COMP598: Advanced Computational Biology Methods & Research

Exploring the RNA mutational Landscape: Algorithms & Applications

Jérôme Waldispühl, PhD School of Computer Science, McGill Centre for Bioinformatics, McGill University

Includes slides from V. Reinharz

Overview

How mutations affect structures... and vice versa!

- Brute force approach: Slow & not scalable.
- Our Approach: Fast, scalable... & elegant!

Motivations

• Analysis of molecular Functions

• Evolutionary studies

• Synthetic biology systems

RNAmutants

Seed ↓	Sampling k-mutants				
CAGUGAUUGCAGUGCGAUGC	(-1,20) Classic: 0 mutation				
CAGUGAUUGCAGUGCGAUCC ••(•((((((•••))))))) CAGUGAUUGCAGUGCGgUGC	(-3.40) (-0.30) RNAmutants: 1 mutation				
((.(())).)) CAGUGAUCGCAGUGCGAUGC (((((())))))	(-3.10)				
uAGcGccgGgAGacCGgcGC	(-18.00)				
CccUGgccGCAagGCcAgGg ((((((((()))))))))	(-20.40) RNAmutants: 10 mutations				
C <mark>C</mark> GUG <mark>gCC</mark> GC <mark>gag</mark> GC <mark>CAC</mark> Gg ((((((((()))))))))	(-19.10)				

Sample k mutations increasing the folding energy

• Computing the Mutational Landscape (Waldispühl et al., 2008)

 Controlling the nucleotide distribution (Waldispühl & Ponty, 2011)

Applications

(Lam et al., 2011; Levin et al., 2012; Reinharz et al., 2013)

RNA sequence-structure maps

Parameterization of the mutational landscape

Classical Recursions (Zuker & Stiegler, McCaskill)

Enumerate all secondary structures

Classical Recursions (Zuker & Stiegler, McCaskill)

Classical Recursions (Zuker & Stiegler, McCaskill)

RNAmutants Generalize Classical Algorithms

Enumerate all secondary structures over all mutants

(Waldispuhl et al., PLoS Comp Bio, 2008)

Our approach RNAmutants

- Explore the complete mutation landscape.
- Polynomial time and space algorithm.
- Compute the partition function for all sequences:

Backtrack to sample mutants & secondary structures.

(Waldispuhl et al., PLoS Comp Bio, 2008)

Seed ♥	Sampling k-mutants					
<pre>CAGUGAUUGCAGUGCGAUGC((.((((())))))))</pre>	(-1.20) Classic: 0 mutation					
CAGUGAUUGCAGUGCGAU ^C C	(-3.40)					
CAGUGAUUGCAGUGCGgUGC ((.(())))) CAGUGAUCGCAGUGCGAUGC	(-0.30) RNAmutants: 1 mutation (-3.10)					
((((()))))						
uAGcGccgGgAGacCGgcGC (((((((())))))))	(-18.00)					
CccUGgccGCAagGCcAgGg ((((((((()))))))))	(-20.40) RNAmutants: 10 mutations					
CcGUGgccGCgagGCcAcGg ((((((((()))))))))	(-19.10)					

C+G content of samples increases.

Computing the Mutational Landscape (Waldispühl et al., 2008)

- Controlling the nucleotide distribution (Waldispühl & Ponty, 2011)
- Applications (Lam et al., 2011; Levin et al., 2012; Reinharz et al., 2013)

Objectives

- Sampling at targeted CG% decreases exponentially with the length.
- How to efficiently sample sequences at arbitrary CG% contents ... without bias!

Our approach: Weighting mutations

Weighting recursive equations

Effect of weighted sampling

Sampling pipe-line

- Keep all samples at the target C+G and reject others.
- Update **w** at each iteration using a bisection method.
- Stop when enough samples have been stored.

Example: 40 nt., 10000 samples, 30 mutations, 70% C+G content

Technical details

• After rejection, the weights only impact the performance, not the probability (i.e. unbiased).

• Complexity
$$O(n^3 \cdot k^2 + m \cdot k \cdot n\sqrt{n} \cdot \log(n))$$

where *n* size, *k* #mutations, *m* #samples.

• Partition function can be written as a polynomial:

$$Z = \sum_{i=0}^{n} a_i \cdot w^i$$

After *n* iterations we can calculate all a_i 's and exactly solve the weight/C+G% relationship.

Remark: In practice, less iterations are necessary.

