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Abstract

RNA viruses exist as genetically diverse populations1. It is thought that diversity and genetic

structure of viral populations determine the rapid adaptation observed in RNA viruses2 and hence

their pathogenesis3. However, our understanding of the mechanisms underlying virus evolution

has been limited by the inability to accurately describe the genetic structure of virus populations.

Next-generation sequencing technologies generate data of sufficient depth to characterize virus

populations, but are limited in their utility because most variants are present at very low

frequencies and are thus indistinguishable from next-generation sequencing errors. Here we

present an approach that reduces next-generation sequencing errors and allows the description of

virus populations with unprecedented accuracy. Using this approach, we define the mutation rates

of poliovirus and uncover the mutation landscape of the population. Furthermore, by monitoring

changes in variant frequencies on serially passaged populations, we determined fitness values for

thousands of mutations across the viral genome. Mapping of these fitness values onto three-

dimensional structures of viral proteins offers a powerful approach for exploring structure–

function relationships and potentially uncovering new functions. To our knowledge, our study

provides the first single-nucleotide fitness landscape of an evolving RNA virus and establishes a

general experimental platform for studying the genetic changes underlying the evolution of virus

populations.
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To overcome the limitations of next-generation sequencing error, we developed circular

sequencing (CirSeq), wherein circularized genomic RNA fragments are used to generate

tandem repeats that then serve as substrates for next-generation sequencing (for DNA

adaptation, see ref. 4). The physical linkage of the repeats, generated by ‘rolling circle’

reverse transcription of the circular RNA template, provides sequence redundancy for a

genomic fragment derived from a single individual within the virus population (Fig. 1a and

Extended Data Fig. 1). Mutations that were originally present in the viral RNA will be

shared by all the repeats. Differences within the linked repeats must originate from

enzymatic or sequencing errors and can be excluded from the analysis computationally. A

consensus generated from a three-repeat tandem reduces the theoretical minimum error

probability associated with current Illumina sequencing by up to 8 orders of magnitude,

from 10−4 to 10−12 per base. This accuracy improvement reduces sequencing error to far

below the estimated mutation rates of RNA viruses (10−4 to 10−6) (ref. 5), allowing capture

of a near-complete distribution of mutant frequencies within RNA virus populations.

We used CirSeq to assess the genetic composition of populations of poliovirus replicating in

human cells in culture. Starting from a single viral clone, poliovirus populations were

obtained following 7 serial passages (Fig. 2a). At each passage, 106 plaque forming units

(p.f.u.) were used to infect HeLa cells at low multiplicity of infection (m.o.i. ∼0.1) for a

single replication cycle (8 h) at 37 °C (Methods).

We assessed the accuracy of CirSeq relative to conventional next-generation sequencing by

estimating overall mutation frequencies as a function of sequence quality (Fig. 1b). The

observed mutation frequency using CirSeq analysis was significantly lower than that using

conventional analysis of the same data (Fig. 1b). In contrast to conventional next-generation

sequencing, the mutation frequency in the CirSeq consensus was constant over a large range

of sequencing quality scores (Fig. 1b and Extended Data Fig. 2, quality scores from 20 to

40). The mutation frequency obtained in the stable range of the CirSeq analysis is similar to

previously reported mutation frequencies in poliovirus populations—approximately 2 × 10−4

mutations per nucleotide3,6 (Fig. 2b and Extended Data Table 1).

We also compared transition-to-transversion ratios (ts:tv) obtained by CirSeq and

conventional next-generation sequencing. Although purine (A/G) to purine, or pyrimidine

(C/T) to pyrimidine transitions (ts) are the most commonly observed mutations in most

organisms7, error stemming from Illumina sequencing exhibits substantial purine to

pyrimidine or pyrimidine to purine transversion (tv) bias8. This bias is reduced using

CirSeq, as resulting ts:tv ratios are significantly higher than in the conventional repeat

analysis (Fig. 1c). Notably, even if conventional next-generation data are filtered at high

sequence quality (that is, quality scores over 30), the ts:tv ratio is still up to 10 times lower

than that obtained with CirSeq. Thus, filtering conventional data fails to eliminate most

sequencing errors (Fig. 1c). Our results indicate that CirSeq efficiently reduces errors

generated during sequencing, producing mutation frequencies and ts:tv ratios consistent with

the high values expected for poliovirus6,9,10.

Using these results, we selected an average quality score of 20 as a threshold for further

CirSeq analysis. This threshold corresponds to an estimated error probability of 10−6 (see
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Methods), setting a limit of detection for minor genetic variants two orders of magnitude

below the expected average mutation frequency for RNA viruses. In comparison, the same

quality threshold of 20, generally accepted for conventional analysis of next-generation

sequencing data, limits variant detection to a minimum of 1% (ref. 11), two orders of

magnitude higher than the average mutation frequency of many RNA viruses.

With an average coverage of more than 200,000 reads per position (Extended Data Fig. 3a),

we detected on average more than 16,500 variants, ∼74% of all possible variant alleles, per

population per passage (Fig. 2b and Extended Data Table 1). Many alleles were detected for

virtually all positions in the genome: mutations for all three alternative alleles (from the

remaining three possible alternative nucleotides) were detected at 45.7% of genome

positions; mutations for two of three were detected at 42% of positions; and mutations for

only one alternative allele were detected at 12.2% of positions. The vast majority of variants

are homogenously distributed at low frequencies between 10−3 and 10−5, with very few

populating the range between 1 and 10−3 (Fig. 2c). Thus, we can infer that the structure of a

virus population replicating in the stable environment used here, is characterized by a sharp

peak, representing the population consensus sequence, surrounded by a dense array of

diverse variants present at very low frequencies (Extended Data Fig. 5a).

