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We report a template-based method, LT-scanner, which scans the
human proteome using protein structural alignment to identify pro-
teins that are likely to bind ligands that are present in experimen-
tally determined complexes. A scoring function that rapidly accounts
for binding site similarities between the template and the proteins
being scanned is a crucial feature of the method. The overall ap-
proach is first tested based on its ability to predict the residues on
the surface of a protein that are likely to bind small-molecule li-
gands. The algorithm that we present, LBias, is shown to compare
very favorably to existing algorithms for binding site residue pre-
diction. LT-scanner’s performance is evaluated based on its ability to
identify known targets of Food and Drug Administration (FDA)-
approved drugs and it too proves to be highly effective. The spec-
ificity of the scoring function that we use is demonstrated by the
ability of LT-scanner to identify the known targets of FDA-approved
kinase inhibitors based on templates involving other kinases. Com-
bining sequence with structural information further improves LT-
scanner performance. The approach we describe is extendable to
the more general problem of identifying binding partners of known
ligands even if they do not appear in a structurally determined
complex, although this will require the integration of methods that
combine protein structure and chemical compound databases.

protein–ligand interactions | drug off-targets | machine learning |
structure-based prediction

Computational methods that match small ligands to specific
proteins they bind have many practical applications including

protein function annotation and drug discovery/repurposing. Un-
derlying these goals are related but distinct algorithmic challenges
including the following: (i) given a protein, where on its surface does
it bind small molecules; (ii) given a protein, what small molecules
will it bind; (iii) given a small molecule, what proteins will it bind.
There is a large literature on some of these subjects, and this paper
is intended to add to this literature. However, as we discuss below,
the methods we introduce have distinct features that enable us to
account for protein–ligand interactions in the binding site while still
allowing large-scale, genome-wide predictions to be made in a rel-
atively limited amount of time on a modern computer cluster.
Problem i, the prediction of residues on a protein surface that

bind ligands, has been widely studied. Predicted ligand-binding
residues can be used to guide in silico screening of chemical li-
braries using docking or other approaches. Existing structure-based
methods for binding site prediction fall into distinct categories.
One involves the identification of binding pockets on the protein
surface based for example on surface curvature (1, 2). However,
since there can be concave regions on a protein surface that do
not bind small molecules, or conversely, convex/flat regions that
do, programs such as ConCavity (3) and LIGSITECSC (4) com-
bine pocket finding algorithms with sequence conservation in-
formation. FTsite (5) uses docking to probe a protein surface
with various types of chemical groups and uses an empirical
scoring function to identify surface patches that might favorably
interact with those groups. MetaPocket 2.0 (6) and COACH (7)

are “metaservers” that combine results from a range of structure-
based approaches using machine learning.
Although pocket finding and sequence-based methods are often

highly successful, they may miss binding sites that do not display
the expected curvature or sequence characteristics. Template-
based methods rely on the observation (8) that two proteins that
share structural similarity will likely bind ligands at similar geo-
metric locations on their surfaces. This is true even for remotely
related proteins (i.e., different SCOP fold) (9), thus enabling the
exploitation of both close and distant structural homologs in
binding site prediction. Similar observations for protein–protein
binding sites led to the development of the PredUs server, which
has been shown to be extremely effective in predicting regions on
a protein surface that bind other proteins (10–12).
A number of template-based programs that predict ligand-

binding site residues have been reported in the past few years. A
common feature is the use of geometric alignments to super-
impose the structure of a template with a bound ligand (“holo”
structure) on a query structure without ligands (“apo” structure).
Algorithms such as 3DLigandsite (13) and FINDSITE (14, 15)
score residues based in part on the number of superimposed li-
gands within a fixed distance from that residue. Hybrid methods
have also been developed; in particular, the COACH metaserver
(7) combines a number of template-based methods, sequence
conservation information, and ConCavity.
Here, we report a template-based method, “ligand binding site

