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ABSTRACT

RNA molecules play fundamental roles in cellular
processes. Their function and interactions with other
biomolecules are dependent on the ability to form
complex three-dimensional (3D) structures. How-
ever, experimental determination of RNA 3D struc-
tures is laborious and challenging, and therefore,
the majority of known RNAs remain structurally un-
characterized. Here, we present SimRNA: a new
method for computational RNA 3D structure predic-
tion, which uses a coarse-grained representation,
relies on the Monte Carlo method for sampling the
conformational space, and employs a statistical po-
tential to approximate the energy and identify con-
formations that correspond to biologically relevant
structures. SimRNA can fold RNA molecules using
only sequence information, and, on established test
sequences, it recapitulates secondary structure with
high accuracy, including correct prediction of pseu-
doknots. For modeling of complex 3D structures, it
can use additional restraints, derived from experi-
mental or computational analyses, including infor-
mation about secondary structure and/or long-range
contacts. SimRNA also can be used to analyze con-
formational landscapes and identify potential alter-
native structures.

INTRODUCTION

Ribonucleic acid (RNA) molecules play crucial roles in liv-
ing organisms; among many functions, they are carriers of
genetic information, regulators of gene expression and cat-
alysts of metabolic reactions (1). While the role of protein-
coding RNA in transmission of genetic information en-
coded in triplets of residues depends essentially just on the
ribonucleotide sequence, most of the other roles depend

also on the structure of the ribonucleotide chain. Similar
to proteins, in which the amino acid sequence determines
the structure, the ribonucleotide sequence of RNA directly
determines the pattern of base pairs (secondary structure)
and the global shape (tertiary structure) that is assumed in a
given environment. Many RNA molecules form unique sta-
ble tertiary structures, while others form alternative struc-
tures or undergo transformations between the structured
and unstructured state. For example, riboswitches, regula-
tory elements located within mRNA that switch protein
production on and off, function owing to the ability to un-
dergo conformational changes depending on the binding of
specific ligands or on sensing other environmental changes
(2). Thus, the understanding of manifold mechanisms of
RNA function beyond protein coding requires a detailed
knowledge of RNA tertiary structure (3).

Advances in high throughput nucleic acid sequencing re-
sulted in a rapid growth of RNA sequence information. Un-
fortunately, this growth of sequence information has not
been paralleled by structure determination, and for the large
majority of known RNA sequences, the three-dimensional
(3D) structures remain unknown. The experimental deter-
mination of RNA structures is difficult and expensive; cur-
rently it is significantly more challenging than protein struc-
ture determination (4). This situation resembles a similar
problem concerning protein sequences and structures, and
both these problems have been approached by the devel-
opment of computational methods for predicting 3D struc-
tures from the sequence information (5).

Previously, we have developed ModeRNA, a method for
RNA 3D structure prediction that builds models using in-
formation from structures of homologous molecules used
as templates (6,7). The major limitation of that method
is that it can accurately predict RNA structures only if a
similar structure is provided as a template, along with a
sequence alignment between the target and the template
molecules. However, as mentioned earlier, experimentally
determined RNA 3D structures are sparse; hence, homol-
ogy modeling is currently possible for only a small frac-
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tion of RNA sequences. In addition, homology modeling
does not provide information about the RNA folding path-
ways. For this, one needs to turn to a modeling approach
that samples different conformations of the RNA chain and
models not only the final structure, but also the folding
process. Thus far, various methods for RNA folding sim-
ulations have been developed, and they have used a vari-
ety of RNA structure representations, conformational sam-
pling schemes and energy/scoring functions (8–12). They
have various strengths and limitations, as observed in the re-
cently initiated RNA Puzzles experiment (13). To this end,
inspired by the success of coarse-grained methods for pro-
tein structure prediction such as REFINER (14) or CABS
(15), and based on our experience with protein modeling,
we have developed a coarse-grained method for RNA fold-
ing simulations and 3D structure prediction dubbed Sim-
RNA. We aimed to develop a method that allows for RNA
3D structure prediction from sequence alone, and that can
use additional structural information, if available. Here,
we present SimRNA, together with the results of its tests
and comparison with other methods for template-free RNA
modeling, and we discuss its possible applications.

The history of coarse-grained modeling of RNA is long
and multifaceted (16–20), ranging from simple models us-
ing one bead per nucleotide with varying levels of sophis-
tication (21,22), two and three bead models (10,23) and
sometimes additional beads (24–27). SimRNA uses a sta-
tistical potential in the form of a grid and models the essen-
tial orientations of the bases along the backbone using five
key atomic positions in each nucleotide: two beads (P and
C4’) define the backbone according to Olson’s model (28)
and three beads define the plane of the nucleotide base. The
core atomic coordinates permit a nearly complete one-to-
one transformation of trajectories of the base and backbone
positions both from PDB structures and to PDB structures.
Moreover, additional aspects of structure can be incorpo-
rated into the model in a modular fashion.

MATERIALS AND METHODS

Overview of the SimRNA method

SimRNA is a computational method for RNA folding sim-
ulations and 3D structure prediction. As virtually every
method for simulations of molecular systems, it comprises
three main functional elements: a representation of the
molecules that are simulated, a scoring function (energy)
and an algorithm that controls the moves of the molecu-
lar system. SimRNA utilizes a simplified (coarse-grained)
representation of a nucleotide chain, a knowledge-based en-
ergy function and a Monte Carlo scheme for sampling the
conformational space (29,30).

Representation of RNA molecules in SimRNA

In SimRNA, RNA molecules are represented by a coarse-
grained model that facilitates the handling of non-bonding
base–base interactions (Figure 1). The backbone structure
is approximated by two pseudoatoms positioned at P and
C4’ to represent the phosphate and sugar moieties, respec-
tively. Base moieties are represented at three levels: level

Figure 1. Reduced representation of RNA structure in SimRNA includ-
ing the relationships between various base and backbone terms. (A) An
example of an RNA structure (GCAA tetraloop, PDB id: 1zih) shown in
reduced representation where green represents the backbone and red rep-
resents the base moieties. (B) Examples of reduced representation for the
adenosine and uridine residues, with base level 1 and level 2 representation
shown as red and blue points, respectively. (C) The backbone section in-
cluding the vectors that orient the base relative to the backbone. (D) Level
3, the central layer (slice) of the 3D grid for the reference base, where the or-
ange region represents the excluded volume of atoms of the base (repulsive
region) and the purple region is an example of the attractive interactions
between A and U in the central layer, including base-pairing around the
Watson–Crick edge (the largest purple cloud), around the Hoogsteen edge
(the second largest purple cloud) and the sugar edge (small purple cloud
at the bottom of the diagram). It is worth noting that even though the red
triangle covers only part of the base, the 3D grid approximates the volume
of all atoms of the base. (E) Representation of the bond lengths, flat angles
and pseudotorsion angles η and θ .