Mutation rates are central to evolution, as the rate of evolution is determined by the rate at

which mutations are introduced into the population12,13. Determination of virus mutation

rates is difficult and often unreliable because accuracy depends on observing rare events5.

We employed CirSeq to measure the rates for each type of mutation occurring during

poliovirus replication in vivo. To do so, we estimated the frequency of lethal mutations,

which are produced anew in each generation at a frequency equal to the mutation rate14.

These included mutations producing stop codons within the virus polyprotein or those

causing amino acid substitutions at catalytic sites of the essential viral enzymes 2A, 3C and

3D15–17. We find that mutation rates vary by more than two orders of magnitude depending

on mutation type, transitions averaging 2.5 × 10−5 to 2.6 × 10−4 substitutions per site and

transversions averaging 1.2 × 10−6 to 1.5 × 10−5 substitutions per site (Fig. 3). Even within

these groups, transitions or transversions, the rates of the various nucleotide changes differ

by an order of magnitude (Fig. 3). These nucleotide-specific differences in mutation rate

likely reflect the molecular mechanism of viral polymerase fidelity, which may ultimately

provide a means for the directionality of evolution. For example, C to U and G to A

transitions accumulate up to 10 times faster than U to C and A to G; this inequality may

provide a mechanistic basis for Dollo's law of irreversibility18 because the likelihood of

moving in one direction in sequence space is not equivalent to the reverse. Our analysis of

mutation rates is consistent with biochemical estimations9 and provides a physiological view

of how the spectrum of mutation rates contribute to the genetic diversity of virus

populations.

We next measured the fitness of each allele in the population by determining the change in

mutation frequency for each variant over the course of seven passages (Fig. 2a). Variant

frequency is governed by mutation and selection19, assuming that our experimental

conditions (low m.o.i. and large population size at each passage) minimize genetic drift and

Acevedo et al. Page 3

Nature. Author manuscript; available in PMC 2014 July 30.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



complementation. We employed a simple model based on classical population genetics to

estimate fitness:

(1)

where a and A are the counts of variant and wild type alleles, respectively, wrel is the relative

fitness of a to A (ratio of growth rates), t is time in generations (infection cycles) and μ is the

specific rate of mutation from A to a. We measured proportions of A and a over the seven

passages and, using mutation rates we previously determined (Fig. 3), calculated wrel for

mutations across the viral genome. The current length limitations of next-generation

sequencing preclude CirSeq from providing direct information about haplotypes.

Accordingly, our fitness measurements represent the average relative fitness of the

population of haplotypes containing a variant allele compared to the population of

haplotypes containing the wild-type allele at that position (see Supplementary Information).

Overall, the distribution of mutational fitness effects we obtained (Fig. 4a) is highly

consistent with previous small-scale analyses of RNA viruses20–22, validating CirSeq as a

robust method for large-scale fitness measurement. In our analysis, the non-lethal

distribution of mutational fitness effects for synonymous mutations is centred near neutrality

(Fig. 4a), reflecting the predominantly neutral effects anticipated for synonymous mutations.

In contrast, the distribution of non-lethal mutational fitness effects for non-synonymous

mutations encompasses primarily deleterious mutations, consistent with previous

findings21–23.

Notably, despite the expectation that synonymous mutations will have relatively low impact

on fitness, a significant fraction of synonymous changes were subject to strong selection,

with 2% being highly beneficial (relative fitness >1.2) and 10% being lethal (Fig. 4a and

Extended Data Fig. 6c). Synonymous mutations under strong selection are relatively evenly

dispersed throughout the coding sequence, rather than clustered at known functional

elements (Extended Data Fig. 6a). Given that the entire capsid-coding region can be deleted

without disrupting replication or translation, indicating that this region contains no essential

RNA structural elements, it is probable that RNA structure is not the primary driving force

behind strong selection of synonymous mutants in poliovirus. Although it is possible that

observed mutational fitness effects could be the result of codon usage or codon pair bias, in

practice, deoptimization of these biases does not result in lethality based on single

nucleotide substitutions24,25. Future studies will be necessary to elucidate the mechanisms

modulated by these synonymous mutations. Furthermore, the variance in fitness for non-

synonymous mutations was significantly larger (P < 0.001, Extended Data Fig. 6c) than for

synonymous; indeed the largest beneficial fitness effects (not shown in Fig. 4a) were the

result of non-synonymous substitutions. Notably, a large number of substitutions are

beneficial (145 significantly beneficial mutations, see Methods), indicating the potential for

a highly dynamic population structure, where selection for minor genetic components

constantly drives the population to new regions of sequence space, even in a relatively

constant environment.

Acevedo et al. Page 4

Nature. Author manuscript; available in PMC 2014 July 30.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



The genome-wide distribution of mutational fitness effects does not apply uniformly to each

protein as non-synonymous mutations exhibit distinct mutational fitness effects distributions

in structural genes (those encoding the viral capsid) and non-structural genes (encoding

enzymes and factors involved in viral replication) (Fig. 4b, Extended Data Fig. 6b for

synonymous). Although non-structural genes show slightly lower mean mutational fitness

effects when considering lethal mutants, they have significantly larger variance in

mutational fitness effects (P < 0.001, Extended Data Fig. 6c), indicating that these proteins

may have intrinsic differences in their tolerance of mutations. These differences may relate

to biophysical properties, like stability constraints26, or the density of functional residues,

for example, non-structural proteins often play multifunctional roles and participate in a

greater number of host–pathogen interactions27.