analysis” (LBias). As in other template-based methods, LBias
first identifies proteins structurally similar to a query protein that
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contains a ligand and then places these structures and their li-
gands in the coordinate system of the query (Fig. 1A). LBias has
a unique scoring function that reflects whether the specific types
of interactions between the template and its ligand could also
form with the query. As will be discussed, LBias performance is
found to compare very favorably to existing state-of-the-art methods,
in part due to its use of binding site similarity in weighting the con-
tribution of a given template.
The success of LBias suggests that its representation of spe-

cific types of protein–ligand interactions might be effective in the
prediction of the proteins that bind to a particular ligand (the
ligand’s “targets”). With this goal in mind, we developed ligand–
target scanner (LT-scanner) a method to predict, on a genome-
wide scale, target proteins for a given ligand based on the LBias
scoring function. LT-scanner takes a ligand–protein complex
structure as input and scans through a protein structure database
to identify proteins that might bind to that ligand (Fig. 1B).
Several computational approaches have been developed pre-
viously for target protein prediction. A number of methods use
binding site similarities to predict targets (16, 17). Others involve
ligand-based quantitative structure–activity relationships (18–
22), although a recently developed approach, FINDSITEcomb

(23), combines both template-based and chemical similarity-
based approaches. LT-scanner was used to predict known tar-
get human proteins of 200 Food and Drug Administration
(FDA)-approved drugs that were extracted from drug–target
databases (24–27). Its encouraging performance and its ability to
account for binding specificity among closely related proteins
suggests that the method can be used effectively for both drug
repurposing and “off-target” prediction (i.e., unintended targets
of a given drug). Notably, using a naive Bayesian network to
combine LT-scanner with a sequence-based approach yielded
further improvement in performance.

Results
Ligand-Binding Residue Prediction. A “structural BLAST” ap-
proach (8) is used to predict potential ligand-binding residues. A
schematic of the LBias workflow is shown in Fig. 1A and is de-
scribed in detail inMaterials and Methods. Briefly, for a given apo
query protein, Q, a database of protein structures is searched to
identify a set of template proteins, {Ni}, where each Ni is
structurally similar to Q and is bound a ligand, Li. (Note that,
here and for the purposes of ligand target prediction described
below, template proteins with >96% sequence identity are

excluded from the database.) Each Ni is superposed on Q, and
each Li is also placed in the coordinate system of Q using the
same transformation. Interactions that Li makes with Ni [van der
Waals (vdW) contacts, hydrogen bonds, aromatic interactions,
and ion pairs] are identified, and a score, SIMi, is calculated that
reflects whether residues in Q could make the same types of
interactions (seeMaterials and Methods and Eqs. 1–3 for details).
For each Ni, SIMi is added to a counter associated with each
residue of Q, if any atom of that residue is within 5 Å of Li.
Fig. 2 displays performance measured in terms of precision

and recall for ligand-binding residue prediction using a range of
benchmark datasets and methods. We first compare LBias per-
formance to a simplified version of the algorithm (“simple
count”) using the LigASite (28) benchmark of experimentally
determined protein/ligand structures (Materials and Methods).
The simple count approach does not account for specific types of
protein–ligand interactions and instead reflects only the fre-
quency with which the set of Ni bind their associated Li’s at
geometrically similar locations on their surfaces. (In the pro-
cedure described above, this is done by setting SIMi = 1 for all i.)
As can be seen in the figure (compare the black and gray lines),
LBias considerably outperforms “simple count,” demonstrating
that there is much added value in the more detailed description
of interatomic interactions contained in the SIM score. The blue
line in Fig. 2 shows the performance of ConCavity on the LigASite
benchmark. As can be seen, LBias outperforms ConCavity over
most of the recall range (<0.8).
We also compared LBias performance on the LigASite

benchmark to other widely used methods: COACH (7), which is
template-based, and FTsite (5), which uses docking. These two
approaches do not report a score for all residues in a given query
protein so it was not possible to plot full precision–recall curves
for them (i.e., if a score is not reported for a true ligand-binding
residue, a recall of 1 may never be achieved for some queries).
Instead, we show precision–recall points (“PR-points”). A PR-
point is another way to compare performance and is defined as
the precision and recall if the number of predicted ligand-
binding residues is equal to the number of true ligand-binding
residues (and therefore precision and recall values become the
same). As shown in the figure, LBias outperforms the other
methods based on this criterion using the LigASite benchmark.
In Table 1, we show the numerical values of the PR-points and