1––three beads, positioned at the following atoms: N1-C2-
C4 for pyrimidines and N9-C2-C6 for purines; level 2––the
midpoint located between atoms N1 and C4 in pyrimidines
and between atoms N9 and C6 in purines; level 3––a 3D
cubic grid (lattice spacing of 0.5 Å) that carries information
about the excluded volume of all atoms of the base moiety,
and, even more so, preferences of the nucleotide residue for
non-bonding interactions.

The SimRNA coarse-grained representation reduces the
number of explicitly represented atoms from 30 to 34 (20–
23 non-hydrogen) per residue, down to five, while it retains
the key properties of an RNA chain. In particular, three
pseudobonds (level 1 of the base moiety representation) de-
fine the position and orientation of the base moieties and
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they approximate the Watson–Crick, Hoogsteen and sugar
edges that can be used to represent all major interactions
made by bases with each other as well as with the back-
bone (31,32). It is worth emphasizing that the pseudobond
that connects the C2-C4 atoms in pyrimidines or the C2-C6
atoms in purines is parallel to the Watson–Crick edge (Fig-
ure 1B). This representation not only captures the geometry
and stereochemistry of the RNA chain, but also facilitates
the visual analysis of complex structures and interactions
displayed in a reduced representation.

The backbone representation allows for calculation of
the pseudotorsion angles η and θ (spanned on C4’–P–C4’–
P and P–C4’–P–C4’ atoms, respectively) that can be used
to classify all major conformations of the RNA chain in
a manner similar to the Ramachandran plot for proteins
(33) (Figure 1). Similar backbone representations have been
used in other coarse-grained models of RNA, including
VFOLD (23) and DMD/iFoldRNA (10).

SimRNA utilizes two kinds of local coordinate systems
(Supplementary Figure S1). The coordinate systems of the
first kind are defined based on the atoms of the backbone. A
local coordinate system is centered on each C4’ atom of the
backbone. They are used to position each base in relation
to the backbone. The local coordinate systems of the sec-
ond kind are centered on the midpoints of the bases. For
each base, three atoms (level 1) are used to define its lo-
cal system of coordinates, and are used to triangulate the
midpoint (level 2) of the interacting bases. Axes of the local
system of coordinates serve as the axes of the 3D grids for
storing the statistical potential (level 3).

Form and derivation of the SimRNA energy function

The energy function of SimRNA is composed of statistical
potential terms, derived from the observed frequencies of
occurrence of various proximate structural patterns (base–
base contacts, short backbone fragments, etc.). To compute
the statistical potential, a manually curated set of RNA
3D structures was selected from the Protein Data Bank.
We intentionally separated the set of structures used for
the derivation of the potential from those used for testing
SimRNA (see below). During the initial step, we selected
RNA structures obtained by X-ray diffraction (of resolu-
tion higher than 3.2 Å and more than 20 residues long). We
analyzed all these structures in detail, and excluded ones
that contained large gaps or where the conformation of the
RNA molecule was significantly influenced by interactions
with other molecules (e.g., proteins). In order to remove
sequences that were closely similar to each other, we used
the BlastClust tool (ftp://ftp.ncbi.nih.gov/blast/documents/
blastclust.html) from the NCBI–BLAST package (34), with
a 50% sequence identity threshold. From each cluster, we
selected only one structure solved at the highest resolution.
For ribosomal RNA, we manually selected five structures
solved at highest resolution (PDB ids: 1n32, 3i1m, 3cc2,
3kni, 3i1p). From the resulting data set, we also removed
sequences with 50% or more identity to RNA molecules in
the two previously published test sets (8,10), which we used
for testing of our method (see below). The resulting data set
contained 150 structures in total (21238 residues in total)
and the data set was used to extract the statistical prefer-

ences for base–base and base–backbone interactions, which
in turn were used to infer the corresponding terms of the
statistical potential.

The energy function of SimRNA is composed of two
classes of terms: sequence-independent local terms, associ-
ated with the local geometry of the RNA backbone, and se-
quence dependent long-range terms, associated with pair-
wise interactions between nucleotide residues. The local
terms are functions of bond lengths (one term per virtual
bond P–C4’ and C4’–P), flat angles (one term per angle de-
fined by the following trios of consecutive atoms: P–C4’–P
and C4’–P–C4’), and torsion angles (one 2D term depen-
dent on the subsequent pseudotorsion angles η and θ ) (35).
Values of 1D terms that control bond lengths or angles are
stored in tables (1D arrays), while the values of the 2D term
(η-θ ) that controls two subsequent torsion angles are stored
in a 2D array (Figure 1).

Long–range terms describe base–base, base–backbone
and backbone–backbone interactions. Data about interac-
tion preferences for the bases are stored in 3D arrays. The
base–backbone interaction terms depend on the positions
of the P and C4′ atoms of the interacting backbone moiety
in the coordinate system of the reference base. Backbone-
backbone interactions are modeled as sums of statistically
derived 1D functions of interatomic distances between C4′
atoms. These latter terms are generic (do not depend on se-
quence or orientation).

The derivation of local terms was done by binning val-
ues of bond lengths and angles along the backbones of our
curated set of RNA structures. Then the tables of values of
counts were smoothed out and normalized by dividing them
by their averages. Non-zero values of the tables were sub-
jected to a negative logarithm function. Zero and positive
values (from previous step) above 3.0 were set to 3.0.