To investigate further the relationship between mutational fitness effects and protein

structure and function, we mapped fitness values onto the three-dimensional structure of the

well characterized poliovirus RNA-dependent RNA polymerase28. We find a remarkable

agreement between our fitness data and known structure–function relationships in this

enzyme (see Supplementary Information and Extended Data Table 2). For example, many

detrimental mutations map to residues associated with RNA binding and catalysis in the

central chamber of the polymerase (Fig. 4d, red). Intriguingly, two clusters of beneficial

mutations, discontinuous on the genome sequence, mapped to uncharacterized and

structurally contiguous regions on the surface of the polymerase (Fig. 4c, blue). Our data

suggest that this domain must be functionally relevant to viral replication, as it is clearly

tuned by evolution over the course of passaging. Such genome-wide fitness calculations

enabled by CirSeq, combined with structural information, can provide high-definition, bias-

free insights into structure–function relationships, potentially revealing novel functions for

viral proteins and RNA structures, as well as nuanced insights into a viral genome's

phenotypic space. Such analyses have the power to reveal protein residues or domains that

directly correspond to viral functional plasticity and may significantly inform our structural

and mechanistic understanding of host–pathogen interactions.

The analytical approach we describe provides an opportunity to examine and quantify

evolutionary dynamics at nucleotide resolution on a genome-wide scale and to integrate

evolutionary information with structural and physiological data. Such large-scale

measurements of fitness are a fundamental step in understanding the effects of mutation on

phenotype and evolutionary trajectory. Modelling the evolutionary dynamics of infection,

transmission, host-switching and drug resistance may be central for developing innovative

strategies for drug and vaccine design, personalized treatment and the containment of

emerging viruses.

Methods

Cells and viruses

HeLa S3 cells (ATCC, CCL2.2) were propagated in DMEM high glucose/F12 medium

supplemented with 10% newborn calf serum (Sigma) and 1X penicillin streptomycin

glutamine (Gibco) at 37 °C. Wild-type poliovirus type 1 Mahoney was generated by

electroporation of cells with T7 in vitro transcribed RNA from linearized prib(+)XpA31. A
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single plaque isolated from this initial population was amplified and Sanger sequenced to

ensure the founding clone was wild-type poliovirus. This clone was serially passaged on

monolayers containing 107 cells at an m.o.i. of approximately 0.1. To generate populations

for sequencing, each passage was amplified on monolayers containing 107 cells at an m.o.i.

greater than 5 for 6–8 h. Once a cytopathic effect was observed, the medium was removed

and replaced with 2 ml of TRIzol reagent (Ambion).

Library preparation

Total cellular RNA was extracted and precipitated using TRIzol reagent according to the

manufacturer guidelines. The RNA was precipitated two times with 0.3 M sodium acetate

(pH 5.5) and 2.5 volumes of ethanol before poly(A) selection using the MicroPoly(A)Purist

kit (Ambion) according to the manufacturer guidelines. Then 2–5 μg of poly(A)-containing

RNA was fragmented with fragmentation reagent (Ambion) for 7.5 min at 70 °C. A practical

minimum for this library preparation is 1 μg to ensure that enough fragmented RNA is

obtained to produce a library with sufficient complexity and handle reproducibly.

Approximately 80–90-base RNA fragments (Extended Data Fig. 3b, for discussion of size)

were isolated by 12.5% urea–PAGE and eluted by the crush and soak method. The size-

selected RNA was purified from gel fragments using a Spin-X (Costar) cellulose acetate

column and ethanol precipitated with glycogen as a carrier. RNA was circularized using

polynucleotide kinase and RNA ligase 1 in RNA ligase 1 buffer (NEB) containing 1 mM

ATP. Circularized RNA was ethanol precipitated and reverse transcribed with Superscript

III (Life Technologies) using the following conditions. First, circularized RNA and 100 ng

of random hexamers were combined in a total volume of 10 μl with dNTPs at a final

concentration of 2 mM. The reaction was heat denatured at 65 °C for 5 min and then placed

on ice for 3 min. Next, 400 U of Superscript III was added as well as dithiothreitol (DTT) to

5 μM and First-Strand Buffer to 1X in a total volume of 20 μl. The reaction was incubated at

25 °C for 10 min, followed by 42 °C for 30 min. After the shift to 42 °C, 0.008 U RNaseH

was added to the reaction to allow degradation of the circular form of the RNA. Importantly,

Superscript III is a strand-displacing polymerase. As the polymerase transcribes the

template, any complementary sequence hybridized downstream of the replication site is

displaced by the polymerase allowing transcription of many copies of the same template. In

the case of our circular templates, this process results in the polymerase displacing the 5′ end

of the nascent strand that it is actively transcribing resulting in multiple copies of the same

template on the same nascent strand. After cDNA synthesis, samples were cloned using the

following kits consecutively and according to the manufacturer guidelines: NEBNext

mRNA Second Strand Synthesis Module (NEB), NEBNext End Repair Module (NEB),

NEBNext dA-Tailing Module (NEB) and NEBNext Quick Ligation Module (NEB).