Matthews correlation coefficients for all methods applied to the
LigASite benchmark and several other benchmarks. These in-
clude (i) a benchmark of experimentally determined protein/
ligand structures created by the COACH developers and, to test
the sensitivity of LBias to possible inaccuracies in a given struc-
ture, two benchmarks composed of homology models (Materials
and Methods) of the proteins in (ii) COACH and (iii) LigASite. As

Fig. 1. Overview of LBias and LT-scanner methods. (A) For a given query
protein (shown in green) LBias collects and superposes structure neighbors
A, B, and C (shown in yellow) that are cocrystalized with their bound ligands
(shown in blue). Then LBias predicts the most likely ligand-binding residues
(shown in red and yellow) on the query protein based on collective contact
information that the superposed ligands make. (B) For a given template
cocrystal structure of a drug (shown in blue) and a template protein (shown
in green), LT-scanner scans through protein A, B, and C (shown in orange) for
by superposing the template structure onto each protein so as to create
interaction models. Then LT-scanner calculates the SimLT-scanner interaction
similarity score (shown as SimLT) between the interaction models of the
query–drug complex and the interactions in the binding site of the template.

Fig. 2. Precision–recall curves for ligand-binding residue prediction. Pre-
cision–recall curves are shown for LBias (black line), “simple count” (gray
line), ConCavity (blue line), and random prediction (yellow line) in precision–
recall curve space. Precision–recall points (PR-point; Results) are shown for
LBias, ConCavity, simple count, COACH, and FTsite.
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can be seen from the table, LBias slightly outperforms COACH
on its experimental benchmark. As expected, LBias performance
is worse on the COACH and LigASite benchmarks consisting
of homology models, but its performance on both is nearly
identical. Surprisingly, COACH performance is better on its
homology model benchmark relative to the LigASite crystal
structures and it slightly outperforms LBias on the COACH
models. On the other hand, COACH performance degrades
significantly on the LigASite models. It is not clear why this is
the case.

Genome-Wide Ligand Target Protein Prediction. A “structural
BLAST” approach is used to identify potential targets of a given
small molecule using LT-scanner (Materials and Methods). Fig.
1B describes a schematic of the LT-scanner workflow. In contrast
to LBias, which starts with a protein structure without ligands,
LT-scanner starts with a protein cocrystalized with a ligand, and
searches a structure database for structurally similar human apo
structures to find other potential targets of that ligand. For each
structurally similar protein found in the database, the SIM score
is calculated which, as discussed above, reflects whether or not
the interactions made by the ligand in the starting holo structure
might also be formed in the structurally similar protein.
To evaluate LT-scanner performance, we collected a set of

853 protein structures containing drugs from the Protein Data
Bank (PDB) (29). These represented 622 unique proteins (195
human and 427 nonhuman) and 200 unique drugs. For each of the
853 protein/drug structures, we tested the ability of LT-scanner to
identify other targets of those drugs in a database of apo human
protein structures. This database, termed the human protein
structure set (HPSS), contains ∼300,000 crystal structures and ho-
mology models for ∼15,000 human proteins (more than one model
was used for each protein as described in Materials and Methods).
Fig. 3A plots receiver operating characteristic (ROC) curves

