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Abstract

Motivation: Predicting the conserved secondary structure of homologous ribonucleic acid (RNA)

sequences is crucial for understanding RNA functions. However, fast and accurate RNA structure

prediction is challenging, especially when the number and the divergence of homologous RNA

increases. To address this challenge, we propose aliFreeFold, based on a novel alignment-free ap-

proach which computes a representative structure from a set of homologous RNA sequences using

sub-optimal secondary structures generated for each sequence. It is based on a vector representa-

tion of sub-optimal structures capturing structure conservation signals by weighting structural

motifs according to their conservation across the sub-optimal structures.

Results: We demonstrate that aliFreeFold provides a good balance between speed and accuracy

regarding predictions of representative structures for sets of homologous RNA compared to trad-

itional methods based on sequence and structure alignment. We show that aliFreeFold is capable

of uncovering conserved structural features fastly and effectively thanks to its weighting scheme

that gives more (resp. less) importance to common (resp. uncommon) structural motifs. The

weighting scheme is also shown to be capable of capturing conservation signal as the number of

homologous RNA increases. These results demonstrate the ability of aliFreefold to efficiently and

accurately provide interesting structural representatives of RNA families.

Availability and implementation: aliFreeFold was implemented in Cþþ. Source code and Linux

binary are freely available at https://github.com/UdeS-CoBIUS/aliFreeFold.

Contact: aida.ouangraoua@usherbrooke.ca

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The folding structure of non-coding ribonucleic acid (RNA) is cru-

cial for their functions. Indeed, the role of many non-coding RNA

such as transfer RNA, ribosomal RNA or RibonucleaseP RNA is in-

trinsically related to their conformations. For instance, the typical

cloverleaf shape of transfer RNA secondary structure is required for

carrying amino acids to the ribosome for the translation mechanism.

Accurately predicting RNA secondary structure is a challenge and it

is essential for subsequent RNA functional analyses.

Single-sequence and comparative approaches have been devised

for predicting RNA secondary structures from a single RNA se-

quence or a set of homologous RNA sequences. Regarding single-

sequence approaches, several methods have been developed to com-

pute a structure satisfying a given criterion of optimality. The most

popular criterion is the free-energy minimization hypothesizing that

the functional structure of an RNA is the most stable one i.e. the

structure with minimum free energy (MFE). RNAfold (Lorenz et al.,

2011), UNAFold (Markham and Zuker, 2008) and RNAstructure

(Bellaousov et al., 2013) are popular methods based of the latter cri-

terion. A major shortcoming of single-sequence approaches is their

limited accuracy. In fact, they are able to retrieve only on average

60–70% of the true base pairs, decreasing to 40% for long sequen-

ces (Doshi et al., 2004; Mathews et al., 1999). The incomplete en-

ergy model and the ignorance of tertiary interactions and protein

stabilizing the structure are the main causes explaining the limited

accuracy of single-sequence approaches. Compared to the latter,

comparative approaches have been shown to yield structures with

improved accuracy (Puton et al., 2013).

Comparative approaches compute the consensus secondary

structure common to a set of homologous RNA sequences, making

use of the structure conservation among the sequences. It has been

shown that the best performing approaches for RNA secondary
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structure prediction are comparative approaches (Puton et al., 2013)

such as CentroidAlifold (Hamada et al., 2011), MXSCARNA

(Tabei et al., 2008), RNAalifold (Lorenz et al., 2011) and

TurboFold II (Tan et al., 2017). The conservation of base pairs

associated with compensatory mutations is a strong signal of struc-

tural conservation that is exploited by comparative approaches.

This explains the superiority of the latter over single-sequence

approaches.

Comparative methods can be categorized into two classes. First,

there are the methods that treat the sequence and structure informa-

tion separately usually by aligning then folding sequences. Second,

there are the methods that integrate in the folding prediction pro-

cess, the sequence and structure information by aligning and folding

sequence simultaneously. The first class of methods derives consen-

sus structures from precomputed multiple alignments of homolo-

gous sequences like for RNAalifold (Lorenz et al., 2011) and

CentroidAlifold (Hamada et al., 2011). The prediction accuracy of

these approaches is constrained by the accuracy of multiple sequence

alignment algorithms which starts to drop significantly when

sequences are dissimilar i.e. have less than 60% percentage of se-

quence identity (PID; Bremges et al., 2010; Gardner et al., 2005).

The second class of methods bypasses this limit because they simul-

taneously align and fold RNA sequences. These methods originated

from the well-principled approach originally developed by Sankoff

(Sankoff, 1985) are based on the idea that the consensus structure

must optimize at the same time the scores of the sequence and struc-

ture alignments of homologous RNA. However, this approach is

time-consuming in practice as it is associated with an exponential

time complexity, i.e. O n6
� �

, for a pair of sequences of length n.

Heuristics have been developed to make the Sankoff approach more

practical leading to methods such as DynAlign (Fu et al., 2014),

Foldalign (Havgaard et al., 2007), LocarNA (Will et al., 2007), RAF

(Do et al., 2008), SPARSE (Will et al., 2015) or MXSCARNA

(Tabei et al., 2008).