Samples were extracted with phenol:chlorofom:isoamyl alcohol (25:24:1 v/v) (Ambion) and

precipitated between each reaction. For ligation, oligonucleotides containing Alumina

paired-end adaptor sequences (5′-P-GATCGGAAGAGCGGTTCAGC

AGGAATGCCGA*G and 5′-ACACTCTTTCCCTACACGACGCTCTTCCGA TC*T,

where * indicates a phosphorothioate bond), purchased from IDT, were annealed and used at

a final concentration of 2.4 μM. Ligated DNA was size selected from approximately 360–

500 bases by 10% urea–PAGE, eluted and precipitated. This purified DNA was then

amplified with 1 U Phusion High-Fidelity DNA Polymerase in HF Buffer (NEB) with
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Primers 1.01 and 2.01 (5′-AATGATA

CGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGA TC*T and

5′-CAAGCAGAAGACGGCATACGAGATCGGTCTCGGCAT TC

CTGCTGAACCGCTCTTCCGATC*T, respectively) at final concentrations of 0.5 μM

using the following cycling parameters: 98 °C for 30 s, 15 cycles of 98 °C for 10 s, 65 °C for

30 s, 72 °C for 30 s, followed by 72 °C for 5 min. The amplified library was purified by 5%

non-denaturing PAGE. Extended Data Fig. 1 presents a schematic representation of this

protocol.

Sequencing and primary data analysis

The 323-cycle single-end sequencing of each library was performed on an Illumina MiSeq.

Tandem repeats were identified using an algorithm to define the most common periodicity

of subsequences within each read. This was accomplished by looking for the patterns of

reoccurrence of substrings within each read. The most common distance between

reoccurrences of multiple substrings was set as the periodicity for the read and used to slice

the read into individual repeats. These repeats were required to share at least 85% identity in

order to accept a consensus, which was generated by majority logic decoding using three

repeats.

As each consensus contains information derived from three repeats, the quality of that

consensus is determined by the quality of each of those repeats. The quality of each base in

each repeat is assessed by base-calling software and given a numerical score, called a quality

score. This quality score is a measure of the estimated error probability, or the probability

that the base was called incorrectly, according to the following relationship, where Q is the

quality score of the base and e is its estimated error probability.

Because each repeat is an independent observation of the initial genomic template, we can

apply the multiplication rule to calculate the estimated error probability of each consensus

base. When all three repeat bases are in agreement with the consensus base, the estimated

error probabilities derived from each base's quality score can be directly multiplied to obtain

the estimated error probability of the consensus base. For example, if all three repeat bases

are the same and the quality score for each base is Q20 (e = 10−2), the estimated error

probability for the consensus base is 10−6 (10−2×10−2×10−2).

For bases not in agreement with the consensus, the probability that the true repeat base did

not match the consensus was defined as 1 − e/3. For example, if the consensus base was

defined as G and the repeat base was read as A, then the probability that the true repeat base

was not G is the probability that A was read correctly (1 − e) plus the probability that A was
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read incorrectly and that the true repeat base was either C or T (2e/3), assuming an equal

probability of reading C, G or T.

Once multiplied, these adjusted error probabilities were transformed to quality scores and

divided by three to represent an average quality score. The quality scores were averaged to

avoid null characters in the ASCII scale used to represent quality scores in FASTQ format.

Consensus sequences along with their corresponding average quality scores were input to

Bowtie 2 (ref. 29) using the poliovirus Mahoney strain (accession number V01149) with a

single nucleotide substitution U2133C as a reference sequence. Because reverse

transcription of circular RNA templates was initiated randomly, the 5′ end of the tandem

repeats is not necessarily the 5′ end of the circularized fragment from which they were

templated. As a result, most consensus sequences do not align to the reference in their

entirety. To accommodate this, all consensus sequences that required soft clipping at one

end of the sequence were rearranged by swapping the position of the clipped nucleotides to

the opposite end of the sequence. These rearranged sequences were then realigned to the

reference. Because mutations, especially those near the fragment ends, can affect alignment

and clipping, consensus sequences containing mutations according to their alignment or that

required additional clipping after rearrangement were subjected to a more stringent

rearrangement algorithm to reduce the chance of introducing artefacts in subsequent

analyses. The more stringent rearrangement algorithm optimizes the edit distance of each

consensus sequence from the reference by using a repetitive indexing strategy to identify the

longest possible seed containing no mutations. This seed was extended base-by-base on

either end allowing for the minimum number of mutations and excluding mutations directly

at the ends. These rearranged sequences were then run through Bowtie 2 again. Only

consensus sequences devoid of indels and clipped bases were used for further analyses to

avoid artefacts.

Analysis of mutation frequency

A table of counts of each base at each reference position for each quality score was

generated using alignments from the primary analysis. Overall mutation frequencies were

calculated for each quality score by dividing the number of mutations called by the total

number of bases called for all genome positions for each of the quality scores. Additionally,

these frequencies were broken down by transition (purine > purine, pyrimidine >

pyrimidine) and transversion (purine > pyrimidine, pyrimidine > purine) mutations for each

quality score.

Analysis of the relationship between average quality score and mutation frequency shows

that, overall, mutation frequency is stable between Q20 and Q40 (Fig. 1b). This indicates

that the frequencies obtained by CircSeq are at or approaching the correct population

average mutation frequency over this range. A steep increase followed by a plateau of the

transition:transversion (ts:tv) ratio is observed over this same interval (Fig. 1c), indicating

Acevedo et al. Page 8

Nature. Author manuscript; available in PMC 2014 July 30.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



that ts:tv ratios obtained by CircSeq are at or approaching the true population ts:tv ratio. One

noticeable difference in these measures is the tiered plateau of the ts:tv ratio. This tiered

plateau is the result of a tiered plateau of mutation frequencies for transversions (Extended

Data Fig. 2). The reason for this tiering is that each type of mutation plateaus at a different

level based mostly on its mutation rate. Before the mutation type with the lowest mutation

rate levels off, small amounts of error can contribute to an increased mutation frequency for

all of the mutation types as a group. This is the effect seen in the upper tier of the

transversions. The result of this effect is less apparent in the total mutation frequency where

transversions are a much smaller proportion of the total mutations; however, the ts:tv ratio is

much more sensitive to small changes in the transversion frequency. All further analyses

were carried out with data filtered for a minimum average quality score of 20, because this

analysis revealed Q20 to be generally reliable. Quality can be improved further, especially

for ultra-rare variants (frequency <10−6), by shifting this threshold to higher quality scores,

however, a higher threshold will result in greater loss of data quantity. A summary of the

final sequencing output threshold at Q20 can be found in Extended Data Table 1.