based on a true positive set consisting of 1,887 known drug/target
pairs available in the DrugBank4.0 (24), BindingDB (25), DGIdb
(26), and ZINC15 (27). The true negative set consists of any
protein/ligand pair where the protein is not a known target of the
ligand. In the figure, we compare LT-scanner performance with
an approach that uses sequence rather than structural relation-
ships to identify targets for a given drug. Here, BLAST e-values
between the template and human proteins in HPSS were used to
rank the potential target of a given drug (Materials and Methods).
Fig. 3A also shows results obtained from a naive Bayesian net-
work which combines sequence with LT-scanner (the LT-
scanner/seq algorithm). At a false-positive rate (FPR) of 10−3,
sequence, LT-scanner and LT-scanner/seq recover 14, 272, and
328 known drug–target interactions, respectively.
In Fig. 3B, we compare performance of LT-scanner/seq to

FINDSITEcomb, a recently developed template-based target
prediction algorithm that has been shown to compare favorably
to other widely used approaches (23). To carry out a meaningful
comparison, we apply LT-scanner/seq to the subset of 923 drug/
target pairs common to both our study and the study describing
the FINDSITEcomb method (169 unique drugs and 421 unique

proteins). We also limit the potential targets that LT-scanner/seq
searches to the set of 1,588 proteins used in the FINDSITEcomb

study and also available in HPSS. Hence, the negative set in this
context is any of the 169 × 1,588 protein ligand pairs where the
protein is not known to be a target of the ligand. The red ROC
curve in Fig. 3B describes LT-scanner/seq performance, and the
two gray curves describe FINDSITEcomb performance using two
criteria: excluding drug/protein structures that have >95%
[FINDSITEcomb(95)] or >30% [FINDSITEcomb(30)] sequence
identity to a given potential target. As is evident from the figure,
LT-scanner/seq outperforms FINDSITEcomb(30) and but not
FINDSITEcomb(95) over the full FPR range. However, in the
FPR region of 10−3, LT-scanner/seq yields the best results and
recovered 166 known drug–target interactions followed by
FINDSITEcomb(95) and FINDSITEcomb(30), which recovered
61 and 29 known drug–target interactions, respectively.

Drug Target Specificity: Kinases. Template-based methods might be
expected to encounter difficulties in dealing with specificity dif-
ferences between closely related proteins since global alignments
of such proteins would not necessarily identify subtle differences
in their binding sites. To determine whether the SIMLT-scanner
scoring function can account for such differences, we carried out
a separate study on protein kinases that are quite similar in their
sequences and structures, especially, at active sites.
We extracted a set of 59 kinases from the PDB cocrystalized

with one of 21 kinase inhibitors and used LT-scanner and LT-
scanner/seq to identify other kinases that those inhibitors might
bind from a set of 600 proteins in the known human kinome for
which structures are available in HPSS. The ROC curves in Fig.
3C show that both versions of LT-scanner recover interaction
specificities much better than sequence, indicating that our
scoring function is capturing subtle differences among the active
sites of different kinases.
The human kinome has been classified into eight families

based on sequence similarities within and outside of their cata-
lytic domains, and their known biological functions (30). Four of
the 21 kinase inhibitors are known to target serine/threonine
kinases (which are distributed among different families) as well
as 17 members of the tyrosine kinase family. In Fig. S1, we plot a
radar diagram that shows how kinase targets predicted by LT-
scanner are distributed throughout the eight kinase families.
Most of the tyrosine kinase inhibitors are predicted to target the
tyrosine kinase and tyrosine kinase-like groups, as expected.
However, ∼50% and 44% of the Ca2+/calmodulin-dependent
kinases and some of the serine/threonine kinases, respectively,
are also predicted as targets for tyrosine kinase inhibitors, sug-
gesting that they may be off-targets.
We further analyzed the predicted targets of the inhibitors

of members of the BCR-ABL kinase family. As shown in Fig. S1
C–G, these inhibitors are predicted to primarily target the tyrosine
kinase group, again as expected. However, LT-scanner also
predicts that two tyrosine kinase inhibitors (Bosutinib and
Dasatinib) bind to the protein salt-inducible kinases (SIKs), a
serine/threonine kinase. This computational result is consistent