The initial step of deriving the long-range terms was
detecting the base–base contacts and base–backbone con-
tacts. The details of contact classification are described be-
low. For each type of base, points corresponding to the con-
tacts were transformed into the local coordinates of the ref-
erence base. In the case of base–base contacts, the points
were at the midpoints of the contacting bases. In the case of
base–backbone, the points corresponded to the contacting
P or C4’ atoms. This way, we obtained 16 clouds of points
corresponding to base–base contacts between a base of type
X and a base of type Y, where X and Y are A, C, G and U.
Additionally we obtained 8 clouds of points corresponding
to base–backbone contacts of types X-C4’ (4 clouds) and X-
P (4 clouds), respectively, where X is a base. The clouds of
points were then binned into 3D grids (with a lattice spacing
of 0.5 Å and the location specified using the lattice indices i, j
and k). Then the grids were dispersed by convolution with a
symmetric Gaussian function. For normalization purposes,
the base–base grids were summed together into a new 3D
grid, {Aijk}. The mean value of all cells of {Aijk}, exceed-
ing the threshold of 0.3, became the normalization constant
〈a〉. For base–base grids, each non-zero cell of each grid was
subjected to the expression:

EXY(i jk) = min{− log
[
XYi jk/(〈a〉 · χX · χY)

]
, 0} (1)

where � X and � Y correspond to the mole fractions of the
respective bases. For base–backbone grids, each non-zero
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cell of each grid was subjected to the expression:

EXY(i jk) = min{− log
[
XYi jk/(〈a〉 · χX · 1)

]
, 0} (2)

where � X corresponds to the mole fraction of the respective
base, and the mole fraction of P or C4’ are assumed to be 1.

In the process of developing the statistical potential, we
tested many different ways of processing the data for the
interacting residues and found that the best results were ob-
tained with the following setup: (i) a term for base–base in-
teractions was derived from canonical and non-canonical
base pairs detected with RNAView (36) and base stacking
detected with our in-house classifier (i.e., other geometries
of physically interacting bases were ignored to reduce the
background ‘noise’); (ii) a term for base–backbone inter-
actions was derived from residue pairs, in cases where any
heavy atom of a base moiety of one residue was at a distance
≤ 5 Å from a P or C4′ atom of the other residue. To obtain a
proper balance between the stacking and lateral base–base
interactions, the number of points corresponding to stack-
ing was reduced (see Supplementary Information).

The excluded volume of each type of base corresponds to
the all-atom representation (including the hydrogens) of the
base projected onto the grid with positive values. The size
of the atoms was adjusted to reproduce the real volume of
the base within the assumed base–base contact model.

Calculation of the energy in SimRNA

The total energy for a specific frame during a simulation is
given by Equation (3):

Etot = ∑

bonds
Ebonds + ∑

f lat
angles

E f lat
angles

+ ∑

η−θ

Eη−θ

+ ∑

base−base
Ebase−base + ∑

base
bbone

Ebase
bbone

+ ∑

bbone
bbone

Ebbone
bbone

(3)

where base–bbone is the base–backbone interaction (X-P
and X-C4′), and bbone–bbone is the backbone interactions
between different C4’ atoms of sugar moieties. The energy
values for local geometrical terms and long-range terms
(Ebonds , E f lat−angles , Eη−θ , Ebase−base and Ebase−backbone) are
obtained from dedicated tables.

Calculation of the energy in the base–base interactions
(e.g., X and a second base in close proximity Y) is as fol-
lows. The first base (X) is set as the reference, the center
position of Y is transformed to the local coordinates of X
to obtain the position ijk that is referenced by XYijk, and
the energy EXY(ijk) is obtained from the corresponding cell
of the interaction grid XY. Then the reciprocal procedure is
done where Y is set as the reference base, X is transformed
to the local coordinates of Y, and the energy EYX(i′j′k′) for
YXi′j′k′ is obtained from the grid YX. The total energy for
this interaction is the sum of these two energies: EXY(ijk)
+ EYX(i′j′k′). This reciprocal operation reinforces the ge-
ometries that favor strong base–base interactions (Supple-
mentary Information). To help enforce the planarity of the
base–base interaction terms, an angle dependent term is
also computed for each pair of bases that depends on an
additional weight factor

√| cos(∠ŵ2ŵ′
2)|, where the |. . . | in-

dicates the absolute value and ∠ŵ2ŵ′
2 is the angle between

the normal vectors of the interacting bases: ŵ2 of base X

Figure 2. Examples of the Monte Carlo move set. During a simulation,
each new conformation is generated as a small modification of a previous
conformation: (A) a change in the conformation of the base in the local
backbone coordinates; (B) a change in the backbone position of the C4′
atom; (C) a change in the backbone position of P atom; (D) a change in
the position of two subsequent atoms of the backbone; and (E) a change
in the direction of a fragment of the backbone.

and ŵ′
2 of base Y (Supplementary Figure S6). The square

root was used because it permits a less constrained planar
geometry for the interacting bases. Base–backbone interac-
tions are calculated in a similar way as the base–base inter-
actions except that the backbone P or C4’ are transformed
into the local coordinates of the reference base. The energy
value is also obtained from the corresponding dedicated
grid. Backbone-backbone interactions are based on the dis-
tance between the two C4’ positions.

Conformational sampling method

Sampling of the conformational space is accomplished in
SimRNA by the use of an asymmetric Metropolis algorithm
(30), which is executed by calling either of two schemes:
single thread simulations or replica exchange Monte Carlo.
The single thread variant allows for performing isothermal
simulations and simulations with a gradual increase or de-
crease of temperature; e.g., to study RNA unfolding.

Conformational changes are accomplished via a specific
set of moves (Figure 2). There are two basic types of moves.
First, there is an exchange of a single nucleoside conformer
by another one (from an internal database of conformers),
which changes the orientation of the base with respect to
the backbone. Second, there is an alteration of the back-
bone conformation, associated with maintaining the con-
formations of the base moieties in their local backbone co-
ordinates. The latter type of moves may involve a change in
the position of a single C4’ or P atom of the backbone, a
change in the position of two neighboring C4’ and P atoms
or translation and rotation of a chain fragment. The type
of move and the atom or chain fragment to be moved are
both selected randomly. Default values of relative frequen-
cies of moves were defined based on a large number of tests
(data not shown) and they can be modified by the user. The
simulation is conducted in steps that comprise the num-
ber of attempted moves (accepted or rejected subject to the
Metropolis criterion) equal to the number of residues in the
structure.
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Figure 3. Distance restraints implemented in SimRNA. (A) immobiliza-
tion of one atom; (B) flexible pinning of one atom; (C) flexible tethering of
two atoms; (D) canonical base-pairing of two residues.

Restraints

SimRNA can use additional information about the RNA
structure, obtained from experimental analyses, from inde-
pendent computational predictions, or postulated by the
user. Three types of user-specified restraints are currently
implemented in SimRNA (Figure 3): on atomic positions
(immobilization or flexible pinning), on inter-atomic dis-
tances (flexible tethering) and on the secondary structure
(base-pairing). Positional restraints are used to restrict the
movement of selected atoms, which can range from com-
plete immobilization (frozen) to flexible pinning that keeps
the atom close to its starting position. Immobilization was
implemented as a modification to the sampling algorithm,
while flexible pinning, and in fact all other restraints men-
tioned below, were implemented as additional penalty terms
added to the energy function.

