COMP598: Introduction to Protein Structure Prediction

Jérôme Waldispühl
School of Computer Science &
McGill Centre of Bioinformatics
jeromew@cs.mcgill.ca

Features slides from Jinbo Xu – TTI-Chicago

Folding problem

Amino acids: The simple ones

Figure 2-7
Biochemistry, Sixth Edition
© 2007 W. H. Freeman and Company

Amino acids: Aliphatics

Figure 2-8
Biochemistry, Sixth Edition
© 2007 W. H. Freeman and Company

Amino acids: Cyclic and Sulfhydryl

Figure 2-9
Biochemistry, Sixth Edition
© 2007 W.H. Freeman and Company

Biochemistry, Sixth Edition
© 2007 W. H. Freeman and Company

Amino acids: Aromatics

Figure 2-10 Biochemistry, Sixth Edition © 2007 W. H. Freeman and Company

Amino acids: Aliphatic hydroxyl

Figure 2-11

Biochemistry, Sixth Edition

© 2007 W.H. Freeman and Company

Amino acids: Carboxamides & Carboxylates

Figure 2-12 Biochemistry, Sixth Edition © 2007 W. H. Freeman and Company

Figure 2-16
Biochemistry, Sixth Edition
© 2007 W.H. Freeman and Company

Amino acids: Basics

Figure 2-14
Biochemistry, Sixth Edition
© 2007 W.H. Freeman and Company

Histidine ionisation

Figure 2-15
Biochemistry, Sixth Edition
© 2007 W.H. Freeman and Company

Primary structure

A peptide bond assemble two amino acids together:

Figure 2-18
Biochemistry, Sixth Edition
© 2007 W.H. Freeman and Company

A chain is obtained through the concatenation of several amino acids:

Figure 2-20
Biochemistry, Sixth Edition
© 2007 W.H. Freeman and Company

Peptide bond is pH dependent

Figure 2-6
Biochemistry, Sixth Edition
© 2007 W. H. Freeman and Company

Peptide bond features (1)

Bond lengths

Peptide bonds lies on a plane

Figure 2-24
Biochemistry, Sixth Edition
© 2007 W. H. Freeman and Company

Figure 2-23

Biochemistry, Sixth Edition

© 2007 W.H. Freeman and Company

Peptide bond features (2)

Figure 2-27a

Biochemistry, Sixth Edition

© 2007 W. H. Freeman and Company

The chain has 2 degrees of liberty given by the dihedral angles Φ and Ψ . The geometry of the chain can be characterized though Φ and Ψ .

Peptide bond features (3)

Cis/trans isomers of the peptide group

Trans configuration is preferred versus Cis (ratio ~1000:1)

Figure 2-25
Biochemistry, Sixth Edition
© 2007 W. H. Freeman and Company

An exception is the Proline with a preference ratio of ~3:1

Ramachandran diagram gives the values which can be adopted by Φ and Ψ

Figure 2-28
Biochemistry, Sixth Edition
© 2007 W.H. Freeman and Company

The side chains also have flexible torsion angles

The preferred side-chains conformations are called "rotamers"

Example: Asparagine

- Typical conformations experimentally observed
- conformations observed by simulation

In helices and sheets, polar groups are involved into hydrogen bonds

Pseudo-periodicity of 2

α-helix

3.6 residues per turn, H-bond between residue n and n+4 Although other (rare) helices are observed: π -helices, 3.10-helices...

 β -strand (elementary blocks):

 β -strands are assembled into (parallel, anti-parallel) β -sheets.

Figure 4-10 part 2 of 2 Essential Cell Biology, 2/e. (@ 2004 Garland Science)

Anti-parallel β -sheets

Figure 2-36

Biochemistry, Sixth Edition

© 2007 W. H. Freeman and Company

Parallel β -sheets

Figure 2-37

Biochemistry, Sixth Edition
© 2007 W.H. Freeman and Company

Various shapes of β structures

Biochemistry, Sixth Edition © 2007 W. H. Freeman and Company

© 2007 W. H. Freeman and Company

Twisted β -sheets

β–barrel

Antiparallel beta-sheet

The different types of beta-sheet. Dashed lines indicate main chain hydrogen bonds.

Parallel beta-sheet

Figure 2-34
Biochemistry, Sixth Edition
© 2007 W. H. Freeman and Company

Loops

turn

Super-secondary & Tertiary structure

The tertiary structure is the set of 3D coordinates of atoms of a single amino acid chain

Secondary structure elements can be assembled into super-secondary motifs.

Quaternary structure

A protein can be composed of multiple chains with interacting subunits.

Figure 2-53 Biochemistry, Sixth Edition © 2007 W.H. Freeman and Company

Figure 2-54

Biochemistry, Sixth Edition

© 2007 W.H. Freeman and Company

Protein can interact with molecules Example: Hemoglobin

An Heme (iron + organic ring) binds to the protein, and allow the capture of oxygen atoms.

Disulfide bond

Two cysteines can interact and create a disulfide bond.

Figure 2-56
Biochemistry, Sixth Edition
© 2007 W. H. Freeman and Company

The tertiary structure is globular, with a preference for polar residues on its surface but rather apolar in its interior

Cytochrom c

Hemoglobine

water

Membrane proteins are an exception

Cytochrom oxidase

~ 30% of human genome, ~ 50% of antibiotics

Proteins folds into a native structure

© 2007 W. H. Freeman and Company

Overview of the methods used to predict the protein structure

Several issue must be addressed first:

- Which degree of definition?
- What's the length of the sequence?
- Which representation/modeling suits the best?
- Should we simulate the folding or predict the structure?
- Do we want a single prediction or a set of candidates?
- Machine learning approach or physical model?