Table 1. PR-point (PRP) and Matthews correlation coefficient (MCC) for ligand-binding residue prediction

Method

Benchmark datasets

LigASite COACH

Experimental Modeled Experimental Modeled

PRP MCC PRP MCC PRP MCC PRP MCC

LBias 0.61 0.55 0.51 0.52 0.67 0.65 0.52 0.47
COACH 0.51 0.54 0.38 0.40 0.63 0.60 0.55 0.51
ConCavity 0.57 0.52
FTsite 0.41 0.46

The digits in bold are for the best-performing method in each column.
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with recent experimental evidence (31, 32). Although we are not
aware of additional experiments that pertain to the other potential
off-targets, this result, as well as the identification of targets in the
correct kinase families, suggests that at least some of the off-targets
identified may also be correct. The list of predicted kinase inhibitor
targets (FPR < 10−3) is provided in Table S1 as a set of testable
hypotheses.

Discussion
We have presented a template-based method, LBias, to predict
ligand binding site residues for a given protein. Like related
methods, it is based on the superposition of a set of template
proteins that bind ligands onto the query protein. Scoring is
based in part on the number times a superimposed ligand from
that set contact a given residue. However, LBias incorporates a
score that measures whether the protein/ligand interactions in
the template can be reproduced for the same ligand when bound
to the query using an adaptation of the algorithm first introduced
in refs. 33–35. This of course favors contributions from templates
that have binding sites most compatible with that of the query
and appears responsible for much of the effective performance
exhibited by LBias.
Another contributing factor to the success of LBias and LT-

scanner appears to be the use of structural alignments and the
resulting incorporation of information from remote structural
homologs. We have shown previously that information from re-
mote homologs is crucial to the success of the PredUs program
for the prediction of protein–protein interfacial residues (10). As
is the case of protein–protein interaction sites, the existence of
functionally meaningful structural similarities among protein
substructures greatly expands the coverage of template-based
target prediction. Fig. S2 shows the distribution sequence iden-
tities between known human targets and template proteins used
in our predictions. The average sequence identity in Fig. S2 is
26% and the corresponding average for kinases is 37%. This
indicates that LT-scanner is able to exploit distantly homologous
proteins as templates in its prediction.
The results reported here show that LBias compares favorably

to the COACH metaserver. Of course, it is often the case that
programs appear to be most successful in the hands of their de-
velopers, but we have carried out a series of unbiased tests on
datasets that include (i) crystal structures in both the LigASite
database and the one used by COACH, (ii) homology models
used by COACH, and (iii) homology models we constructed for
the LigASite set. COACH, which was independently trained on its

own set of models, slightly outperforms LBias on these models.
Interestingly, its performance is much weaker on the models we
constructed for the LigASite proteins. It is not unreasonable to
expect that every set of models has unique features and that
scoring functions trained on such models will perform the best
when those models are used. The success of COACH on blind
predictions indicates that, when used together with its own set of
models, it is highly effective. In contrast, LBias performance ap-
pears to be the same on both sets (ii and iii above) of models and,
not surprisingly, below that obtained from crystal structures.
LT-scanner was developed to predict target proteins for a

given ligand based on structures of known protein–ligand com-
plexes. We used it in this work to scan human protein structures,
both experimentally determined and homology modeled, for tar-
get protein predictions of FDA-approved drugs. LT-scanner per-
formed similarly to the state-of-the-art FINDSITEcomb program,
although somewhat better in the low FPR range of 10−3. The
ROC curves shown in Fig. 3 underrepresent actual performance
since every prediction of a complex not involving a known protein–
drug interaction is counted as a false positive. Nevertheless, even
based on the performance reported here, LT-scanner appears to
be an effective means of predicting targets in repurposing drugs
and in generating hypotheses as to potential off-targets.
One striking example is the KIT-kinase inhibitor, ponatinib,