While approaches that simultaneously align and fold sequences

perform generally better at lower PID than approaches aligning then

folding sequences, the former are typically slower than the latter.

Therefore, there is room for the development of fast methods

yielding accurate results regardless of the PID. In this direction,

alignment-free approaches, such as RNAcast (Reeder and Giegerich,

1991), are promising since their complexity are usually linear in the

number of sequences and provide framework to predict RNA sec-

ondary structures. RNAcast explores the set of abstract shapes of

sequences in order to find a representative shape. An abstract shape

is a coarse-grained representation of structures such that, for in-

stance, a structure ((.((.)).)) is represented by the abstract shape [[]]

comprising only two stems. One limitation of RNAcast is that there

is no guarantee of finding a representative shape and this depends

on the number of generated shapes to explore. A solution for this

limitation is to consider sub-optimal structures. Regarding sub-

optimal structures, it has been shown that, for a sequence having

less than 800 nucleotides, there is always, within the first 25 sub-

optimal structures, an ideal sub-optimal structure having on average

80% common base pairs with the curated one (Zuker et al., 1991).

Moreover, another study showed that finding an appropriate struc-

tural template from sub-optimal structures allows to capture RNA

homology even in divergent species (Pánek et al., 2011). In fact, they

explored sub-optimal structures of 6S RNA from divergent species

and found a structural template having common features with most

6S while exhibiting known functional property of this family.

Consequently, exploring sub-optimal structures of homologous

sequences and particularly the first 25, can lead to the discovery of

an accurate representative structure associated with functional prop-

erties of RNA. However, effectively and efficiently computing the

representative structure is challenging since it requires to define an

appropriate way to calculate the representative capturing conserved

structural features across sub-optimal secondary structures. Note

that the RNAspa method (Horesh et al., 2007), which can be consid-

ered as a fold-then-align approach has been developed to predict

secondary structures by exploring the similarity of generated sub-

optimal structures. However, it still includes a structure alignment

procedure to make the prediction.

To address the challenge of finding a representative structure

from a set of sub-optimal structures of homologous sequences,

we propose a novel alignment-free approach named aliFreeFold.

The main idea of aliFreeFold is to weight structural features of sub-

optimal structures according to their conservation across the sub-

optimal structures. In this respect, aliFreeFold computes a weighted

n-motifs representation such that each sub-optimal structure is rep-

resented by a vector of n-motifs occurring in the structure. A n-motif

is a set of adjacent elementary motifs such as hairpin, stem, bulge,

internal or multiple loops (Glouzon et al., 2017). Each n-motif is

weighted according to a conservation index measuring how well the

n-motif is conserved across the set of sub-optimal structures.

The structure representing the whole set of sub-optimal structures is

the structure comprising the most conserved structural features. It is

computed as the sub-optimal structure closest to the centroid, i.e.

the mean vector, of the weighted n-motif representation. The main

contributions of aliFreeFold can be described as follows:

i. It identifies from the set of sub-optimal structures a representa-

tive structure close to the functional ones. aliFreeFold finds

most of the time a structure having at least 80% correct base

pairs.

ii. It makes fast and accurate predictions since it relies on an

alignment-free approach that is based on a vector representa-

tion of sub-optimal structures.

iii. It effectively captures increasing structural conservation signals

compared to align-and-fold and align-then-fold approaches.

2 Materials and methods

aliFreeFold takes as input a set of unaligned RNA homologous

sequences and ouputs a representative structure. It generates the first

25 sub-optimal structures for each sequence using RNAsubopt

(Lorenz et al., 2011) as the hypothesis is that the first 25 sub-

optimal structures comprise an ideal structure i.e. having on average

80% correct base pair (Zuker et al., 1991). Then aliFreeFold com-

putes a structural motif-based representation of all sub-optimal

structures capturing structural features. After that, the motif-based

representation is transformed into a weighted motif-based represen-

tation using a conservation index. Finally, a representative structure

of all sub-optimal structures is derived from the weighted motif-

based representation by computing the closest structure to the

centroid. Figure 1 presents an outline of aliFreeFold approach con-

sidering three sequences where only two sub-optimal structures

were generated for each sequence.

2.1 N-motif representation
aliFreeFold represents each sub-optimal structure of a RNA se-

quence using the n-motif representation (Glouzon et al., 2017). The

latter representation captures structural features of the sub-optimal

structures by representing each structure by a vector of occurring

n-motifs counts. A n-motif is an elementary RNA structural motif
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such as multi-loop (M), hairpin loop (H), stem (S), internal loop (I),

external loop at 5’ (E5) and 3’ end (E3), bulge (B), pseudoknot (P)

with its adjacent motifs. Adjacent motifs are shown in square brack-

ets ‘[]’. For instance, S[HM] denotes a n-motif which is a stem hav-

ing a hairpin and multi-loop as adjacent motifs. It is important to

note that S[HM] and S[HM] represent the same n-motifs since the

stem S shares with a multi-loop and a hairpin loop H an adjacency

relationships. The n-motif representation also integrates properties

of the motifs such as the number of single stranded bases for hairpin

loop, external loop and bulge, the symmetry or asymmetry of an in-

ternal loop and the number of base pairs for stem and pseudoknot.