Distance restraints serve as pairwise flexible tethers (Sup-
plementary Figure S7). For any pair of atoms, an allowed
distance range can be specified. Departure beyond this
range results in a penalty that scales linearly with the mag-
nitude of the deviation. The allowed distance range can
be based on experimental measurements of intramolecular
distances, for example from the Förster Resonant Energy
Transfer (FRET), or Electron Spin Resonance (ESR) ex-
periments, or from chemical cross-linking. Further, theoret-
ical predictions of intramolecular contacts can be utilized;
e.g., from sequence covariation analysis that may identify
important tertiary contacts without specifying the type of

contact. This type of restraint may also be used to specify
non-canonical base pairs.

The role of secondary structure restraints is to specify
the desired canonical Watson–Crick (cis), and wobble base
pairs; this type of restraints may include pseudoknots of any
type. For specified bases that require pairing, a penalty is
associated with a deviation from the reference geometries
specific for a given type of contact. Secondary structure re-
straints are internally represented as distance restraints im-
posed on the atoms of the interacting bases. By default, Sim-
RNA does not penalize the formation of base-pairs that are
not specified in the file with restraints.

Input and output

A typical SimRNA input comprises a starting structure
(PDB-formatted) or a sequence (ASCII-formatted) file, a
configuration file that contains the basic parameters of the
simulation to be performed (e.g., simulation length, temper-
ature range, non-default parameters, etc.), and an optional
file with restraints. If no starting structure is provided, then
based on the provided sequence, SimRNA generates a circu-
lar conformation with the 5′ and 3′ ends close to each other.
SimRNA can handle RNA molecules composed of one or
multiple chains (up to 52) and it allows for simulations of
a part of the system to be performed, with the conforma-
tion of the remaining part frozen or restrained. The current
version is capable of handling RNA sequences with stan-
dard RNA (A, U, C, G) residues only; a representation of
modified residues will be implemented in the future. Sec-
ondary structure restraints can be specified using the mul-
tiline dots-and-brackets format, which allows for defining
RNA pseudoknots. The dots-and-brackets input is parsed
and internally converted into the dedicated list of restraints.

The output of a simulation is recorded as a trajectory file
(or set of files) comprising the lowest-energy conformations
selected from a consecutive series of simulation steps. Sim-
RNA is accompanied by a software package for the pro-
cessing of trajectory files. The content of the trajectory files
(in the form of individual frames or a series of such frames)
can be visualized, converted to PDB files, searched for struc-
tures with desired properties (lowest global energy, lowest
RMSD to a reference structure), or subjected to clustering.

The trajectory can be converted to a series of files in PDB
format containing models in either the reduced SimRNA
representation or models rebuilt to an all-atom represen-
tation. The rebuilding is done using a built-in algorithm
based on fragment matching. By default, the output also
includes information about the energy value and about the
secondary structure of the current conformation (expressed
in dots-and-brackets format). The secondary structure is
detected using a classifier built into SimRNA, which op-
erated on the reduced representation of the 3D structure.
SimRNA can be also run in a ‘zero steps’ mode; i.e., take
as an input a single PDB file and output the corresponding
secondary structure and SimRNA energy value.

SimRNA employs a clustering protocol that is commonly
used for protein 3D structure prediction; e.g., in ROSETTA
(37). First, the RMSD values are computed between all
pairs of structures of the simulation trajectory or for a sub-
set defined by the user. Second, a cluster with the largest
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number of structures within a predefined RMSD threshold
value is identified, and its members are removed from the
initial set. Subsequent clusters are found by iterating these
steps until all the structures from the initial set have been as-
signed to their respective clusters. Based on our experience,
we typically use a clustering threshold equal to 0.1 Å times
the sequence length; i.e., 5 Å for a sequence of 50 residues,
and we consider medoids of the three largest clusters of de-
coys as well as the decoy with the lowest energy; this pro-
cedure was used in this work. However, other protocols of
clustering and data retrieval can be used depending on the
purpose of the modeling (e.g., for conformational sampling,
other thresholds can be used and a larger or smaller number
of cluster representatives can be obtained).

Runtime

To predict each RNA structure reported in this article, we
have run simulations comprising 8 independent instances of
the replica exchange method (10 replicas each), with each
thread running on a separate CPU. For each set of simula-
tion we employed 80 CPU cores (AMD Opteron 2.2 GHz)
of an in-house computing cluster. Each thread comprised of
16 million Monte Carlo steps. Thus, the runtime of a thread
depended mostly on the size of the simulated system. Exam-
ple runtimes (per thread) for exemplary RNAs with differ-
ent lengths were as follows: 1zih (12 nt) 3 h, 2tpk (36 nt) 6
h, 1y26 (71 nt) 20 h and 1gid (158 nt) 86 h.

RESULTS

The ability of SimRNA to fold RNA sequences into native-
like 3D structures has been tested on five benchmark sets of
experimentally determined RNA structures. The first data
set (10), hereafter referred to as ‘Ding et al. data set’, com-
prises 153 structures of single-chain RNAs. The length of
sequences in this test set varies from 20 to 100 nucleotide
residues; however, the majority of sequences are shorter
than 50 nt, and some of the sequences are redundant (e.g.,
1cq5 and 1cql). In this data set, 145 structures were obtained
from nuclear magnetic resonance (NMR) spectroscopy, and
only eight were obtained from X-ray crystallography. Most
of these structures are relatively simple; nonetheless, they
contain a variety of structural motifs such as three- and
four-way junctions, kink-turns and pseudo-knots. The sec-
ond benchmark set, taken from (8) and hereafter referred to
as ‘Das&Baker data set’, is composed of 13 RNA structures
determined by X-ray crystallography and 7 structures de-
termined by NMR. In this data set, most RNAs are rather
small (size 12–41 residues); however, nine structures are
composed of two RNA chains and one is composed of four
chains, which allowed us to test the ability of SimRNA to
simulate and predict structures of RNA–RNA complexes.
The third data set, taken from (38) and hereafter referred
to as ‘Seetin&Mathews data set’, comprises only five struc-
tures of relatively large RNA molecules (43–158 residues),
for which low-resolution experimental data are available
that have been used to aid in the structure prediction. This
data set allowed us to test the ability of SimRNA to pre-
dict RNA 3D structures with the aid of distance restraints.
Five structures (1esy, 1kka, 1qwa, 28sp, 2f88) are common

to both the Ding et al. and Das&Baker sets, and the struc-
ture 1evv is common to the Ding et al. and Seetin&Mathews
sets). The fourth data set consists of short 3D motifs used
to test the FARFAR method (39), which will be referred to
as the ‘motifs data set’, and the fifth set is taken from the
RNA Puzzles challenge (Puzzles 1–6, 8, 10 and 12 (13,40))
and will be called the ‘RNA Puzzles data set’.