Although the measurement accuracy of the overall mutation frequency for the population is

determined by quality scores, the measurement accuracy of individual mutation frequencies

at each position of the genome is affected by both the depth of coverage at that position

(Extended Data Fig. 3a) and its true mutation frequency. The standard error of a binomial

distribution can be used to approximate this error, where n is the coverage depth and p is the

mutation frequency measured by sequencing.

Extended Data Fig. 4a demonstrates that lower error estimated by this distribution

corresponds to highly correlated frequency measurements from technical replicates. For the

technical replicate data sets, this high correlation/low measurement error tends to occur

where frequencies are relatively high (∼10−4 to 10−1). However, even at high frequencies,

many variants still have substantial measurement error. Extended Data Fig. 4b shows that

this can mainly be explained by coverage, where positions that are covered more deeply also

tend to correlate more strongly between replicates. However, the coverage depth required

for good correlation increases as frequency decreases, thus coverage must be tailored to the

range of frequencies expected for each population.

Random PCR amplification bias (jackpotting) could potentially affect the reliability of

mutation frequency measurements. To evaluate this potential source of error, we analysed

the distribution of frequencies of nonsense mutations. For the same type of nonsense

mutation, their frequency should be at approximately the same frequency (see analysis of

mutation rates) in a given passage, but, because there are many of them dispersed

throughout the genome, if there is amplification bias (jackpotting), we will likely see at least

one instance of uncharacteristically high frequency. Looking at C to U nonsense mutants,

which have the highest frequencies and thus give higher quality information, frequencies are
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clustered around the mean with no large deviations (Extended Data Fig. 4c). This strongly

indicates that our experiment is not affected by pervasive jackpotting.

Analysis of mutation rates

The frequencies of lethal mutations were used to estimate the mutation rate of each mutation

type13. Nonsense mutations and non-synonymous mutations in active site residues of

proteins 2A, 3C and 3D14–16 were used for this purpose. Mutation rates were defined by the

number of nonsense or non-synonomous codons caused by each type of mutation divided by

the total number of codons sequenced at sites susceptible to those mutations. This was done

separately for each mutation type and provides the specific mutation rate for each type of

mutation rather than the rate of mutation per site in the genome. The rates measured here are

mutation rates per cell infection.

Calculation of relative fitness

Lethal fitness was assigned to a variant if for all seven passages its frequency was either less

than or equal to the highest measured frequency of a catalytic site mutant of the same type

or, because in some cases no mutations were detected, if coverage at positions having no

mutations was at least three times the inverse of the highest measured frequency of a

catalytic site mutant of the same type. It is possible that some variants defined as lethal using

this criterion may be at a frequency slightly higher than the mutation rate, however, the

likelihood of this misclassification is reduced because each variant must meet this

requirement seven times. The stringency of this criterion may need to be adjusted for

experiments using fewer time steps. Fitness for all other variants with at least one mutation

per passage was calculated as described below.

The relative fitness of a mutation can be described by a linear model with two parameters

for proportions of a mutation across serial passages:

(1)

where a and A are the counts of a mutated and wild-type alleles, respectively, in passages t

and t − 1, measured via sequencing, μt−1 is the estimated mutation rate for the specific

mutation type in passage t − 1, and an unknown parameter wrel is the relative fitness of the

given mutation, which is assumed to be the same for all passages. Because our

measurements of allele frequencies have error (Extended Data Fig. 4), especially at low

mutation frequencies, we employed a Bayesian autoregression approach to provide a more

accurate estimation of fitness with credibility intervals. We further incorporated the

stochastic effect of genetic drift in our calculations by simulating random fluctuation in

variant frequencies. This approach provides a more realistic estimation of error in our fitness

calculations.
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Since a finite number of virions (106) are transferred from one passage to the next, the

number of mutant viruses in this sample is subject to genetic drift such that bt−1 is

binomially distributed from 0 to 106 with parameter .

Equation (1) can be rewritten as:

or

or

(2)

From equation (2) we will get:

(3)

(4)

The number mutations  (total number of normalized mutations minus the number of

expected random mutation in 106 genomes) should follow a Poisson distribution with

unknown parameter λt−1 that is defined by simulated counts bt−1 based on the mutation

frequency from the previous passage, and the fitness parameter, wrel:

where bt−1 is simulated from a binomial distribution .

The direct maximum likelihood estimation of wrel using a product of the Poisson likelihood

functions for each passage:
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interprets passages as independent experiments. This is inaccurate because the passages are

chain-dependent.