For example, S_3[H_5B_2] denotes a stem of 3 base pairs having a

hairpin and bulge of, respectively, 5 and 2 single-stranded nucleoti-

des as adjacent motifs. A detailed description of n-motifs is provided

in (Glouzon et al., 2017).

Formally, for a total number of n sub-optimal structures and m

n-motifs, the n-motif representation of sub-optimal structures yields

a n�m matrix X ¼ fxijg, where xij is the number of occurrences of

the n-motif j in the sub-optimal structure i. For instance, in Figure 1

the n-motif M representing multi-loop occurs once in the sub-

optimal structure number 2 from the sequence denoted by

‘>M33000.1/55–100’. The n-motif representation is able to

integrate information related to circular RNA by ignoring informa-

tion related to external loops. aliFreeFold represents the structural

features of sub-optimal structures by computing the n-motif repre-

sentation that is then transformed into a weighted n-motif represen-

tation, considering the n-motifs conservation across the sub-optimal

structures.

2.2 Weighted n-motif representation
The n-motif representation is transformed into a weighted n-motif

representation using a conservation index giving more importance

to conserved n-motifs. This index is inspired from the diversity index

used in ecology to quantify how many different species, genus or

families are present in a population (Hill, 1973; Jost, 2006). The

conservation index of a n-motif j, denoted by wj is defined as an

entropy-based function measuring how well a n-motif j is conserved

across all sub-optimal structures of all homologous sequences. wj

computation is given by:

wj ¼
1

e
P

k
pkj� log pkjð Þ (1)

where pkj is defined as pkj ¼
jfxi :xij¼nkjgj

n with jfxi : xij ¼ nkjgj repre-

senting the total number of structures having nkj occurrences of

Fig. 1. Outline of AliFreefold approach. AliFreeFold takes as input a set of homologous sequences. It computes the n-motifs representation of the sub-optimal

structures of sequences which are generated using RNAsubopt. The weighted n-motifs representation is then computed by weighting n-motifs according to the

level of conservation. Finally, the representative structure is derived by extracting the sub-optimal structure closest, in terms of distance, to the centroid of all

sub-optimal structures represented by the weighted n-motifs representation
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n-motif j. nkj is defined as a specific number of occurrences of

n-motif j. When wj is high (resp. low) this indicates that the n-motifs

is highly (resp. weakly) conserved. For example, in Figure 1, the

n-motifs j (Multi-loop M) represented by a vector of occurrences

(1, 0, 1, 1, 1, 1) is associated with n:j ¼ 0;1ð Þ and is highly

conserved since M occurs once in most sub-optimal structures.

The computation of wj leads to a transformed matrix, X0, defined

as: X0 ¼ fx0ijg where x0ij ¼ xij �wj. This latter matrix represents the

weighted n-motif representation of the sub-optimal structures.

2.3 Representative structure
The representative structure is the structure having the most com-

mon structural features with the sub-optimal structures of homolo-

gous sequences. It is computed as the sub-optimal structure closest,

in terms of distance, to the centroid of all the sub-optimal structures

represented by the weighted n-motifs representation. The represen-

tative structure i is defined as the structure satisfying the following

criterion:

arg min
i

d x0i; c
� �

(2)

where d x0i; c
� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

j¼0
x0ij � cj

� �2
r

is the Euclidean distance be-

tween the structure represented by x0i and the centroid c ¼ 1
n

Pn
i¼0 x0i.

2.4 aliFreeFold time and space complexity
The time and space complexities of aliFreeFold are O al4 þ nm

� �
and O al2 þ nm

� �
where n represents the total number of generated

sub-optimal structures for all sequences, a is the number of homolo-

gous sequences, m is the number of n-motifs and l is the length of

the sequences. O l4
� �

and O l2
� �

are associated to RNAsubopt

(Lorenz et al., 2011; Wuchty et al., 1999) time and space complexity

whereas O(nm) is the time and space complexity for computing the

n-motif based representation and the representative structure. It is

important to note that by default n ¼ 25a since the ideal structure

having on average 80% correct base pairs can be found within the

25 first sub-optimal structures. The main component of aliFreeFold

computation is mostly related to the complexity of RNAsubopt with

the generation of the sub-optimal structures.

3 Results

3.1 Dataset
aliFreeFold has been evaluated based on a dataset composed of 30

non-coding RNA families (Table 1 and Supplementary Material)

from BRALIBASE II (Gardner et al., 2005) and MXSCARNA data-

set (Tabei et al., 2008). Each family is composed of a set of homolo-

gous sequences with each sequence being associated with a

corresponding secondary structure. The latter is obtained by projec-

ting the validated consensus structure of the corresponding family

onto the sequence using the ViennaRNA script refold.pl (Lorenz

et al., 2011). Families are diverse in terms of the number of homolo-

gous sequences, the average PID and the average sequence length

respectively ranging from 16 to 98 sequences, from �58% PID to

�98% PID and from �48 nt to �463 nt length. The average PID is

defined as the mean ratio of the number of matching nucleotides

over the length of the smallest sequence, computed from pairwise

aligned sequence using Biostrings R package (Pages et al., 2008).

