COMP598: Advanced Computational Biology Methods & Research

Introduction to RNA secondary structure prediction

Jérôme Waldispühl School of Computer Science, McGill

RNA world

In prebiotic world, RNA thought to have filled two distinct roles:

- 1. an information carrying role because of RNA's ability (in principle) to self-replicate,
- 2. a catalytic role, because of RNA's ability to form complicated 3D shapes.

Over time, DNA replaced RNA in Its first role, while proteins replaced RNA in its second role.

RNA classification

Messenger RNA:

- Carry genetic information,
- Structure less important.

Non-coding RNA:

- Functional,
- Structure is important.

Cellular functions of RNA

Genetic Functions:

- Messenger RNA
- Viroids
- Transfer RNA

Enzymatic functions:

- Splicing (snRNA)
- RNA Maturation (ribonuclease P)
- Ribosomic RNA
- Guide RNA (snoRNA)

RNA structure and function

- RNAs have a 3D structure,
- This 3D structure allow complex functions,
- The variety of RNA structures allow the specific recognition of a wide range of ligands,
- Some molecules target these RNA structures (antibiotics, antimitotics, antiviruses):

Doxycyclin

Chloramphenicol

RNA vs DNA: Chemical nature

- 2' -OH group attached to sugar (instead of 2' -H): more polar
- Substitution of thymine by uracile = suppression of group 5-CH3

Small modifications => big effects

RNA vs DNA: Modification of the local and global geometry

RNA vs DNA: Consequence of the modification of the geometry

RNA vs DNA: RNA-Protein and DNA-Protein interactions are different

DNA-Protein: Secondary structure elements insert in big furrow

Protein binds to an irregularity of the helix

RNA-Protein interaction are more specific. Usually using less structured regions.

RNA vs DNA: Last (?) differences

- RNA is a short linear molecule DNA long ≠ RNA short
- RNA are usually single stranded ADN double stranded ≠ ARN single stranded
- « turnover » relatively fast ADN stable ≠ ARN versatile

Base pairing in RNAs

 As in DNA, bases can interact through hydrogen bonds.

 Beside the two canonical base-pairs, RNA structure allows "Wooble" base-pairs.

 A-U and G-C are
 "isosterus" while G-U induce a distortion of the backbone.

Paire A-U

Paire "bancale" G-U

RNA secondary structure

The **secondary structure** is the ensemble of base-pairs of the structure.

RNA secondary structure

Central assumption: RNA secondary structure forms before the tertiary structure.

Secondary structure prediction is an important step toward 3D structure prediction.

RNA secondary structure

The secondary structure can be very complex. Usually most of it can be drawn on a plane.

Few "irregularities" remain.

Non-canonical base-pairs

Base triplets (Not on the picture)

Pseudo-knot free RNA secondary structure

Assumption: The "backbone" of the RNA secondary structure does not contain pseudo-knots, triplets and non-canonical base pairs. (to be discussed later...)

Definition [Secondary structure without pseudo-knot]:

The secondary structure *without pseudo-knot* of an RNA sequence $a_1...a_n \in \{A,C,G,\}^n$ is an undirected graph G = (V;E), where V = $\{1, ..., n\}, E \subseteq V \times V$, such that:

- 1. $(i,j) \in E \Leftrightarrow (j,i) \in E$.
- 2. $\forall 1 \le i < n$, (i; i + 1) $\in E$.

3. For $1 \le i \le n$, there exists at most one $j \ne i \pm 1$ for which $(i,j) \in E$ (no triplets, etc.).

4. If
$$1 \le i \le k \le j \le n$$
, (i,j) $\in E$ and (k,l) $\in E$, then $i \le l \le j$
(no knots or pseudo-knots).

RNA secondary structure representations

RNA secondary structure prediction using comparative methods

The secondary structure can be predicted from the alignment of homologous sequences. Base-pairs are identified through compensatory mutations.

```
AJ617357.1/475-507
                      Car.Enc.
M88547.1/564-596
                      Car.Men.
U33047.1/505-537
                      Car The
X56019.1/1572-1604
                      Car. The
AJ617361.1/475-507
                      Car.Enc.
M20562.1/1573-1605
                      Car.The.
AF030574.1/505-537
                      Car.The.
AJ617358.1/475-507
                      Car.Enc.
SS cons
```


97% of the base pairs predicted by comparative analysis in rRNAs have been confirmed later in the crystal structure.