We applied a generalized Bayesian autoregression approach32,33 to more accurately estimate

wrel. In the initial step, an estimation of relative fitness, ŵrel0, is calculated by a simple

regression:

This estimation is also inaccurate because, in order to be the maximum likelihood

estimation, it assumes that values of  are taken from normal distributions, when in fact,

they are taken from Poisson distributions with λt−1(wrel) parameters. The Bayesian

improvement of this ŵrel0 estimation is as follows. Let us approximate counts of ‘selected’

mutations, , by normally distributed zt values with variances . The distributions of zt

depend on parameters λt−1(wrel) and the likelihood function of zt approximates the

likelihood function of  in the neighbourhood of λt−1(ŵrel0)—the previous parameter

estimation. Thus, the log-likelihood function for :

is approximated by the log-likelihood function for zt:

in a neighbourhood of λt−1(ŵrel0). Equalizing term-to-term for the two first terms of a

Taylor series representation of the  and M(zt|λt−1(wrel)) log-likelihood

functions in the neighbourhood of λt−1(ŵrel0), we get the following equations for zt values

and their variances :
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where  and  are first and second derivatives

with their estimations calculated at ŵrel0. Indeed, denoting λt−1(ŵrel0) as λ and taking

derivatives of L and M with respect to λ, we get:

From  follows  or 

From  follows 

Therefore,  or 

where, according to the Taylor series rules, the first and second derivatives of L with respect

to λ are taken at the λt−1(ŵrel0) point. The final step is to obtain a new autoregression

estimation of wrel by the weighted least square procedure:
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where XT = {b1…,bn−1} and zT = {z2,…,zn}. As a result, we obtained a better autoregression

estimation, ŵrel1, and its interval of credibility for every simulation of random variable

b1…,bn−1. 1,000 simulations were estimated for each variant. To prevent negative values of

fitness, if μt−1 is larger than , then  is set to 1.

To mitigate error in frequency measurements and the effects of random genetic drift, we use

multiple serial passages to calculate fitness. The larger the number of serial passages

sampled, the more accurate the fitness data will become. Extended Data Fig. 7 shows how

increasing the number of passages increases the accuracy of fitness determination. However,

a potential pitfall of using a larger number of serial passages is that fitness may change over

time as a result of the accumulation of mutations and the emergence of epistatic interactions

within the population. To balance the need to obtain accurate fitness values with the need to

avoid the impact of long-term evolution, we have sampled the population within a moderate

window of time, 7 passages.

Determination of significantly beneficial mutations

Of 8,970 relative fitnesses determined as described above, 944 were greater than 1, that is,

were beneficial. However, because many of these values are very close to 1, to be more

rigorous, we have calculated the number of these that significantly deviate from neutrality

(relative fitness = 1). Taking into consideration the fact that our fitness estimations have

posterior t-test distributions, we centralized this distribution by deducting the theoretically

expected mean equal to 1, and normalized the distribution by the estimated standard

deviation obtained from the distribution of the 1,000 simulated values of wrel for each

position. P values were calculated for every mutation with beneficial fitness. For every

given P value, P, the false discovery rate (FDR)34 value was calculated as a P-expected

portion of randomly selected positions in the interval of the sorted P value list of positions:

from the smallest P value down to P. Based on an FDR of 5%, we found that there are 145

significantly beneficial mutations (P value threshold P < 0.00072).

Drift simulation

Populations of 106 genomes were created for the initial mutation frequencies of 10−3, 10−4,

10−5 and 10−6. In each population, the number of existing mutants was multiplied by its

relative fitness to get a new number of mutants. Additionally, each wild-type genome was

randomly mutagenized with a probability equal to the mutation rate (same as the initial

frequency of the mutation) to get an additional set of mutants. The total number of mutants

resulting from mutation and selection were combined with the remaining wild-type genomes

to compose the replicated population. This population was randomly sampled with

replacement 106 times to recapitulate the bottleneck imposed in our experiment. This
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sampled population then repeated this mutation-selection-drift process to simulate changes

in mutation frequencies that could be expected over the course of 7 passages. This

simulation was run 1,000 times for each initial frequency and relative fitness (Extended Data

Fig. 8, top row). A simple regression of our mutation-selection model for fitness, equation

(1), was used to calculate the relative fitness for each simulation (Extended Data Fig. 8,

distributions of relative fitness).

Haplotype simulation

The structure of haplotypes in the sequenced populations was simulated by first determining

the frequency of each mutation in each passage and normalizing that frequency by

multiplying by 106, yielding the total number of each mutation in a population of 106

genomes (equivalent to the bottleneck size in our experiment). The total normalized number

of mutations in the first passage was randomly distributed between 106 genomes. Each

mutation was classified as either lethal or non-lethal based on calculations of fitness (above)

and the total proportion of lethal mutations was determined (generally 40–50% of the total).

The number of genomes containing 0, 1, 2, etc. mutations were then reduced by the

probability of a genome containing a lethal mutation. For example, genomes with a single

mutation had a probability of 0.4 to 0.5 of containing a lethal mutant and genomes with two

mutations had a probability of 0.64 to 0.75 of containing a lethal mutant. From the

remaining genomes containing non-lethal mutations, a population of 106 genomes was

sampled to carry on to the next passage (generation). This population is shown in Extended

Data Fig. 5a as passage 2. In subsequent generations, the total number of mutations in the

population from the previous generation were tabulated and subtracted from the total

normalized number of non-lethal mutants in the current generation. We considered these

pre-existing mutations, thus they should not be reintroduced into the current generation.

After removing these pre-existing non-lethal mutants from the total normalized mutants, we

randomly distributed the remaining de novo mutations between a new set of 106 genomes.

The number of genomes containing different numbers of de novo mutations were then

reduced by the probability of a genome containing a lethal mutation, which was defined by

the proportion of lethal mutants in the total de novo mutants. To combine the pre-existing

mutations from the previous generation and the non-lethal de novo mutations from current

generation, a randomly chosen genome from the current generation was added to each

genome in the population from the previous generation. This produced a population of 106

genomes containing only non-lethal mutants both pre-existing and de novo (Extended Data

Fig. 5a) that could be carried on to the next generation.