3.2 Compared methods
We selected seven RNA structure prediction methods RNAspa

(Horesh et al., 2007), RNAcast (Reeder and Giegerich, 1991),

SPARSE (Will et al., 2015), TurboFold II (Tan et al., 2017),

MXSCARNA (Tabei et al., 2008), CentroidAlifold (Hamada et al.,

2011) and RNAalifold (Lorenz et al., 2011), for comparison with

aliFreeFold, in terms of prediction accuracy and efficiency.

TurboFold II, MXSCARNA, CentroidAlifold and RNAalifold were

selected since they are among the best performing comparative

approaches (Puton et al., 2013). SPARSE was also selected because

it was shown to be more efficient and accurate than other methods

simultaneously aligning and folding sequences such as RAF (Do

et al., 2008) and Locarna (Will et al., 2007). RNAspa was chosen

because it uses, as aliFreeFold, sub-optimal structures generated via

RNAsubopt combined with a structure alignment procedure to pre-

dict structures. It is important to mention that all the performance

results for RNAcast are made on the subset of 23 families having

less than 182 nt average sequence length because RNAcast ran out

of memory above this threshold. All algorithms were run using de-

fault parameters, except for RNAcast for which the percent sub-op-

timality number parameter was increased to enforce prediction in

case where no prediction was obtained. It would have been interest-

ing to select approaches such as GraphClust (Heyne et al., 2012) or

BlockClust (Videm et al., 2014) using a sub-graph decomposition

framework to represent RNA and similar to the n-motif representa-

tion. However, it is not possible to include GraphClust and

BlockClust in the evaluation procedure because they serve a different

Table 1. Statistics of RNA families used in the experimentation

Family Nb

of

seq.

Avg. PID Avg. seq. length

BRALIBASE II

(Gardner et al., 2005)

g2intron 70 65.882 6 8.062 83.129 6 21.266

rRNA 98 63.347 6 9.254 117.551 6 2.483

tRNA 72 58.118 6 10.699 72.306 6 2.891

U5 80 70.518 6 11.145 118.162 6 4.853

MXSCARNA

(Tabei et al., 2008)

RF00002-5-8S_rRNA 46 71.941 6 9.16 154.065 6 6.198

RF00003-U1 42 67.681 6 10.378 158.048 6 7.73

RF00004-U2 51 72.533 6 8.144 185 6 17.233

RF00008-Hammerhead_3 54 73.695 6 12.659 55.593 6 6.356

RF00011-RNaseP_bact_b 19 68.409 6 7.725 391.105 6 20.08

RF00012-U3 17 67.099 6 10.473 246.529 6 48.758

RF00015-U4 25 74.138 6 10.812 141.4 6 8.718

RF00017-SRP_euk_arch 49 58.704 6 9.567 294.49 6 11.518

RF00019-Y 16 73.112 6 10.184 94.688 6 11.898

RF00023-tmRNA 36 60.047 6 6.007 374.611 6 22.09

RF00024-Telomerase 24 69.91 6 9.578 463.125 6 32.332

RF00025-Telomerase 16 69.203 6 10.443 168.938 6 16.027

RF00031-SECIS 49 54.205 6 8.691 64.592 6 3.278

RF00037-IRE 37 67.658 6 17.802 28.757 6 1.442

RF00045-U17 23 75.837 6 8.466 214.174 6 7.088

RF00050-RFN 28 69.952 6 5.845 150.179 6 11.845

RF00162-S_box 17 72.446 6 6.275 128.941 6 17.594

RF00163-Hammerhead_1 21 98.078 6 1.195 115.095 6 5.281

RF00164-s2m 37 78.798 6 9.912 42.919 6 0.682

RF00167-Purine 35 62.371 6 5.52 99.571 6 0.884

RF00168-Lysine 37 59.646 6 5.828 179.838 6 6.56

RF00169-SRP_bact 55 62.417 6 8.332 95.309 6 8.613

RF00181-sno_14q_I_II 42 70.603 6 9.011 73.976 6 4.027

RF00233-Tymo_tRNA 28 71.698 6 10.734 82.643 6 2.87

RF00236-ctRNA_pGA1 17 77.224 6 12.086 80.294 6 1.724

RF00436-UnaL2 60 78.47 6 9.396 54.4 6 1.861
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purpose, namely clustering of RNA secondary structures, compared

to all the other selected approaches that are for structure prediction.

3.3 Evaluation criteria
We evaluated aliFreeFold capability to perform accurate and effi-

cient predictions of RNA secondary structures from homologous

sequences regarding four different criteria. First, we measure the

ability of the method to extract accurate structural features from a

set of sub-optimal structures. Second, we compare the prediction ef-

fectiveness of the state-of-the-art RNA structure prediction methods

with aliFreeFold. Third, we compare the prediction efficiency of the

same set of methods. Fourth, we measure how the effectiveness of

the method evolves when the number of homologous sequences

increases.

