COMP598: Advanced Computational Biology Methods and Research

Modeling RNA 3D structure

Jérôme Waldispühl School of Computer Science, McGill Slides from Neocles Leontis & Jes Frellsen

Motivations and challenges

- Secondary structure is a simplification of the three-dimensional structure.
- Function is achieved through the 3D structure.
- Experimental determination the RNA 3D structure is hard.
- Modeling the 3D structure is also hard!
- Before the prediction, a work has to be done on modeling and alignment of 3D structure.

Beyond the secondary structure

The hierarchy of the model is not as obvious as expected:

- Is the secondary structure with/without pseudo-knot unique?
- Is there other type of interacting motifs? (for instance base triple)

Beyond the secondary structure

The type of interactions is not restricted to Watson-Crick base pairs:

SECIS element

5S ribosomal RNA

Loop C"

Helix

3

5

Helix 1

Helix 4

Helix 5

Loop E"

'Loop D"

G

Sites for non Watson-Crick base pairs.

Modeling the nucleotide side-chain with interacting edges

Consequence: 3 edges available for base-pairing.

Orientation of edge interaction is also important: The glycosidic bond orientation.

Cys (default):

Trans:

12 edge-to-edge interacting motifs

Classification of interactions

But the puzzle is still far to be completed!

Base interacting with all 3 edges

Classification of interactions

The interacting motif is extended to model base triple.

U ⊶ U • A

Anti (default):

Syn (Purines only):

More features...

Local strand orientation:

Locally parallel strands:

New symbols

Example: 5S motif

Example: 5S motif

More features (2)...

Superposition of tetra and penta GNRA loops:

Interaction of GNRA loops are also conserved:

Finding RNA motifs in 3D structures

Q: Given a description of a "known" motif, how to identify this motif in target structures?

Use graph theory, the problem of identifying a known pattern in a target graph reduces to the following:

1.Searching for isomorphic occurrences of the pattern (subgraph isomorphism).

2.Finding similar occurrences of the pattern (identifying a maximum common subgraph).

But it's NP-complete...

Find small RNA motifs (two to 20 nucleotides) in PDB files.

FR3D example: C-loop search

• • •	Filename	Discrepancy				l	MotifN	lclec	otides						I	Pairwise	e Inter	ractions			Structural Alignment
Output:	(PDB)	from query		1	2		3		4		5		6	1-2	1-6	2-5	34	3-6	4-5	5-6	12 34 5 6
•	2AW4	0.000	U	2680	C 26	581	C 268	3 U	2684	А	2725	А	2727	s35	cWW	tWH	s35	cWS	cWW	s35	UCA-CUAA-A
	1s72	0.127	С	2717	C 27	718	C 272	υ	2721	А	2761	G	2763	s35	cWW	tWH	s35	cWS	cWW	s35	CCA-CUAC-C
	1kog	0.136	С	96	С	97	C 9	9 U	100	А	74	G	76	s35	cWW	tWH	s35	cWS	cWW	s35	CCA-CUAU-G
	2j01	0.229	G	1319	C 13	320	A 132	2 U	1323	А	1331	С	1333	s35	cWW	tWH	s35	ncWS	ncWW	s35	GCA-AUAG-C
	2AW4	0.232	С	1319	C 13	320	A 132	2 C	1323	G	1331	G	1333	s35	cWW	tWH	s35	ncWS	cWW	s35	CCA-ACGG-G
	2AW4	0.244	G	864	C 8	865	C 86	7υ	868	А	909	С	912	s35	cWW	tWH	s35	ncWS	cWW	s35	GCA-CUAAAC
	1s72	0.256	G	1425	C 14	126	C 142	3 U	1429	А	1437	С	1439	s35	cWW	tWH	s35	cWS	cWW	s35	GCA-CUAG-C
	2j01	0.278	G	864	C 8	865	C 86	7υ	868	А	909	С	912	s35	cWW	tWH	s35	ncWS	cWW	s35	GCA-CUAAAC
	1j5e	0.380	G	371	C 3	372	A 374	ŧυ	375	А	389	С	390	s35	cWW	tWH	s35	cWS	cWW	s35	GCA-AUAC
	1s72	0.402	G	958	C S	959	C 96	2 C	963	А	1005	С	1008	s35	cWW	tWH	s35	cWS	cWW	s35	GCGACCAAAC
	2AVY	0.415	А	371	C 3	372	A 374	ŧυ	375	А	389	υ	390	s35	cWW	ntWH	s35	cWS	cWW	s35	ACA-AUAU

What do we learn?

- Positions of insertions/deletions
- Base-pair co-variations
- Base conservations
- Problem: Limited number of examples

Q: Given a structure, how to identify "unknown" motifs within it?

1. Identify all secondary structure elements of the RNA tertiary structure;

Rationale: motifs as "often embedded within regular helical regions forming internal loops, but may also comprise hairpin or junction loops.")

2. Calculate a similarity measure for each pair of structural elements;

Rationale: Computing the largest extensible common noncanonical subgraph.

3. Cluster the structural elements according to the similarity measure.

Djelloul M , Denise A RNA 2008;14:2489-2497

RNA

Recurrent motifs found in ribosomal structures.

Known motifs

Djelloul M , Denise A RNA 2008;14:2489-2497

Crystal structures of four putative new motifs superimposed.