For all sequences in the benchmark sets, we carried
out tertiary structure prediction by de novo folding with
SimRNA (folding using sequence alone) as well as fold-
ing with restraints on the secondary structure, obtained
from the target structures using RNAView (36). For the
Seetin&Mathews and RNA Puzzles data sets we also pre-
dicted structures using restraints on both secondary struc-
ture and tertiary contacts, to mimic the predictions reported
in these original works (13,38,40). The motifs data set con-
tained only short segments of RNA 3D structures, so the
structures could only be tested with the end parts of the
structure restrained. For each prediction, we carried out
eight independent runs of the Replica Exchange Monte
Carlo simulation, each employing 10 replicas. Each run
comprised 1000 simulation intervals (16000 steps each) and
the lowest energy frame from each interval was recorded.
The resulting eight trajectories were combined with each
other to yield 80000 conformations per target (1000 confor-
mations from each of the 10 replicas in each of the 8 simu-
lation runs) and the best 1% scored conformations from the
set were retrieved and clustered (see Methods for details).

The assessment of RNA structures requires analysis of
both the global conformation, and the local features such
as interaction patterns (41). To measure the accuracy of
the predicted structures, we compared them with the cor-
responding entries in the PDB; we used the RMSD to de-
scribe the global deviation in positioning of the atoms in
space and the Interaction Network Fidelity (INF) to de-
scribe the agreement of the interactions between the pre-
dicted and reference structures (based on the ClaRNA clas-
sifier (42), using both canonical and non-canonical pairs
as well as stacking). For calculation of the significance of
the 3D structure predictions of single chain RNAs, we used
the procedure proposed by Hajdin et al. (43). We have also
analyzed the accuracy of the predicted secondary structure
(in which GU pairs were treated as canonical). The results
of the RNA 3D structure predictions on the five above-
mentioned benchmarks results (average RMSD and inter-
action network fidelity values) are summarized in Table 1,
and detailed results are provided in Supplementary Table
S1. Models generated by SimRNA are available for down-
load from ftp://ftp.genesilico.pl/pub/software/simrna/.

RNA 3D structure prediction without any restraints

The results of the tests clearly show that SimRNA per-
formed well in predicting both simple and complex RNA
structures from sequence information alone, without re-
straints on the secondary or tertiary structure. Predictions
generated by SimRNA (see Supplementary Table S1 for de-
tails) have largely correct secondary structure (average sen-
sitivity 89%/83% and positive prediction value 82%/77%
for the Ding et al./Das&Baker data sets) and recapitulate
the majority of contacts including canonical and stacking
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Table 1. Summary of average and median (bold font) structure quality measures obtained for RNA structure predictions analyzed in this work

RNA folding method and (optionally) restraints used lowest energy decoy First cluster lowest RMSD

RMSD INF RMSD INF RMSD INF

Ding et al. data set (10)
SimRNA, no restraints 4.74/3.72 0.80/0.82 4.32/3.37 0.81/0.83 2.45/2.18 0.84/0.84
SimRNA, SS restraints 4.46/3.80 0.82/0.83 4.07/3.40 0.82/0.83 2.31/2.13 0.85/0.85
Ding et al. (10) 3.80/3.25
DMD/iFoldRNA server (44) 6.27/4.46 0.74/0.78

Das&Baker data set (8)
SimRNA, no restraints 4.27/3.81 0.80/0.82 4.17/3.60 0.80/0.82 2.81/2.32 0.81/0.86
SimRNA, SS restraints 4.16/3.89 0.81/0.83 3.89/3.47 0.81/0.83 2.48/2.23 0.83/0.85
Das&Baker (8) 4.91/3.93

Seetin&Mathews data set (38)
SimRNA, no restraints 23.90/24.89 0.61/0.66 23.80/24.18 0.60/0.71 10.53/10.72 0.63/0.70
SimRNA, SS restraints 18.47/18.51 0.73/0.81 17.49/18.17 0.71/0.77 6.47/6.94 0.74/0.85
SimRNA, SS+exp. restraints 6.30/5.91 0.70/0.80 7.70/5.82 0.70/0.79 4.10/3.74 0.72/0.81
Seetin&Mathews (38), SS restraints 12.93/13.28
Seetin&Mathews (38), SS+exp. restraints 9.24/8.58

RNA Puzzles data set (13,40)
SimRNA, no restraints 21.5/20.9 0.64/0.63 24.0/23.3 0.65/0.64 13.2/13.3 0.69/0.66
SimRNA, SS restraints 17.3/17.5 0.75/0.76 17.2/15.1 0.76/0.78 8.7/7.7 0.75/0.77
SimRNA, SS+exp. restraints 15.1/14.0 0.70/0.72 16.8/14.5 0.71/0.73 9.2/8.5 0.69/0.74
Best models in RNA Puzzles (13,40) 9.21/9.15

FARFAR motifs data set (39)
SimRNA, only termini restrained 2.13/1.66 0.87/0.88 1.50/1.21 0.87/0.89 1.00/0.84 0.87/0.86
FARFAR, Das et al. (39) - best out of 5 clusters 3.84/2.35 1.98/1.40

Complete detailed results are presented in Supplementary Table S1.

interactions (with an average INF of 80% for both data
sets) and for non-canonical interactions about 55%). Ter-
tiary structure is also largely correct. It is worth noting
that all pseudo-knotted structures of chain length up to 50
residues were properly predicted in the absence of restraints;
hence, SimRNA can be used for de novo prediction of pseu-
doknots. If the best models (medoids of largest clusters)
are considered for each RNA across the benchmarks, then
using Hajdin et al.’s criterion of significance (HCS) (43),
SimRNA proposed significantly correct predictions (P <
0.01, according to HCS) for 145/153 (95%) and 9/10 struc-
tures (90%) of single-chain RNAs in the Ding et al. and
Das&Baker data sets, respectively. It must be emphasized
that the HCS was developed for single-chain structures and
in its original implementation it cannot be used to evaluate
the quality of structures composed of two or more chains.
This is particularly relevant for the Das&Baker and motifs
benchmarks, which contain multi-chain RNAs.