We use the following performance metrics. The positive predict-

ive value (PPV) represents the quantity of the predicted base pairs

that are retrieved in the reference structure. The sensitivity (SENS)

represents how much of the known base pairs of the reference struc-

ture have been found in the predicted one. The Matthew correlation

coefficient (MCC) summarizes the SENS and the PPV. SENS and

PPV are bounded between [0, 1] where 1(resp. 0) means for PPV

that all (resp. none) base pairs in the reference are found in the pre-

dicted structures and for SENS that all (resp. none) base pairs in the

predicted structures are found in the reference. MCC is bounded be-

tween –1 and 1. MCC score of 1 (resp. –1) means that the overall

prediction is perfect (resp. wrong). SENS, PPV and MCC are com-

puted as followed:

SENSITIVITY ¼ TP

TPþ FN

POSITIVE PREDICTIVE VALUE ¼ TP

TPþ FP� �ð Þ
MATTHEW CORRELATION COEFFICIENT

¼ TP � FN� FP� �ð Þ � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþ FP� �ð Þ TPþ FNð Þ TNþ FP� �ð Þ TNþ FNð Þ

p

where the true positives, the true negatives, the false negatives and

the false positives represent, respectively, the number of correctly

predicted base pairs, the number of nucleotide pairs correctly identi-

fied as not forming base pairs, the number of base pairs in the refer-

ence not predicted and the number of wrongly predicted base-pairs.

� represents the number of base pairs in the predicted structures that

are compatible with base pairs in the reference. A predicted base

pair (i, j) is compatible relative to a base pair (k, h) of the reference

structure when they are neither inconsistent i.e. there is no (i, k) or

(j, h) base pair in the reference, nor contradicting i.e. k< i<h< j and

i<k<j<h are not satisfied meaning base pairs are not crossing.

In the first evaluation, the performance of aliFreeFold is assessed

regarding its capability to systematically compute a representative

structure having at least 80% correct base pairs compared to the

validated structure (Table 2). This threshold is derived from a study

showing that for a sequence having less than 800 nucleotides, there

is always, within the first 25 sub-optimal structures, an ideal sub-

optimal structure having on average 80% common base pairs with

the validated one (Zuker et al., 1991). We further validate this

threshold by evaluating the average percentage of correct base pairs

relatives to the increasing number of homologous sequences and

considering the first 25 sub-optimal structures for each sequence

(Fig. 2). Finally, we evaluate the impact of using a conservation index

in order to compute the weights of n-motifs in the weighted n-motif

representation and the effect of increasing the number of sub-optimal

structures on the prediction quality of aliFreeFold (Fig. 3).

In the second and third evaluations, we compare the accuracy of

predicted secondary structures and the efficiency of aliFreeFold,

RNAspa (Horesh et al., 2007), RNAcast (Reeder and Giegerich,

1991), SPARSE (Will et al., 2015), TurboFold II (Tan et al., 2017),

MXSCARNA (Tabei et al., 2008), CentroidAlifold (Hamada et al.,

2011) and RNAalifold (Lorenz et al., 2011; Fig. 3). The accuracy

of predictions has been assessed using the MCC, the PPV and

SENS (Fig. 4A). In order to evaluate MXSCARNA, SPARSE,

Fig. 2. Average percentage of correct base pairs considering MFE structures

and best structures of all sub-optimal structures from one (individual se-

quence), 5, 10 and 16–98 homologous sequences. The best sub-optimal struc-

tures are the sub-optimal structures maximizing the average percentage of

correct base pairs represented by the PPV

Fig. 3. Assessment of the prediction quality of aliFreeFold and aliFreeFold

without computing the conservation index (aliFreeFoldnc), while increasing

the number of sub-optimal structures (NbSubOpt). Prediction quality is based

on the MCC computation. aliFreeFoldnc computation is obtained by adding

the parameter ’-c 0’ to aliFreeFold. The number of sub-optimal structures has

gradually increased from 5, 10, 25, 40 to 70

Table 2. Statistics regarding aliFreeFold and the sub-optimal struc-

tures generated by RNAsubopt (Lorenz et al., 2011) on the dataset

of 30 families

Proportion of predictions having 80% or more

correct bp.

70%

Proportion of predictions having 70% or more

correct bp.

76%

Avg. prop. of sub-opt. structures having at least

80% correct bp.

34% 6 26

Avg. percentage of correct bp. of the best

sub-optimal structuresa

97% 6 10

aThe best sub-optimal structure is a structure from a set of sub-optimal

structures maximizing the number of correct base pairs.

i74 J.-P.S.Glouzon and A.Ouangraoua

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/34/13/i70/5045712 by guest on 25 February 2019

Deleted Text: -
Deleted Text: -
Deleted Text:  (TP)
Deleted Text:  (TN)
Deleted Text: (FN) 
Deleted Text: (FP) 
Deleted Text: Figure 
Deleted Text: Figure 
Deleted Text: )
Deleted Text: (Figure 
Deleted Text: Matthew correlation coefficient (
Deleted Text: )
Deleted Text: positive predictive value (
Deleted Text: )
Deleted Text: sensitivity (
Deleted Text: )
Deleted Text: Figure 
Deleted Text: )


CentroidAlifold and RNAalifold it was necessary to refold each se-

quence based on the computed the consensus structure using the

ViennaRNA script refold.pl (Lorenz et al., 2011). The efficiency of

each method is evaluated by computing the time required to calcu-

late predictions on a 4-CPU (3.3 GHz) desktop PC with 7.7GB of

RAM (Fig. 4B).