RNA secondary structure Prediction: Part I

Aim 1: Compute the secondary structure with the maximal number of canonical base pairs (Nussinov-Jacobson, 1980).

Algorithm (Nussinov-Jacobson):

M_{i,j}= max(M_{i,j-1}, max_{i≤k<j}(1+M_{i,k-1}+M_{k+1,j-1}, *if (k,j) base pair*).
 j does not base pair.
 j base pair between i and j-1.

RNA secondary structure prediction: Part I

Proof: Exercise!!

Limitations: Accuracy is low.

Improvements: Weight the base pairs differently.

(G-C) and (C-G): 3 (A-U) and (U-A) : 2 (G-U) and (U-G): 1

(Number of h-bonds in the base pair)

RNA nearest neighbor energy model

But the accuracy is still moderate. We need a better model to weight the structures.

How?: Derive a thermodynamical energy model from experimental measures (Turner group).

But we need:

 to define what are the important structural features that has to be evaluated.

 to keep the energy contribution local in order to allow a divide-and-conquer aproach (fast).

RNA secondary structure elements

RNA secondary structure description

A secondary structure can be decomposed in a sequence of loops:

Stacking base pairs

Base stacking interactions between the pi orbitals of the bases' aromatic rings contribute to stability. GC stacking interactions with adjacent bases tend to be more favorable.

Note: Stacking energy are orientated.

RNA nearest neighbor energy model

Unpaired state ↔ Structure i

$$K_i = \frac{[Structure i]}{[Unpaired state]} = e^{-\Delta Gi/RT}$$

Structure i ↔ Structure j

$$\frac{[\text{Structure i}]}{[\text{Structure j}]} = K_i/K_j = e^{-(\Delta Gi - \Delta Gj)/RT}$$

The Gibbs free energy ΔG quantify the favorability of a structure at a given temperature.

 ΔG is experimentally estimated from optical melting curves.

Optical melting curves

The UV-absorbance melting curves estimate the number of base pair in the duplex. At the melting point the change in Gibbs free energy (ΔG) is zero. 50% of the oligonucleotide and its perfect complement are in duplex. The melting temperature correspond to the inflexion point of the curve fitted to the 2 state model (Xia et al., 1999).

Here: T_m = Melting temperature = 52°C

RNA nearest neighbor energy model

Hairpin: positive destabilizing energy of a hairpin with k unpaired bases. Bonuses for tri- and tetra- and GGG-loops.

 $\mathbf{Stack}:$ negative stabilizing energy of an additional stacked base pair.

 \mathbf{Bulge} : positive energy of a bulge with k unpaired bases. Add stacking energy if size is 1.

Internal loop : positive energy of an interior loop with k and m unpaired bases in bulges. Special cases of 1x1, 1x2, 2x1 and 2x2 internal loops. Penalty for the asymmetry.

Multi-loop : *linear energy approximation* $\alpha + \beta \cdot N_u + \gamma \cdot N_h$, where N_u is the number of unpaired bases and N_h the index of the multi-loop (i.e. the number of connected helices).