binds to LRRK2, a protein kinase that has mutations associated
with Parkinson’s disease (36). The prediction was not trivial
because (i) the template was cocrystal structure of ponatinib and
KIT while the structure of the LRRK2 was obtained from a
homology model based on VEGFR2. (ii) The sequence identity
between KIT and LRRK2 is 8% with whole protein sequence
and 23% with kinase domain alone (BLAST e-value of 1 × e−8).
LT-scanner predicted that ponatinib would bind to LRRK2
based on a Sim score of 0.31, which is associated with an FPR <
10−3. This score reflects the fact that four of the five hydrogen
bonds made in KIT are also found in LRRK2 and many of the
nonpolar contacts are also present, but in some cases with dif-
ferent side chains (Fig. S3 and Table S2).
The fact that the templates used in our predictions often bear

only a weak sequence relationship to the query protein indicates
that many of our predictions are nontrivial in that the template and
query belong to different protein families. The ability of LT-
scanner to detect cross-family relationships is due in part to the use
of the SKA structural alignment algorithm, which is tuned to detect
local structural similarities even in the absence of a strong sequence
relationship or a good global structural alignment. Moreover,

Fig. 3. ROC curves for drug target protein predic-
tions. (A) ROC curves for LT-scanner (black line), LT-
scanner/seq(red line), and Sequence (green line)
were shown to evaluate performance for prediction
of drug targets in the full set of ∼15,000 human
proteins in HSSP. (B) ROC curves for LT-scanner/seq
(red line), FINDSITE_comb(30) (blue line), and FIND-
SITE_comb(95) (gray line) for drugs and proteins
used in both the FINDSITE study and this study.
(C) ROC curves for LT-scanner/seq (red line), LT-scanner
(black line), Sequence (green line), and random
(purple line). Curves calculated for 21 FDA-approved
kinase inhibitors and 600 human kinases.
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LT-scanner uses multiple templates that cover different protein
families. For example, 79 different template structures were used
for target protein prediction for the FDA-approved drug Adeno-
sine. Those 79 templates have a wide range of pairwise protein
structure distances (PSDs) as shown in the Fig. S4. PSD > 1 for a
given pair of proteins generally implies that they belong to different
SCOP folds. Indeed, the 79 proteins used as templates for Aden-
osine cover 27 different SCOP folds (37) (listed in Table S3) and
25 different ECOD X-groups (38) (listed in Table S4).
While LT-scanner uses protein structural similarity to identify

drug targets, it does not exploit chemical similarity to derive
relationships between proteins based on the ligands they bind
as is done for example in FINDSITEcomb and SEA from the
Shoichet group (21, 23). We thus expect that combining LT-
scanner with ligand-based approaches will yield both improved
performance including greatly expanded coverage of potential
targets. The strategy used in LT-scanner can also be applied to
the problems mentioned in the introduction—the prediction of
ligands that bind to a given query protein. This would involve
searching a database of protein–ligand structures for proteins
that align with the query and then using the LBias SIM score to
identify potential small-molecule binders. Finally, we note the
close relationship between LBias to the PredUs (11) program
that predicts interfacial residues in protein–protein complexes,
and between LT-scanner and PrePPI (39) that predicts protein–
protein interactions. Both sets of programs are based on struc-
tural alignment and both utilize scoring functions that allow
predictions to be made on a genome-wide scale. Their integra-
tion, combined with chemical similarity measures applied to com-
pound databases, will offer a structure-informed genome-wide view
of protein–protein and protein–ligand interactions, which in turn
will enable numerous biomedical applications.

Materials and Methods
Ligand-Binding Residue Prediction.
Benchmark datasets. The LigASite (28) database (release 9.7) was downloaded
from ligasite.org/. LigASite contains structural information for 391 proteins
and their ligands. For each protein, the database has two experimentally
determined structures corresponding to the apo and holo forms. Only the
apo form was used to predict ligand-binding residues. We downloaded the
ConCavity ligand-binding residue predictions and scores for 317 of these
structures from compbio.cs.princeton.edu/concavity/. The results described
above are for this subset of LigASite. For this and other benchmarks sets, we
define ligand-binding residues as those that make contacts (distance cut-
off ≤ 5 Å) with ligands within the same chain in the holo form of the protein.