As expected, the results from de novo folding of the
Seetin&Mathews and RNA Puzzles data sets were pre-
dictably lower: INF roughly 60% for all contacts includ-
ing stacking, 50% for canonical pairs and 20–30% for non-
canonical pairs. These structures are generally very difficult
to model, which is why the RNA Puzzles challenge is so im-
portant for the community of researchers working on RNA
3D structure prediction (13,40).

For the Das&Baker data set, in 7 cases out of 10, Sim-
RNA generated more accurate predictions (medoids of
largest clusters) than the ones reported by Das&Baker.
If only one best-scored model is considered per target,
138/153 (90%) and 9/10 (90%) significantly correct predic-
tions were obtained for single-chain RNAs in Ding et al.
and Das&Baker data sets, respectively. Only in one case
(2a9l structure), the energy criterion alone allowed us to ob-

tain a significantly correct prediction in the absence of a cor-
rect prediction in the first cluster; however, in this case the
second cluster medoid was significantly correct. On average,
models selected by clustering were more accurate than mod-
els selected based on energy alone (110/153 cases, and 13/20
cases in Ding et al. and Das&Baker data sets, respectively).

In one case where a single-chain RNA was folded with-
out any restraints (2evy in the Ding et al. data set), Sim-
RNA failed to produce any conformations that could be
evaluated as significantly correct. For six cases in the Ding
et al. benchmark (1bgz, 1evv, 1k2g, 1oq0, 1xwp, 2f87), and
for one case in the Das&Baker benchmark (1zih), SimRNA
was able to generate such a conformation in the course of
the simulations, but neither the best-scored structure nor
the top three cluster medoids were significantly correct ac-
cording to HCS. It is worth noting that for 2f87 and 1zih
structures, SimRNA generated models that were very close
to the experimentally determined reference (RMSD 1.20 Å
and 1.36 Å, respectively), but these RNAs are very small;
hence, the values of RMSD did not meet the HCS.

RNA 3D structure prediction with restraints on secondary
structure

With secondary structure provided as restraints, the results
of the 3D structure predictions typically improved. Interest-
ingly, the use of secondary structure restraints had a neg-
ligible influence on recapitulation of all types of contacts,
as the average INF value remained close to 77% for both
data sets. For small structures, the improvement in terms
of secondary structure and RMSD to the reference struc-
ture was usually small. Hence, for the Das&Baker data set,
the improvement due to the use of restraints was negligible.
However, the use of secondary structure allowed SimRNA
to generate significantly correct predictions (both in terms
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of the best energy and the first cluster medoid) for some
RNAs from the Ding et al. data set that could not be folded
without restraints (1bgz, 1evv, 1k2g). In general, the sec-
ondary structure restraints significantly improved the pre-
dictions for large RNAs. Again, if the medoids of the largest
clusters are considered as results of the 3D folding with sec-
ondary structure restraints, then SimRNA proposed signif-
icantly correct predictions (with a reference to the entire
unrestricted search space) for 149/153 structures (97%) in
Ding et al. data set. Across both data sets, SimRNA folded
correctly 158/163 single-chain structures. It was unable to
generate significantly correct predictions only for five very
small RNAs: 2f87 (12 nt), 2evy (14 nt), 1oq0 (15 nt) and
1xwp (15 nt) in the Ding et al. data set, and 1zih (12 nt) in
the Das&Baker data set. Models were native-like with re-
spect to the secondary structure and tertiary fold, but for
such small structures, SimRNA predictions were not precise
enough to be evaluated as significant according to HCS.

These results obtained with SimRNA compare well with
predictions reported by the authors of the aforementioned
benchmarks. In the original work of Ding et al. (10),
149/153 structures were also folded below the level of ‘cor-
rectness’ according to HCS. The RMSD values for predic-
tions reported by Ding et al. (10) (3.8 Å on the average)
were slightly better than we could obtain with SimRNA
for that data set (4.1 Å on the average for the first cluster
medoids). However, when we used the iFoldRNA server de-
veloped by the authors that implements their method (44),
iFoldRNA generated significantly correct predictions only
for 130/153 structures and the RMSD values of the result-
ing models were in general higher (6.2 Å on average) than
models obtained with SimRNA (Table 1 and Supplemen-
tary Table S1). Likewise, in the article by Das and Baker
for predictions of single-chain RNA structures obtained
with FARNA, 9/10 predictions satisfied the HCS. When
10 multi-chain structures from the Das&Baker data set are
considered, models generated by SimRNA with restraints
on the secondary structure are better in 7/10 cases than re-
sults obtained by Das&Baker (in this case the results are
not much different from folding without secondary struc-
ture restraints). For the entire Das&Baker data set, Sim-
RNA predictions had an average RMSD of 3.9 Å, which
compares favorably to the average RMSD 4.9 Å reported
by Das&Baker.

RNA 3D structure prediction with restraints on secondary
structure and on tertiary contacts from experimental data

The Seetin&Mathews data set and RNA Puzzles data sets
comprise only five and nine cases, respectively, and only
five the of RNA Puzzles have experimental probing data.
However, these are very special in that they are representa-
tive of the class of ‘real life’ challenges faced by researchers
studying RNAs with unknown structures, where knowledge
of the RNA secondary structure and sparse tertiary struc-
ture information are all that is available for 3D structure
prediction. Generally, even with such information, it is of-
ten difficult to obtain a correct 3D structure for long se-
quences, as demonstrated by the RNA Puzzles experiment
(13). Therefore, we consider these data sets for a separate
type of benchmark from the data sets of Ding et al. and

Das&Baker described above. The complexity and problems
of folding these long sequences and the experimental data
sets from Seetin&Mathews are discussed in detail by the au-
thors (38). Here, we attempted to fold each of these RNAs
in three distinct modes: without restraints, with secondary
structure restraints and with secondary structure restraints
as well as additional restraints derived from experimental
data (for Puzzle 10, structure 4lck, we folded only the T-box
RNA, and kept the homology model of the tRNA frozen).