Mutation accumulation

To analyse the rate of accumulation of selected mutations, we counted the number of times

each reference position was read and multiplied by each of the three mutation rates

applicable to that site. For example, the number of bases read at a reference position coded

by an A was multiplied by the mutation rates of A > C, A > G and A > T to obtain the

number of de novo mutations expected at that site. These de novo expectations can be

summed across the genome to obtain the total number of de novo mutations expected in each

passage. This number was subtracted from the total number of mutations detected in the

passage and divided by the total number of bases sequenced to obtain the frequency of
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mutations accumulated by selection in each passage (Extended Data Fig. 5b). The rate of

accumulation of mutations by selection is approximately linear, meaning that, overall,

selection is constant over the course of the experiment.

Extended Data

Extended Data Figure 1. CirSeq library preparation scheme
As described in Methods, purified populations of ssRNA viral RNA genomes are converted

by a series of molecular cloning steps to a library compatible with Illumina sequencing.

Illumina paired-end Y-adaptors are represented in blue.
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Extended Data Figure 2. Mutation frequencies of transitions and transversions
Because transitions (Ts) and transversion (Tv) occur at different rates, the overall

frequencies of these types of mutations stabilize at different levels. The lower the mutation

frequency, the longer it takes to stabilize, because smaller quantities of error can more

dramatically impact their measured frequency. An important consideration for CirSeq is at

what quality score to threshold data in order to minimize the contribution of error in the final

output and maximize the total quantity of the data used.
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Extended Data Figure 3. Genome coverage per base
a, Coverage for sequenced passages. The coverage for each base for each library above the

minimum quality threshold of average Q20 was mapped. On average, we obtained 204,205-

fold coverage for our populations. The coverage profile is extremely consistent between

libraries and experiments. b, Effect of RNA fragment size oncoverage bias. Use of

fragments less than 80–90 bases in length results in over-representation of A-rich sequences.

This bias is likely the result of inefficient priming of certain short templates by reverse

transcriptase. Fragments should be at least 80–90 bases, which limits coverage bias to within

approximately 10X, typical of RNA-seq.
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Extended Data Figure 4. Frequency measurement error
a, b, Error in measurement of mutation frequencies is determined by coverage depth and

mutation frequency. A library prepared from 30 base fragments, which increases variability

in the level of coverage (see Extended Data Fig. 3b) over different regions of the poliovirus

genome, was broken into 10 million read sets (sets 1 and 2). The frequency of each variant

for the two sets was mapped against each other to visualize their correlation. a,

Measurement error can be estimated as the standard error of a binomial distribution. Per cent

error is obtained by dividing this standard error by the variant frequency. Low measurement
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error corresponds to high correlation between variant frequencies measured in each set. b,

Correlation between measured variant frequencies also corresponds to coverage, where

greater coverage increases correlation. The amount of coverage required to obtain good

correlation between measurements scales with variant frequency. c, Amplification bias. The

distribution of frequencies of nonsense mutations generated by C > U mutation are shown

for passages 2 and 3. In each case, frequencies are tightly distributed around the mean,

ruling out PCR amplification bias in contributing substantially to measurement error of

variant frequencies.

Extended Data Figure 5. Inferred population structure and selection over seven passages
a, Simulation of population structure from sequencing data. The histograms display the

proportion of genomes at each passage containing the given number of mutations (Hamming

distance from the reference) after removing genomes containing lethal mutations from the

population. The proportion of genomes containing single point mutations is relatively

constant throughout the passages whereas the proportions of wild-type and multi-variant

genomes decrease and increase, respectively. Theses proportions are based on a simulation

where mutations are distributed randomly and all viable mutants have fitness equivalent to

wild type. b, Accumulation of mutations by selection. The frequency of mutations

accumulated as a result of selection, that is, after removing de novo mutations, is plotted for

each passage. Mutations accumulate approximately linearly over the course of the

experiment suggesting that selection is constant.
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Extended Data Figure 6. Analysis of mutational fitness effects
a, Spatial distribution of synonymous mutations by fitness effect. Synonymous mutations

were binned by the magnitude of their fitness effect and plotted against their respective

genome position. Each bin of fitness effects is well distributed across the genome, indicating

that synonymous mutations with strong fitness effects map to discrete regions. b, The

distributions of mutational fitness effects of synonymous mutations for structural (black) and

non-structural (green) genes are similar. c, Summary of mutational fitness effects.

Differences in variance are statistically significant between non-synonymous mutations in

structural and non-structural genes both including and excluding lethal mutations (P <

0.001, one-sided F-test). Differences in variance are also statistically significant between

non-synonymous and synonymous mutations the coding sequence both including and

excluding lethal mutations (P < 0.001, one-sided F-test).
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Extended Data Figure 7. Number of passages used to calculate fitness affects accuracy
Fitness for each variant was calculated for varying numbers of serial passages and

normalized to the fitness calculated using the full set of seven passages. As the number of

passages used to calculate fitness increases, the variation in fitness decreases, indicating that

the calculated fitness is more accurate.
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Extended Data Figure 8. Simulation of genetic drift and its impact on fitness measurement
Top row shows one thousand simulations of a mutation-selection-drift process in a

population of 106 genomes are shown for mutations initiated at their mutation rate: 10−3

(black), 10−4 (blue), 10−5 (green) and 10−6 (red). Because of the low number of mutations in

populations where the mutation rate was set to 10−6, it is common for the population to lose

the mutant by drift. As frequency was plotted on alog scale,a frequency of 0 was

representedas10−7. The histograms show fitness calculated using a simple mutation-

selection model for each simulation. The standard deviation for each set of calculations is
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noted in the title of each set of simulations. The stronger drift experienced by low frequency

variants reduces the accuracy of fitness measurements. To account for this effect, we have

incorporated drift into our fitness model.