In the last evaluation, we assess the capacity of the tested methods

to improve the prediction quality as the conservation signal increases

(Fig. 5). The methods performance is assessed on sets of 5, 10 hom-

ologous sequences and on a set of more than 15 homologous sequen-

ces. The sets of 5 and 10 homologous sequences come from the

sampling without replacement of sequences of each the 30 families.

We obtained, respectively, 300 and 150 sets of 5 and 10 homologous

sequences. The sets containing more than 15 homologous sequences

are the 30 sets of homologous sequences defining the families.

3.4 Assessment of prediction quality
The prediction quality of all the tested methods is reported using the

MCC, the PPV and the SENS considering all pairs composed of the

predicted and the validated structures for each sequence of each set

of homologous RNA (Kalvari et al., 2018). PPV, SENS and MCC

represent, respectively, the proportion of correctly predicted base

pairs, the proportion of the retrieved true base pairs and a summary

score of PPV and SENS. They are computed using compare_ct.pl

script (Gardner and Giegerich, 2004). Note that MCC, PPV and

SENS scores are averaged for each set of homologous sequences

regarding all methods except aliFreeFold. In fact, we report

aliFreeFold MCC, SENS and PPV between the representative struc-

ture and the validated structure of the corresponding sequence since

it outputs one representative sequence and structure for each set of

homologous sequences.

4 Discussion

4.1 Capacity of aliFreeFold to find accurate sub-optimal

structures
We found that aliFreeFold is able to find most of the time an ideal

sub-optimal structure, i.e. a structure having, on average, 80% or

more correct base pairs, as compared to the validated structure. In

fact, aliFreeFold finds an ideal sub-optimal structure in 70% of the

30 families of our dataset, despite that we have on average only a

third (34.1% 6 26.2%) of the sub-optimal structures having 80%

or more correct base pairs for each family (Table 2). The proportion

of ideal structures predicted increases from 70% to 76% for ideal

structures having on average 70% or more correct base pairs. This

shows that aliFreeFold can detect relevant conservation signals

thanks to its conservation index.

While aliFreeFold is capable of detecting conservation signals,

there is room for improvement. In fact, the best sub-optimal struc-

ture, i.e. the sub-optimal structure maximizing the number of cor-

rect base pairs, has on average 97% 6 10% of correct base pairs for

Fig. 4. Prediction accuracy (A) and running time analysis (B) of aliFreeFold, RNAcast, RNAspa, MXSCARNA, SPARSE, TurboFold II, CentroidAlifold and

RNAalifold. The prediction accuracy is measured by MCC, PPV and sensitivity on a dataset of 30 RNA families

Fig. 5. Evolution of the prediction accuracy of aliFreeFold, RNAcast, RNAspa,

MXSCARNA, SPARSE, TurboFold II, CentroidAlifold and RNAalifold as the

conservation signal increases. The increasing of structure conservation sig-

nals is achieved by successively increasing the number of sequences from 5,

10 to more than 15 in the sets of homologous sequences
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the first 25 sub-optimal structures of more than 15 homologous

sequences (Table 2). It is important to note that having an increasing

number of homologous sequences is beneficial for predictions.

Indeed, we observe that the average percentage of correct base pairs

of the best sub-optimal structures increases from �80% to �97% as

the number of homologous sequence grows from 1 to more than 15

sequences (Fig. 2). In addition, it seems better to consider sub-

optimal structures rather than the MFE structure because the best

sub-optimal structures considering individual sequences have a

higher percentage of correct base pairs compared to the MFE struc-

tures. The latter observation confirms an analysis of a previous

study showing that an ideal structure having on average 80% cor-

rect base pair can be found in the first 25 sub-optimal structures

(Zuker et al., 1991).

The conservation index is crucial for the performance of

aliFreeFold. Indeed, computing the predictions without the conser-

vation index used to weight n-motifs in the method, leads to a sig-

nificant drop in prediction quality illustrated by low MCC scores

compared to aliFreeFold scores (Fig. 3). Furthermore, increasing the

number of sub-optimal structures does not benefit to aliFreeFold

performance because the median MCC scores tends to decrease

when we reach 70 sub-optimal structures per sequences on our

dataset of 30 RNA families (Fig. 3). This indicates that adding more

sub-optimal structures have a negative impact on the computed con-

servation index. Since the conservation signal is more related to the

number of homologous sequences compared to the number of sub-

optimal structures, increasing the number of sub-optimal structures

has a possible effect of adding noise to the conservation signals mak-

ing the computation of the conservation index more challenging.