RNA nearest neighbor energy model

Other Parameters:

- Dangles (unpaired nucleotides at stem extremities).
- Extrapolation for large loops based onpolymer theory.
- Internal, bulge or hairpin-loops > 30: $dS(T)=dS(30)+\langle param \rangle ln(n/30)$.
- Terminal AU penalty.
- GAIL rule (asymmetric interior loop rule).
- Coaxial stacking.
- Logarithmic energy function for multi-loop (break the dynamic programming scheme)

Goal: Computing the minimum free energy secondary structure.[|]

Can be achived using dynamic programming (Zuker-Stiegler, 81)

Dynamic table:

- E_h : first and the last paired nucleotides base-pair together. Example : ...(***)..., where . denotes an unpaired position, *** denotes any valid substructure.
- E^{*}_h : leftmost and rightmost nucleotides of the sub-sequence base pair together. Example : (***)
- E_e : At least 2 stems occur in an exterior loop. Example:
 ...(***)..(***)...
- E₁^m: Same as E_h, except that a penalty for unpaired bases occurring in a multi-loop is added for each nucleotide occurring outside the stem.
- E²_m: At least 2 stems appear in a multi-loop. In this case, a penalty is added for unpaired bases outside each stem.

Energy functions:

- Ehairpin(i, j) : Energy of a Hairpin closed at index (i, j). Includes all bonuses.
- Iiii Eloop(i, m, n, j) : energy of a loop of index 2. Includes :
 - Stacks (m = i + 1, n = j − 1),
 - Bulges (m i > 1 xor j n > 1),
 - Internal loops (m i > 1 and j n > 1).
- Multi-loop energy parameters :
 - \checkmark α : affine constant,
 - $\boldsymbol{\mathcal{I}}$: unpaired nucleotide penalty,
 - $\checkmark \gamma$: helix penalty,
- \checkmark Edangle(i, j) : energy of a dangle.

Algorithm 3

for $d = \theta$ to n - 1for i = 0 to n - di=i+d : for r = i to j - theta - 1if basepair(i,j) : if r = i: $E_{h}^{*}(i,j) = Ehairpin(i,j);$ $E_{h}^{*}(i, j) = \min(E_{h}^{*}(i, j), E_{m}^{2}(i+1, j-1) + \alpha + \gamma + Edangle(j, i))$ for (m,n) s.t. i < m < n < j and basepair(m,n): $E_{h}^{*}(i, j) = \min(E_{h}^{*}(i, j), Eloop(i, m, n, j) + E_{h}^{*}(m, n))$ $E_m^1(i,j) = E_h(i,j) = E_h^*(i,j) + Edangle(i,j)$ else : $E_h(i,j) = \min(E_h(i,j), E_h^*(r,j) + Edangle(i,j))$ $E_m^1(i,j) = \min(E_m^1(i,j), E_h^*(r,j) + Edangle(r,j) + (r-i) \cdot \beta)$ $E_m^2(i,j) = \min(E_m^2(i,j), E_m^1(i,r-1) + E_h^*(r,j) + Edangle(r,j) + 2 \cdot \gamma)$ $E_m^2(i,j) = \min(E_m^2(i,j), E_m^2(i,r-1) + E_h^*(r,j) + Edangle(r,j) + \gamma)$ $E_e(i, j) = \min(E_e(i, j), E_h(i, r-1) + E_h^*(r, j) + Edangle(r, j))$ $E_e(i, j) = \min(E_e(i, j), E_e(i, r-1) + E_h^*(r, j) + Edangle(r, j))$ $E_e(i, j) = \min(E_e^1(i, j), E_e(i, j-1))$ $E_m^2(i,j) = \min(E_m^2(i,j), E_m^2(i,j-1) + \beta)$ $E_h(i, j) = \min(E_h(i, j), E_h(i, j-1))$ $E_m^1(i,j) = \min(E_m^1(i,j), E_m^1(i,j-1) + \beta)$

Zuker Algorithm: Feyman Diagrams

Schematic representation of the recursive equations.

- The RNA minimum free energy (m.f.e.) is $min(E_h(1,N),E_e(1,N))$.
- The m.f.e. structure can be obtained by backtracking.

Warning: this (simplified) algorithm does not check when dangle penalty must be applied or not.

This algorithm is implemented in *UNAfold* (previously Mfold), the *Vienna RNA package* (RNAfold) and *RNAstructure* (for windows).