• Computing the Mutational Landscape (Waldispühl et al., 2008)

 Controlling the nucleotide distribution (Waldispühl & Ponty, 2011)

Applications

(Lam et al., 2011; Levin et al., 2012; Reinharz et al., 2013)

Seed ↓	Sampling k-mutants				
CAGUGAUUGCAGUGCGAUGC	(-1,20) Classic: 0 mutation				
CAGUGAUUGCAGUGCGAUCC ••(•((((((•••))))))) CAGUGAUUGCAGUGCGgUGC	(-3.40) (-0.30) RNAmutants: 1 mutation				
((.(())).)) CAGUGAUCGCAGUGCGAUGC (((((())))))	(-3.10)				
uAGcGccgGgAGacCGgcGC	(-18.00)				
CccUGgccGCAagGCcAgGg ((((((((()))))))))	(-20.40) RNAmutants: 10 mutations				
C <mark>C</mark> GUG <mark>gCC</mark> GC <mark>gag</mark> GC <mark>CAC</mark> Gg ((((((((()))))))))	(-19.10)				

Sample k mutations increasing the folding energy

• Signature of evolutionary pressure - RNAmutants (Waldispuhl et al., 2008; Waldispühl & Ponty, 2011)

- Prediction of deleterious mutation corRna (Lam et al., 2011)
- Design of RNA with target structure RNAensign (Levin et al., 2012)
- Error correction in NGS data RNApyro (Reinharz *et al.*, 2013)

Results: Energetically favorable mutations are distributed outside the evolutionary conserved regions.

(Waldispuhl et al., PLoS Comp Bio, 2008)

Scan of GB virus C Base pair density in evolutionary conserved regions

Results: Mutations decrease the base pair density in evolutionary conserved stem regions.

(Waldispuhl et al., PLoS Comp Bio, 2008)

RNA secondary structure design

Heavily studied area: RNAinverse, RNA-SSD, INFO-RNA, ...

Motivations

- Designing new molecular functions
- Re-engineering existing RNAs
- RNA computing

Motivations

Figure : Rodrigo et al. 2012

- Designing new molecular functions
- Re-engineering existing RNAs
- RNA computing

Local Design

Local vs Global vs "Glocal"

RNA-ensign: Designing RNAs with RNAmutants

- 1. Select a random seed
- 2. Sample mutants from k-neighborhood with RNAmutants
- 3. Select sample with best fit to target

Our approach: global search strategy (vs. local search heuristics)

Objectives:

- How important is the choice of the seed ?
- Can we minimize the number of mutations ?
- Can we develop better design algorithm ?

Influence of the seed on the target stability

RNAinverse (local search)

RNAmutants (global search)

85

75

0.78 0.72 0.66 0.60 0.54

- 10 seeds with fized A+G and C+G content
- 100 structures generated using GenRGenS
- Average probability of the target structure on designed sequence.

Influence of the seed on the success rate

RNAmutants (global search)

RNAinverse (local search)

- 10 seeds with fized A+G and C+G content
- 100 structures generated using GenRGenS

BUT...

• Average success rate.

Influence of the seed

	Probability			Entropy			Time		
Size	Α	В	С	Α	В	С	A	В	С
0-40	0.69	0.65	0.60	0.056	0.051	0.065	62	28	61
41-80	0.35	0.21	0.53	0.148	0.157	0.100	1883	742	711
81+	0.40	0.30	0.29	0.062	0.147	0.125	9332	2434	1269

- A: RNAmutants
- B: RNAmutants with 50% of mutations
- C: 10,000 runs of RNAinverse

Global search may has benefits for large structure **but** is computationally expensive.

Local vs Global vs "Glocal"

Generate seed sequences with IncaRNAtion (Global search)

Local vs Global vs "Glocal"

Optimize IncaRNAtion seeds with RNAinverse (local search)

GC Bias

[Position i paired with k]

IncaRNAtion

RNA-ensign¹ Seeded Explore mutant space Exp $O(n^5)$ Complex energy model

IncaRNAtion No Seed Explore full sequence space $\mathcal{O}(n)$ Simple energy model Sequence constraints

Incarnation + RNAinverse Results Sequence identity

Incarnation + RNAinverse time

Affinity \neq Specificity

Formally, a large affinity neither ensures preferential fold into a target, nor is it a necessary condition...

Acknowledgments

McGill

- Anwar Asbah
- David Becerra
- Carlos Gonzales
- Alfred Kam
- Edmund Lam
- Vladimir Reinharz

Ecole Polytechnique

- Yann Ponty
- Jean-Marc Steayert

MIT

- Bonnie Berger
- Srinivas Devadas
- Alex Levin
- Mieszko Lis
- Charles W. O'Donnell

Boston College

Peter Clote

Google Inc.

• Behshad Behzadi

Would you like to know more?

- J. Waldispühl et al. (2008), Efficient Algorithms for Probing the RNA Mutation Landscape, Plos Comp. Bio.
- J. Waldispühl and Y. Ponty (2011), **An Unbiased Sampling Algorithm for the Exploration of RNA Mutational Landscape Under Evolutionary Pressure**, RECOMB.
- Levin et al. (2012), A global sampling approach to designing and reengineering RNA secondary structures, NAR.
- Reinharz et al. (2013), A linear inside-outside algorithm for correcting sequencing errors in structured RNA sequences, RECOMB.
- •Reinharz et al. (2013), A weighted sampling algorithm for the design of RNA sequences with targeted secondary structure and nucleotides distribution, ISMB.
 - http://csb.cs.mcgill.ca/RNAmutants