The Seetin&Mathews data set proved to be the most diffi-
cult. Without restraints, SimRNA was able to provide a sig-
nificantly correct model for only one of the structures (1e8o)
in this data set. The use of secondary structure restraints
allowed SimRNA to improve the folding of that structure,
as well as to generate significantly correct models for 1evv
(common with the Ding et al. data set, described above) and
1kh6. For 1gid and 3zd5, models were generated at the bor-
derline of significant correctness. The use of additional re-
straints further improved the folding of the most difficult
cases (1evv, 1gid and 3zd5), resulting in the generation of
significantly correct predictions. The final models (first clus-
ter medoids) had native-like secondary structures, in agree-
ment with restraints (average positive predictive value 0.84,
sensitivity 0.91), and reasonable overall contacts: including
non-canonical interactions and stacking (INF = 0.73). The
average RMDS of these models are relatively high (7.7 Å),
but they compare well to the RMSD of models generated
by the authors of the reference method (9.2 Å).

The RNA Puzzles data set was found to be also very dif-
ficult, and most of the models obtained with de novo fold-
ing with SimRNA had high RMSD values, with the ex-
ception of Puzzle 1 (3mei). The use of secondary structure
restraints significantly helped folding Puzzle 2 (3p59). The
folding with restraints on tertiary contacts, inferred from
the publicly available experimental data, resulted in fold-
ing structures of most Puzzles to structures with RMSDs
between 10 and 17 Å and most of them had P-values indi-
cating statistical significance. Not surprisingly, these mod-
els were in general somewhat worse than the winning struc-
tures submitted by human predictors in the RNA Puzzles
competition, with the exception of Puzzle 12, where Sim-
RNA was able to generate a slightly better model than the
best human prediction. Nonetheless, they were actually not
much worse than predictions submitted by our own group,
which has used SimRNA, often in combination with other
programs. These results will be analyzed in detail and will
certainly influence our strategy for predicting structures in
RNA Puzzles, and will also be taken into account in the fu-
ture development of SimRNA and its possible automated
combination with methods for homology modeling and all-
atom refinement.

Folding of RNA 3D structure motifs

Finally, we analyzed the ability of SimRNA to predict the
structure of short RNA 3D motifs from the data set used
by Das&Baker to test FARFAR. In this data set, the struc-
tures were relatively small, but many of them comprised
multiple chains, and were often derived from larger struc-
tures that did not correspond to autonomously folded struc-
tural units. For this data set, we performed simulations with
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the base-paired termini of all chains restrained to reproduce
the context of each motif, scrambled the structure (includ-
ing the base-pair termini) using a very high initial temper-
ature and allowed SimRNA to predict the internal struc-
ture of the motif. Here, the main question was the ability
of the program to predict non-canonical interactions. Data
from Supplementary Table S1 demonstrate that, in general,
models generated by SimRNA had low RMSDs relative
to the native structures, and ideal or nearly ideal inferred
canonical base pairs. However, whereas these examples are
certainly better than de novo folding, only roughly half of
the structures had an appreciable fraction of non-canonical
pairs predicted correctly. Based on this exercise, we con-
clude that the improving prediction of non-canonical pairs
is a major challenge for coarse-grained modeling. While we
intend to improve SimRNA with respect to this type of
problems, it may be useful to consider the use of indepen-
dent methods such as RMDetect (45) or JAR3D (46) to pre-
dict local structured motifs before the folding, or to use lo-
cal high-resolution resampling; e.g., with FARFAR (39) af-
ter coarse-grained modeling. The RNA Puzzles experiment
provides an excellent platform for testing these and other
combinations of solutions in the future.

DISCUSSION

Since Anfinsen, it has been an often held view that the 3D
structure of biomolecules (proteins and RNAs) is deter-
mined by their sequence, and that the formation of the bi-
ologically relevant structure is guided by the minimization
of the free energy of the system containing the biomolecule
(47,48). This assumption provided a basis for the develop-
ment of computational methods for protein and RNA 3D
structure prediction that sample the conformational space,
calculate free energies for the sampled conformations and
attempt to identify the global free energy minimum (5,49).
Ideally, the function with which to calculate the energy
should be based on a quantum-mechanical description of
the system, however such calculations of even a few hundred
atoms are extremely costly and therefore applicable only to
very small molecules. Hence, various simplifications must
be employed. A particularly successful simplification used
for protein structure prediction has been coarse-graining,
in which an atomistic description of a molecular system is
replaced with a less complex model, where groups of atoms
are treated as single interaction centers (50). The develop-
ment of a coarse-grained model is challenging, because the
reduction in detail of the representation must be accom-
panied by modifications of the energy function to capture
the key interactions that are responsible for folding: kinet-
ics and thermodynamics.

SimRNA is a new coarse-grained RNA model, in which
the explicit representation has been reduced to five atoms
per ribonucleotide residue, and in which the physical en-
ergy function has been approximated by a statistical po-
tential derived from a database of experimentally deter-
mined structures. The conformational space is sampled by
means of Monte Carlo simulation. This approach has been
strongly inspired by coarse-grained models developed for
protein structure prediction, in particular CABS (15) and
REFINER (14). The process of development of SimRNA

from the preliminary version with only three atoms per
residue (51) to the current one has been greatly aided by
blind tests performed in the context of the RNA Puzzles ex-
periment (13). In particular, the development of the three
atom description of the base has been dictated by the need
to differentiate better between stacking and base-pairing in-
teractions, which is now reflected in an explicit representa-
tion of both the base faces and edges. Tests carried out for
RNA Puzzles have also prompted the development of vari-
ous types of restraints that can be used to guide the folding.

We have extensively tested the SimRNA version de-
scribed in this article by performing RNA folding simu-
lations, and we have compared its performance to other
successful models developed previously. The benchmark re-
sults suggest that SimRNA runs carried out with only se-
quence information often recapitulate the native-like sec-
ondary and tertiary structure, especially for relatively short
RNA sequences, up to ≈50 nt. For the structure prediction
of longer molecules, sampling of the vast conformational
space becomes a limiting factor, which can be aided by the
use of additional restraints on the secondary structure and
long-range tertiary contacts. Still, SimRNA exhibits com-
parable performance (or better) than other methods that
use energy functions based on force fields derived from a
more directly physical description of intramolecular inter-
actions. It is known that in RNA simulations using pairwise
potentials, reliable reproduction of the correct handedness
of RNA helices (and possibly other structural motifs) can
be a challenge (21). This problem has not been observed in
SimRNA, where the energy function terms––especially the
torsional angle �-� in the backbone and the base–base inter-
action preferences stored in the 3D grids––together energet-
ically favor right-handed A-helices and render left-handed
helices unstable over the recommended temperature range.