The COACH experimental benchmark was downloaded from https://zhanglab.
ccmb.med.umich.edu/COACH/benchmark/receptor.tar.bz2 and contains in-
formation on 814 proteins and their ligands. As discussed below, LBias requires
that ligands have molecular weight between 200 and 1,000 Da, so that results
reported in Fig. 1 are for the COACH subset of 522 protein/ligand structures
(425 unique proteins) where the ligand meets that criterion.

The benchmark composed of homology models of the LigASite proteins
was constructed using the same protocol described in ref. 39, except that the
proteins used to construct the models were required to have less than 30%
sequence identity to a given LigASite protein to be consistent with the 30%
sequence identity cutoff (7) The modeled COACH benchmark was down-
loaded from zhanglab.ccmb.med.umich.edu/COACH/benchmark/I-TASSER.
tar.bz2, and, to the best of our knowledge, the same sequence identity
criterion was used in its construction. The COACH software was also down-
loaded from the website (https://zhanglab.ccmb.med.umich.edu/I-TASSER/
download/) and run locally. Results for FTsite were obtained from the web
server (ftsite.bu.edu/).
LBias method. A total of 105,646 holo forms of protein chains with bound
ligands of molecular weight between 200 and 1,000 Da was collected from
the PDB (May 2016). The Open Babel Package (40) was used to add hydro-
gens to all titratable groups on these proteins and their ligands assuming a
pH of 7 and standard pKa values. The Cd-hit (41) program was used to cluster
these proteins based on their sequence at a cutoff of 60% identity, resulting
in 10,292 clusters. For a given query protein, Q, a query-specific protein
structure database was constructed from the members of each cluster that
has the highest sequence identity (but less than 96%) with the query pro-
tein. To maximize diversity in the set of ligands, if other proteins in each
cluster with >60% identify to proteins already selected from that cluster

were also available in the PDB but that were cocrystalized with structurally
different ligands, these structures were also included in the database.
Structurally different ligands were defined arbitrarily as having a Tanimoto
coefficient (42) (see Supporting Information for details) less than 0.3. Pro-
teins structurally similar to the query are then identified in this database
using the program SKA (43, 44) using a protein structural distance cutoff
of 0.8. These structural “neighbors” {Ni} are then used in the prediction of
ligand-binding residues of the query protein as follows.

Each Ni is superimposed on Q and the same transformation is applied to
the Ni’s associated ligand, Li, so as to place Ni, Q, and Li in the same coordinate
system (Fig. 4). We identify four types of interactions between atoms in Ni and
Li: (i) hydrogen bonds (distance ≤3.5 Å and angle > 120°) (45), (ii) aromatic–
aromatic interaction (distance ≤5 Å) (46), (iii) ion pairs (distance ≤5 Å) (46),
and (iv) vdW contacts (0.5*

P
rvdW <distance≤ 1.2*

P
rvdW) (46), where

P
rvdW

is the sum of the vdW radii for given pair of atoms, taken from the Open
Babel parameter set (40). To measure the degree to which interactions be-
tween Ni and ligand Li could also form between Q and Li, a protein–ligand
interaction similarity score, SIMðQL,NLÞ, is calculated as follows (adapted from
refs. 33–35):

SQL :NL =
XnQ

u

XnN

w

muwe−γr
2
uw , [1]