Extended Data Table 1
Summary of data collected from sequenced passages

Passage

Bases
sequenced

above
Q20avg

Mutations
detected

above
Q20avg

Average mutation frequency

Average
mutations

per
genome

Variants detected*
% of

alleles
detected

2 1,405,927,958 378,993 2.70•10-4 2.01 15426 69.1

3 1,328,448,147 316,931 2.39•10-4 1.77 15780 70.7

4 1,490,238,776 397,442 2.67•10-4 1.98 17259 77.3

5 1,709,503,454 487,695 2.85•10-4 2.12 16778 75.2

6 1,647,601,130 498,477 3.03•10-4 2.25 17631 79.0

7 1,613,382,399 464,184 2.88•10-4 2.15 16670 74.7

8 1,438,501,772 470,689 3.27•10-4 2.43 16277 72.9

Data represented in this table are from consensus sequences filtered at average quality score 20. Variants(*) reported here
are statistically significant (P value ≤ 0.05) by an exact binomial test using the average estimated error probability for each
site, the coverage and number of mutations detected at each site (for each variant separately).

Extended Data Table 2
Comparison of the phenotypes of published
mutants16,35–39 with fitness calculated using CirSeq

Protein Substitution Fitness (CirSeq) Phenotype Reference

2A H116R 1.00 WT 16

3AB K9E 0.82 Normal plaques 35

I12V 1.02 Normal plaques 36

K39E 0.91 Normal plaques 36

W42R 0.04 No plaques 36

V44A 0.87 Normal plaques 36

N45D 0.94 Normal plaques 36

I46T 1.02 Normal plaques 36

L63P 0.65 No plaques 36

Y77H 0.88 No plaques 36

K81E 0.88 No plaques 36

L82P 0.20 No plaques 36

K107E 0.36 Small plaques 35

3C K60I 0.70 Small plaques 37

K60T 0.92 Small plaques 37

A61E 0 Small plaques 37

A61V 0.69 Small plaques 37

A66E 0.74 Small plaques 37

A66V 0.30 Small plaques 37

T142I 0.01 Defective viral growth 38
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Protein Substitution Fitness (CirSeq) Phenotype Reference

H161Y 0.07 No in vitro cleavage 38

G163V 0.56 No in vitro cleavage 38

A172E 0.46 Impared in vitro cleavage 38

A172V 0.15 Defective viral growth 38

3D V33A 0.28 Loss of infectivity 39

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. CirSeq substantially improves data quality
a, Schematic of the CirSeq concept. Circularized genomic fragments serve as templates for

rolling-circle replication, producing tandem repeats. Sequenced repeats are aligned to

generate a majority logic consensus (Methods). Green symbols represent true genetic

variation. Other coloured symbols represent random sequencing error. NGS, next-generation

sequencing. b, c, Comparison of overall mutation frequency (b) and transition:transversion

ratio (c) for repeats analysed as three independent sequences (red circles) or as a consensus

(black circles). High-quality scores indicate low error probabilities. Quality scores are
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represented as averages because the consensus quality score is the product of quality scores

from each repeat. Data was obtained from a single passage.
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Figure 2. CirSeq reveals the mutational landscape of poliovirus
a, Experimental evolution paradigm. A single plaque was isolated, amplified and then

serially passaged at low multiplicity of infection (m.o.i.). Low m.o.i. passages were

amplified to produce sufficient quantities of RNA for library preparation (Methods). b,

Summary of population metrics obtained by CirSeq. c, Frequencies of variants detected

using CirSeq are mapped to nucleotide position with the genome for passages 2 and 8. The

conventional next-generation sequencing limit of detection (1%) is indicated by dashed

lines. Each position contains up to three variants. Variants are coloured based on relative

fitness, black indicating lethal or detrimental and red indicating beneficial. Sampling error

can affect variant frequencies (see Methods and Extended Data Fig. 4a, b).
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Figure 3. Determination of in vivo mutation rates of poliovirus
a, The frequency of deleterious mutations at mutation–selection balance is the mutation rate

(μ) over the deleterious selection coefficient (s), see inset. For lethal mutations, s = 1, thus

their frequencies equal the mutation rate. Nonsense mutations and catalytic site substitutions

were used to obtain lethal mutation frequencies, and thus mutation rates, for each mutation

type. Grey boxes were measured using only catalytic site mutants. n = 7 (biological

replicates), whiskers represent the lowest and highest datum within 1.5 inner quartile range

of the lower and upper quartile, respectively.
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Figure 4. Fitness landscape defines structure–function relationships
a, b, Distributions of fitness for synonymous (grey) and non-synonymous (red) mutations

(a) and for non-synonymous mutations in structural (grey) and non-structural (blue) genes

(b). Fitness was determined as described in Methods. C > U and G > A transitions were

excluded as we observed indications of hypermutation for these variants. The proportion of

lethal variants for each group is likely higher, as not all possible variants were detected.

Variants with fitness >1.5 are not shown. c, d, The most fit non-synonymous variant

observed for each codon was mapped onto the viral polymerase (3OL6)28 using a red

(lethal) to white (neutral) to blue (beneficial) scale. RNA is coloured green. Front and side

views show two positively selected surfaces (marked by arrows) (c) and split view shows

negative selection along active core and RNA binding sites (d).
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