It is particularly noteworthy that SimRNA can accurately
predict both secondary structure and the global conforma-
tion of pseudoknots. For all 14 out of 15 pseudoknotted
structures in the Ding et al. and Das&Baker data sets, Sim-
RNA generated significantly correct predictions (accord-
ing to HCS) without the use of secondary structure re-
straints, and only for the 1evv structure, which contains a
very weak pseudoknot, secondary structure restraints were
necessary to obtain a significantly correct prediction. Sim-
RNA can also be used to characterize the conformational
space and highlight potential alternative structures. Figure
4 illustrates the case of a pseudoknotted RNA: gene 32 mes-
senger RNA pseudoknot of bacteriophage T2, (PDB id:
2tpk, 36 residues). SimRNA was able to identify a native-
like 3D structure (largest cluster of solutions), with sec-
ondary structure identical to that of the experimentally de-
termined reference. It is noteworthy that alternative non-
pseudoknotted hairpin-loop structures also emerged as well
(clusters 2 and 3), which exhibited low energies, but could
be successfully discriminated from the correct solution. The
analysis of the folding trajectories provided useful insight
not only into the final folded 3D structure, but also into
the structures of potential folding intermediates. In the Sim-
RNA simulations of this RNA, the 5′ hairpin folded first,
and in order to form the pseudoknot, the 3′ tail had to bend
and form base pairs with residues in the loop formed by
the 5′ hairpin. Thus, SimRNA can be used not only for 3D
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Figure 4. An example of the energy landscape generated in the course of a
set of SimRNA simulations. Results are shown for the gene 32 messenger
RNA pseudoknot of bacteriophage T2 (PDB id: 2tpk). The upper panel
illustrates the relationship between the distance to the reference structure
(expressed in RMSD), and the energy of a given conformation (calcu-
lated according to the SimRNA statistical potential). Each conformation
recorded in the course of the simulation is represented by one dot; where
the dots are colored (red to purple to black) according to the conforma-
tion’s similarity to other conformations. Structures that have many simi-
lar conformations are colored red, and structures that have rather unique
conformations are colored in black, purple being in-between. The starting
conformation is indicated by (S), the reference structure determined by X-
ray crystallography is indicated by (C), an example intermediate structure
is indicated by (I), and the top three clusters are indicated by (1), (2) and
(3). The bottom panel illustrates the tertiary and secondary structure of
these conformations. RNA molecules are colored by a spectrum from blue
(5′ terminus) to red (3′ terminus) and the secondary structure is shown in
dot-bracket format.

RNA structure prediction, but also to investigate interme-
diate states of folding, structural diversity of intermediate
states, and the order of formation of specific parts of the
final structure. This can aid in inferring the RNA folding
pathways. SimRNA can also be applied to simulations of
structure unfolding, and to isothermal simulations that al-
low determination of the relative stability of different re-
gions of an RNA structure.

SimRNA can be also used to add missing fragments of
RNA 3D structures and to remodel uncertain parts of struc-
tures obtained with other methods; e.g., by homology mod-
eling. Because of space constraints we have not analyzed
these applications in this article, however examples of suc-
cessful application of SimRNA to such problems have al-
ready been published; e.g., for Puzzle 2 in the first edition of
RNA Puzzles (13) or for the S6S18CBM RNA motif (52).
A practical application of SimRNA for RNA folding with
restraints has been also demonstrated (53).

Limitations of the current methodology and prospects for fu-
ture development

SimRNA is capable of folding RNA molecules of differ-
ent sizes, with and without additional restraints. However,
there are certain limitations of this method that should be
taken into account. First, SimRNA, as a coarse-grained
method, does not represent all the details of RNA struc-
tures ideally. The native-like coarse-grained models are ex-
pected to be close to the experimentally determined struc-
tures, but they are typically not closer than 2–3 Å in terms of
RMSD. Experimentally determined structures often exhibit
relatively high energies according to the SimRNA scoring
function (see for example Figure 4), and their minimiza-
tion in the SimRNA force field introduces slight distortions
due to ‘idealization’ of various geometrical parameters in-
herent to the reduced model. Second, because the energy
function is rooted in statistics, SimRNA best recapitulates
the structural motifs that are most frequent; i.e., canonical
base pairs and stacking. Non-canonical interactions, espe-
cially the rare ones, are not scored as highly favorable, and
they are very difficult to capture. Both of these issues can
be addressed by introducing a high-resolution refinement
of SimRNA-generated models, with an energy function that
takes into account the true strength of the interactions and
does not penalize interactions that are statistically rare, but
physically strong. We have already developed an indepen-
dent computer program QRNAS dedicated to such refine-
ment (J.M.B. and Juliusz Stasiewicz, unpublished data) and
we demonstrated its applicability in the context of the RNA
Puzzles experiment (40). Another solution to be tested and
potentially implemented in the future would be to rescale
the relative as well as the absolute strengths of interactions
represented in SimRNA according to values determined ex-
perimentally as well as values that could be obtained from
simulations of RNA molecules with fine-grained methods
and high-end physical force fields. Finally, folding of large
RNA molecules with SimRNA is computationally demand-
ing, as the program has to sample many different 3D archi-
tectures. Thus, modeling of large RNA structures with Sim-
RNA may be jump-started by using starting models gener-
ated by other modeling methods developed to predict the
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global architecture; e.g., by comparative modeling (6,54) or
by sampling of helical topologies (55,56), and the confor-
mational space to be sampled may be restricted by the use
of additional restraints (57).

AVAILABILITY

SimRNA is written in C++ and currently is only available
for the Linux and MacOSX operating systems. A Windows
version is also planned. The source code of SimRNA is not
distributed due to intellectual property restrictions. Com-
piled Linux binaries for Intel and AMD (32 bit and 64
bit) are available from http://genesilico.pl/simrna/. The mul-
tiprocessor code requires openmp. MacOSX binaries are
compiled with OSX.6/7 support and can run on most Mac-
Book Pro and Air distributions. Users interested in obtain-
ing compiled binaries in some other distribution must con-
tact the authors. The use of a compiled version of SimRNA
is free for non-commercial use by academic users. Non-
academic users and those interested in commercial use must
contact J.M.B. to obtain a commercial license.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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