SIMðQL,NLÞ= SQL :NL

maxðSQL :QL, SNL :NLÞ, [2]

where r2uw is the distance between an atom of Q and an atom of Ni forming
an interaction of a given type with Li. muw is a matching index (equal to 1 if
these atoms are involved in at least one identical type of interaction among
the four types or 0 otherwise), and γ is a scaling factor that attenuates dis-
tant interatomic interactions (35) and is set to 0.7 in this work [the attenu-
ation effect of different scaling factors, γ, on distance ranges between (0 ∼ 3 Å)
is shown in Fig. S5]. SIMðQL,NLÞ is zero when there is no relationship be-
tween the two protein–ligand interactions and is equal to 1 for identical
interacting binding sites where all ligand-binding atoms in both structures
superimpose perfectly. For each residue of the query protein, the final LBias
score, R, reflecting the likelihood of interacting with a ligand is calculated as
follows:

R=
Xn

i=1

SIMðQL,NLÞ2, [3]

where the n is the number of ligands in {Li} that have an atom within 5 Å of
an atom of that residue.
Precision–recall curves. For a given query protein, all its residues were sorted
based on the value of R described above. The list then was used to calculate
precision and recall to obtain a precision–recall curve (11, 47) (see Supporting
Information for details).

Fig. 4. Calculating LBias SIM score. A query protein Q is shown at Left with
three atoms, q1, q2, and q3, identified specifically. The second panel shows a
ligand-containing protein NL, structurally similar to Q with the ligand shown
as a gray line connecting two gray atoms. Ligand-binding residues, n1 and
n2, are identified. The NL complex is superposed onto Q. Residues from Q
that interact with the superposed ligand are identified (q1 and q2 in the
above). A protein–ligand similarity score between QL and NL (SQL:NL) is then
calculated, where SQL :NL =m11e−γr

2
11 +m12e−γr

2
12 +m21e−γr

2
21 +m22e−γr

2
22 . SQL:NL

is a function of all of the pairwise distances (e.g., r11, r12) between the atoms
from Q interacting with the superposed ligand and the atoms from N
interacting with the native ligand if the two atoms in question make
chemically similar contacts with the ligands. For example, if n1 makes a hy-
drogen bond with the ligand, but q1 is hydrophobic, m11 would be zero and
there would be no contribution to SQL:NL from this pair of atoms (Materials
and Methods).
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Ligand Target Prediction.
Protein structures. Three-dimensional models for full-length human proteins and
their subdomains in HPSS were constructed using the same protocol described in
ref. 39, with the exception thatmultiplemodels for each protein were constructed
from up to 10 different templates if the e-values for those templates were <10−12.
Approximately 340,000 models for 14,964 proteins were constructed. The use of
multiple models is a way to account both for conformational variability and to
reduce the general uncertainty associated with homology models.
The LT-scanner algorithm and performance. To identify potential targets of a
ligand/drug, an experimentally determined cocrystal of a protein containing
that ligand is needed. This structure is superimposed on all structurally similar
protein structures in HPSS (as defined by a SKA protein structural distance
cutoff of 0.8) and SIM(QL,NL) is calculated for each as described above. For a
given protein, we define SimLT-scanner to be the highest value of SIM(QL,NL)
obtained for all available models of that protein. ROC curves were obtained
using a procedure similar to that described above precision–recall curves. All
human proteins were put into a list sorted based on SimLT-scanner. This list is
scanned in order and TPR [TP/(TP+FN)] and FPR [FP/(TP+FP)] were calculated
for each true-positive protein/target pair encountered.

Sequence similarity was independently used to identify targets related to a
given template–ligand complex. Template protein sequences were used as
query sequences and e-values were calculated for human proteins in HPSS.
The ROC curve for sequence was obtained by ordering the sequence hits
based on BLAST e-value.

We used a naive Bayes approach to combine LT-scanner and Sequence (see
Supporting Information for details). The naive Bayes, LT-scanner/seq, was
trained based on 1,342 positives taken from drug–target interactions in
DrugBank (24), BindingDB (25), and DGIdb (26) and 638,855 negatives that
do not appear in those databases [545 known drug–target interactions from
ZINC15 (27) were not included for training]. The LT-scanner/seq likelihood
ratio (LR) is the product of the LT-scanner LR and Sequence LR.
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