
intrapituitary “pacemaker-slave” timer system. These new insights open the way for a molecular
analysis of long-term timing mechanisms.

Endogenous circannual rhythms drivemany
long-term cycles in physiology and be-
havior in long-lived vertebrates (1, 2)

including reproduction (3), hibernation (4, 5),
migration (6), and pelage growth (7), but the
anatomical and cellular bases of such rhythm

generation remain a mystery. We investigated
whether a circannual rhythm may be generated
through a pituitary mechanism, itself dependent
on the circadian system. We focused on the
anterior pituitary control of prolactin secretion,
but similar cell-cell interactions in the brain may

B3’ and A actually evolve
a new binding interface

A

B3’ is an equal interaction
partner of A.

A

AC

C

A

A

B3

B2

B3

B2

B4

B1

B2

B3

B4

B1

B3’

D1

D1

B3

B1

B1

B1

B2

B3

B3’

B1

B2

B3

B2

B3’

Duplicate Gene B3
(preferential attachment)

A

Fig. 3. The concept of network evolution by gene duplication. A given protein may acquire a new
interaction by duplication of an existing one. Given equal likelihood of any gene to be duplicated,
a protein with many partners is more likely to get a new partner than one with few—hence, there
is effective preferential attachment. For singlish-interface hubs, this mechanism is straightforward.
However, for multi-interface hubs, it would then require coevolution of the hub and the duplicated
gene to form a new interface.
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ERRATUM

www.sciencemag.org SCIENCE ERRATUM POST DATE 12 JANUARY 2007 1

CORRECTIONS &CLARIFICATIONS

Reports: “Relating three-dimensional structures to protein networks provides evolutionary
insights” by P. M. Kim et al. (22 Dec. 2006, p. 1938). In note 32, the funding acknowledgment
should read “This work was supported by NIH grants N01-HV-28186 and RR19895.” Addition-
ally, on page 1939, a maximum degree of 14 was reported for the SIN v1; this number refers to
an earlier version of the SIN (v0.9). The SIN v1 as reported in the paper has one node with a
degree of higher than 14. All versions of the SIN and current statistics on them are available at
http://SIN.gersteinlab.org.
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CorreCtions & CLarifiCations

www.sciencemag.org    sCiEnCE    erratum post date    15 FeBruarY 2013 

Erratum
Reports: “Relating three-dimensional structures to protein networks provides evolution-
ary insights” by P. M. Kim et al. (22 December 2006, p. 1938). The column headings for 
Table 1 should be transposed.
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Philip M. Kim, Long J. Lu, Yu Xia and Mark B. Gerstein
Provides Evolutionary Insights
Relating Three-Dimensional Structures to Protein Networks

 
Editor's Summary
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