While aliFreeFold is able to find a suitable representative, it is im-

portant to compare its prediction quality and efficiency against

other alternatives approaches to see whether aliFreeFold captures

conserved structural features in a more effective and efficient

manner.

4.2 Performance analysis
The performance of alignment-free approaches i.e. aliFreeFold and

RNAcast shows that aliFreeFold is a good alternative to RNAcast

since it is more effective and reliable than RNAcast. In fact,

aliFreeFold yields structures of better quality than RNAcast. This is

illustrated by the higher MCC, PPV and SENS scores of aliFreeFold

than the scores of RNAcast (Fig. 4A). Theses results indicate that

aliFreeFold finds more correct base pairs compared to RNAcast.

Furthermore, aliFreeFold is reliable since it guaranties to find a rep-

resentative structure. This is not the case for RNAcast because it

runs out of memory for sets of sequences having more than �180 nt

average length. In some cases, the percent sub-optimality number

has been increased to enforce the structure prediction. It is import-

ant to note that aliFreeFold is as fast as RNAcast because there is

not much difference between the two in terms of running time

(Fig. 4B). Thus, aliFreeFold presents a valuable alternative to

RNAcast as a sequence alignment-free approach to compute the best

template structure. While the comparison of aliFreeFold and RNA

cast is essential because they are both sequence alignment-free

approach, it is also important to compare aliFreeFold with the

fold-then-align approach RNAspa, the align-and-fold approaches,

MXSCARNA, SPARSE, TURBOFOLD II and the align-then-fold

approaches CentroidAlifold and RNAalifold. The majority of these

methods have been shown to be among the best comparative

approaches (Puton et al., 2013).

Considering the global quality of prediction, we observe that

aliFreeFold and align-and-fold methods such as TurboFold II yield

the overall best results (Fig. 4A) compared to all other approaches

i.e. RNAspa, RNAcast, SPARSE, MXSCARNA, CentroidAlifold

and RNAalifold. In fact, aliFreeFold and TurboFold II yield the

highest MCC scores among all methods. The difference in terms of

MCC scores of aliFreeFold and TurboFold II compared to the other

approaches, is mostly explained by the fact that both approaches

maintain a high precision (high PPV) and a high sensitivity (high

SENS) whereas the others usually yield a lower sensitivity. The high

sensitivity of aliFreeFold and TurboFold II indicates that they re-

cover most of the true base pairs of the validated structures com-

pared to the other approaches. It also shows, on one hand, that

aliFreeFold conservation index is as effective as the procedure of the

align-and-fold approach to capture structure conservation signals.

On the other hand, it illustrates that it is possible to obtain high

quality prediction by only focusing on structural information since

aliFreeFold compute conservation index based solely on sub-optimal

structure analysis ignoring sequence information.

There is a performance advantage at considering structural infor-

mation at an early step of the prediction process. In fact, we observe

that majority of the approaches integrating structural information at

an early prediction step yield a higher sensitivity compared to align-

then-fold approaches such as CentroidAlifold and RNAalifold

which use structural information in the last step of the prediction

(Fig. 4A). Indeed, the latter approaches consider sequence and struc-

ture information as independent, treating one information after an-

other by aligning sequences, then folding them using structure

conservation signals detected from alignment. This can lead to miss

true base pairs because on one hand sequence alignment is primarily

meant to uncover sequence conservation and not structure conserva-

tion. On the other hand, potential errors during the sequence align-

ment process can be propagated to the folding process adding noise

to structure conservation signals. Those points are supported by the

fact that the accuracy of align-then-fold approaches is largely de-

pendent upon the quality of the computed alignment and sequence

similarity (Bremges et al., 2010; Gardner et al., 2005). Considering

MXSCARNA, it yields surprisingly the worst results whereas it con-

siders simultaneously both sequence and structure information to

compute structural prediction. It is probably due to the coarse-

grained approach of MXSCARNA seeking to align blocks of stems

rather than base pairs.

4.3 Efficiency analysis
While RNAalifold appears as the fastest approach, aliFreeFold is

among the fastest one since it has a running time close to

CentroidAlifold, MXSCARNA, RNAcast and RNAalifold (Fig. 4B).

aliFreeFold is fast because it is an alignment-free approach, relying

on a weighted vector representation of sub-optimal structures to

compute the representative one. Alignment-free approaches usually

exhibit a lower time complexity compared to alignment-based

approaches (Vinga, 2014). Indeed, here we observed than RNAcast

and aliFreeFold are among the fastest ones. Moreover, aliFreeFold

only requires the first 25 sub-optimal structures for each homolo-

gous RNA since it has been shown that a structure having on

average 80% correct base pairs is always found in the first 25

sub-optimal structures (Zuker et al., 1991). While TurboFold II

and aliFreeFold yield comparable accuracy for the prediction,

TurboFold II is among the slowest one because it is time-consuming

to compute the predictions by simultaneously aligning sequence and

structure rather than aligning then folding sequence, or using an
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alignment-free framework for prediction. While MXSCARNA is

considered as an align-and-fold approach, it is fast because it aligns

blocks of nucleotides representing stems and not individual pairs on

nucleotides as SPARSE and TurboFold II do. It is important to note

that the average length of the sequences has a higher impact on the

running time analysis than the number of homologous sequences in

the families. Indeed, there is a statistically significant high correl-

ation between the running time and the average sequence length

(Table 3). No statistically significant correlation has been observed

between the number of sequences per family and the running time of

the methods, except for SPARSE and RNAalifold.