Djelloul M , Denise A RNA 2008;14:2489-2497

Predicting RNA 3D structures

Program	Innut	Model	Simulation	Description / Webpage	References
1 togram	Input	Model	method	Description / Webpage	References
Automatic pr	eaiction	Comme	Dankar		
iFoldRNA	Sequence	grained three bead model	exchange, molecular dynamics	Uses discrete molecular dynamics and force fields to simulate RNA folding dynamics. http://troll.med.unc.edu/ifoldrna/	[132, 133]
FARNA (Rosetta)	Sequence, secondary structure	Coarse- grained one bead model	Fragment assembly, Monte Carlo	Uses 3-nt. fragment library, Monte Carlo simulations and a potential function to predict the structure. http://www.rosettacommons.org/manuals/archive/rose tta3.0_user_guide/index.html	[125, 127]
NAST	Secondary structure, tertiary contacts	Coarse- grained one bead model	Molecular dynamics	Performs molecular dynamics simulations guided by a knowledge-based statistical potential function https://simtk.org/home/nast	[131]
MC-Fold/ MC-Sym	Sequence, secondary structure	Nucleotide cyclic motif	Fragment assembly, Las Vegas algorithm	Predicts RNA secondary structures using free-energy minimization with structure assembled using the fragment insertion Las Vegas algorithm. http://www.major.iric.ca/MC-Pipeline/	[75]
Interactive m	anipulation				
RNA2D3D	Secondary structure	All-atom model	Interactive manipulation	Performs molecular mechanics and dynamics. Permits insertion of coaxial stacking, and manipulation of helical elements.	
				http://www.ccrnp.ncifcrf.gov/~bshapiro/software.html	[136]
Assemble	Database of known fragments and motifs	All-atom model	Interactive manipulation	Constructs a 3D structure using the insertion of tertiary motifs. Permits manipulation of torsion angles. http://www.bioinformatics.org/assemble/	No ref.

(Laing & Schlick, 2010)

Modeling and predicting RNA 3D structure: MC-Fold | MC-Sym pipeline (F. Major group, UdM)

Cycle decomposition of the 3D structure using the Leontis-Westhof nomenclature.

	#	Class	Base pairs	LSU in	dex			Comment
(1)	637	LS-P-LS-P	(W/W,W/W)	02562	02563	0 2570	02571	Watson-Crick tandem
(2)	21	L-LS-LS-P	(H/S)	02696	02697	02698	02699	GNRA loop
(3)	19	LS-P-LS-P	(H/S,H/H)	01532	01533	01658	01659	Non Watson-Crick tandem
(4)	10	LS-P-S-P	(H/H,W/H)	9 77	9 79	9 103	9 104	Non Watson-Crick tandem
(5)	8	LP-LS-P-S	(S/H,H/S)	01971	01972	01973	02009	Non Watson-Crick tandem
(6)	7	LS-P-L-S	(H/S)	01097	01098	01258	01259	GNRA interior loop
(7)	6	L-LS-L-S		01392	01393	01394	01395	Double-stacked bulge
(8)	6	LS-P-S-P	(W/H,W/W)	02118	02276	02277	02470	Non Watson-Crick tandem
(9)	5	P-S-P-LS	(W/H,H/S)	0481	0485	0486	0482	Non Watson-Crick tandem
(10)	5	LS-P-P-P	(S/H.W/S.W/W)	01231	02498	02522	02523	Base triple

MC-Fold workflow

MC-Sym workflow

Beyond conserved 3D motifs

The 3D structure can be modeled by enumeration of the degree of freedom of the polynucleotide.

Each nucleotide in an RNA molecule can be represented by the base type and 7 dihedrals angles

A continuous probabilistic model of local RNA 3D structure (Jes Frellsen et al.)

Modeling and estimating the angle distributions.

2.0 2 Density 1.0 Density 1.0 S ö S ö 0.0 0 2 3 ϵ (degrees) α (degrees)

•Each variable lies on a circle •Requires directional statistics

•Each variable is multi-modal

Can be described by a mixture of simple distributionsVon Mises distribution

- The angles co-vary both within nucleotides and between consecutive nucleotides
 - We model this by a sequential model

A continuous probabilistic model of local RNA 3D structure

•An DBN with 3 random variables per angle:

•Discrete input variable indicating angle type (7 states)

•Hidden variable with 20 states

•Output variable representation the angle value and the CPDs given the hidden state is modelled by Von Mises distributions

•Structure of an IOHMM with continuous output (except bookkeeping)

•Does not impose a groping of the angles

•Parameters are estimated by stochastic EM from experimental data

Nucleotide

A continuous probabilistic model of local RNA 3D structure

The model captures the distribution of the individual angles
The model captures the pairwise dependencies between the angles

A continuous probabilistic model of local RNA 3D structure

Generation of decoy with s simple simulated annealing scheme:

- 1. Sample a whole structure, *S*, without clashes
- 2. Make new structure, S', by resampling four consecutive angles in S (randomly picked)
- 3. Evaluate S'
 - a. If it has clashed it is rejected
 - b. If it has a better energy than *S* then *S'* is set to be the new *S*
 - c. If it has a worse energy then with probability, *p*, *S'* is set to be the new *S* (otherwise it is rejected)
 - d. Go to step 2

In the scheme we used

- $p = e^{(E-E')}/T$, where T decreases with time
- a simple "energy function" that promotes structure with the same Watson-Crick base pair as are found in the target structure

A continuous probabilistic model of local RNA 3D structure: Results

Target Structure	Length (Bases)	Decoys < 4Å	Decoys < 3Å	Lowest RMSD
1ZIH	12	58.8%	21.3%	1.55Å
1RNG	12	55.1%	3.5%	2.48Å
1XWP	13	28.3%	5.8%	2.03Å
1I4B	13	34.6%	0.1%	2.91Å
1PJY	22	10.0%	1.9%	1.89Å

Results computed from 1500 decoys