4.4 Impact of increasing the structure conservation

signal
As the structure conservation signal increases, the quality of

aliFreeFold predictions improves. The capacity to improve the pre-

diction quality when the structure conservation signal increases is

crucial since the number of non-coding RNA families increases in di-

versity and in the number of sequences as for the RFAM database

(Kalvari et al., 2018). As the number of homologous sequences

increases from 5 to more than 15, the structural conservation signal

becomes stronger (Fig. 5) leading to an improvement of aliFreeFold

prediction. The conservation index used by aliFreeFold takes advan-

tage of the fact that the increasing structural conservation signal

indicates less variability and therefore more conserved structural

features. As the structural features appear more and more conserved

their computed weight increase accordingly. However, the other

approaches are less sensitive to the increasing of the number of hom-

ologous sequences per family since we do not observe any significant

improvement of the MCC scores (Fig. 5). In some cases, the predic-

tion quality decreases, for instance for CentroidAlifold and

RNAalifold. This could be explained by the fact that increasing the

number of homologous sequences reduces the quality of the se-

quence alignment, in the cases where the added sequences are

divergent.

5 Conclusion

A new approach, called aliFreeFold, has been devised to find

the representative structure of a set of sub-optimal structures

from homologous RNA sequences. It constitutes a novel and alter-

native way to predict RNA secondary structures from a set of

homologous sequences. Contrary to current approaches usually

based on alignment of sequences and/or structures, it computes a

vector representation of structures helping to extract the represen-

tative structures containing conserved structural features. This ap-

proach yields fast and accurate predictions of RNA secondary

structures.

While aliFreeFold has advantages in terms of prediction accuracy

and speed, it yields a representative structure for a set of homolo-

gous sequences and not a structure for each sequence. Future exten-

sions of the method will include the computation of structures for

each homologous sequence. It is possible to find the optimal projec-

tion or match of the representative structure to each homologous se-

quence. The optimal match could be defined as the sub-optimal

structure of the sequence minimizing the distance to the representa-

tive structure, or a secondary structure maximizing an alignment

score between the sequence and the representative structure. This

procedure can also be extended to obtain multiple sequence and

structure alignment by computing a multiple alignment guided by

the representative structure.

The results of aliFreeFold suggest that, by using an appropriate

weighting function, one can get insight into the conserved struc-

tural features of a set of homologous RNA. However, aliFreeFold

somehow misses important information since in some cases a bet-

ter structure having on average more than 90% correct base pairs

is not retrieved by aliFreeFold. Future works will explore four dif-

ferent ways to improve aliFreeFold. The first improvement is to

use softwares supporting pseudoknots such as vs_subopt (Dawson

et al., 2014) instead of RNAsubopt to compute the sub-optimal

structures. It will allow aliFreeFold to find a more appropriate rep-

resentative structure in cases where pseudoknots are well con-

served such as in RNaseP family (Brown et al., 1996; Harris et al.,

2001). The second improvement consists in computing the repre-

sentative structures based on statistical sampling of the Boltzmann

ensemble of secondary structures. This can help computing a more

precise conservation index since the statistical sampling of the

Boltzman ensemble yields information about the diversity of pos-

sible secondary structure conformations (Chan et al., 2005; Ding

et al., 2005). The third way to improve aliFreeFold would be to

learn the weighting function from the data in a supervised manner.

We hypothesize that learning a weighting function can offer better

generalization over the data and consequently increases the per-

centage of correct base pairs in the predicted structure. Finally, a

fourth improvement will be to extend aliFreeFold in order to ac-

count for sequence motif such as k-mers to represent RNA se-

quence and structure. We hypothesize that combining sequence

and structure motifs in the model will allow to retrieve more accur-

ate representative structures.
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Table 3. Spearman correlation of methods running times (Run

time) against average sequence length (Avg. seq. len.) and number

of homologous sequences (Nb. hom. seq.)

Run time versus

Avg. seq. len.

Run time versus

Nb. hom. seq.

aliFreefold 0.76a 0.31

RNAspa 0.819a 0.082

MXSCARNA 0.773a 0.301

SPARSE 0.71a 0.393a

RNAcast 0.821a 0.243

TurboFold II 0.748a 0.328

CentroidAlifold 0.845a 0.155

RNAalifoldP 0.709a 0.37a

Note: Correlation is computed relative to the running time of aliFreefold,

RNAcast, RNAspa, SPARSE, TurboFold II, MXSCARNA, CentroidAlifold

and RNAalifold over the dataset of 30 families.
aCorrelation statistically significant using a two-sided t-test.
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