Molecular Dynamics

HP lattice model

Hidden Markov models

(and other machine learning approaches)

Structural template methods

Protein Secondary Structure

Protein Secondary Structure Prediction Using Statistical Models

- Sequences determine structures
- Proteins fold into minimum energy state.
- Structures are more conserved than sequences. Two proteins with 30% identity likely share the same fold.

How to evaluate a prediction?

In 2D: The Q₃ test.

$$Q_3 = \frac{\text{correctly predicted residues}}{\text{number of residues}}$$

In 3D: The Root Mean Square Deviation (RMSD)

$$\text{RMSD} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \delta_i^2}$$

Old methods

• First generation – single residue statistics

Fasman & Chou (1974):

Some residues have particular secondary structure preference.

Examples: Glu α -Helix Val β -strand

Second generation – segment statistics
 Similar, but also considering adjacent residues.

Difficulties

Bad accuracy - below 66% (Q3 results).

Q3 of strands (E): 28% - 48%.

Predicted structures were too short.

Methods Accuracy Comparison

3rd generation methods

- Third generation methods reached 77% accuracy.
- They consist of two new ideas:
 - 1. A biological idea Using evolutionary information.
- 2. A technological idea Using neural networks.

How can evolutionary information help us?

Homologues — similar structure

But sequences change up to 85%

Sequence would vary differently - depends on structure

How can evolutionary information help us?

Where can we find high sequence conservation?

Some examples:

- In defined secondary structures.
- In protein core's segments (more hydrophobic).
- In amphipatic helices (cycle of hydrophobic and hydrophilic residues).

How can evolutionary information help us?

• Predictions based on multiple alignments were made manually.

Problem:

There isn't any well defined algorithm!

Solution:

Use Neural Networks.

The neural network basic structure :

- Big amount of processors "neurons".
- Highly connected.
- Working together.

What does a neuron do?

- Gets "signals" from its neighbors.
- Each signal has different weight.
- When achieving certain threshold sends signals.

General structure of ANN:

One input layer.

Some hidden layers.

One output layer.

Our ANN have one-direction flow!

Network training and testing:

- Training set inputs for which we know the wanted output.
- Back propagation algorithm for changing neurons pulses "power".
- Test set inputs used for final network performance test.

The Network is a 'black box':

- Even when it succeeds it's hard to understand how.
- It's difficult to conclude an algorithm from the network.
- It's hard to deduce new scientific principles.

Structure of 3rd generation methods

Find homologues using large data bases.

Create a profile representing the entire protein family.

Give sequence and profile to ANN.

Output of the ANN: 2nd structure prediction.

Structure of 3rd generation methods

The ANN learning process:

Training & testing set:

- Proteins with known sequence & structure.

Training:

- Insert training set to ANN as input.
- Compare output to known structure.
- Back propagation.

3rd generation methods - difficulties

Main problem - unwise selection of training & test sets for ANN.

First problem – unbalanced training

Overall protein composition:

- Helices 32%
- Strands 21%
- Coils 47%

What will happen if we train the ANN with random segments?

3rd generation methods - difficulties

 Second problem – unwise separation between training & test proteins

What will happen if homology / correlation exists between test & training proteins?

Above 80% accuracy in testing.

Third problem – similarity between test proteins.

Protein Secondary Structure Prediction Based on Position – specific Scoring Matrices

David T. Jones

PSI - PRED: 3RD generation method based on the iterated PSI – BLAST algorithm.

PSI - BLAST

- PSI BLAST finds distant homologues.
 (It exists now alternatives such as HMMER 3.0 or HHblits)
- PSSM input for PSI PRED.

ANN's architecture:

Two ANNs working together.

Step 1:

 Create PSSM from sequence - 3 iterations of PSI – BLAST.

Step 2: 1ST ANN

ADCQEILHTSTTWYV
15 RESIDUES

output: central amino acid secondary state prediction.

Using PSI - BLAST brings up PSI - BLAST difficulties:

Step 3: 2nd ANN

So why do we need a second ANN ?
 possible output for 1st ANN:

seq pred AAPPLLLLMMM G IMMRRIM EEEEECCCCCHCCCCEEE

Solution: ANN that "looks" at the whole context!

Input: output of 1st ANN.

Output: final prediction.

Training: Balanced training.

Testing:

- 187 proteins, Highly resolved structure.
- PSI BLAST was used for removing homologues.
- Without structural similarities.

Jones's reported results: Q3 results: 76% - 77%

Reliability numbers:

 The way the ANN tells us how much it is sure about the assignment.

Used by many methods.

Correlates with accuracy.

```
PSIPRED PREDICTION RESULTS

Key

Conf: Confidence (0=low, 9=high)

Pred: Predicted secondary structure (H=helix, E=strand, C=coil)

AA: Target sequence

Conf: 97898377188899998530367741489987089

Pred: CEEEEECCHHHHHHHHHHHHHCCCCCCCEEEEEEECCC

AA: KVVIIIKPPLVLVLVLVRRRAGAGAGALLILIKPP
```


Performance Evaluation

 Through 3rd generation methods accuracy jumped ~10%.

Many 3rd generation methods exist today.

Which method is the best one? How to recognize "over-optimism"?

Performance Evaluation

Performance Evaluation

Conclusion:

PSI-PRED seams to be one of the most reliable method today.

Reasons:

- The widest evolutionary information (PSI - BLAST profiles).
- Strict training & testing criterions for ANN.

Improvements

The first 3rd generation method **PHD**: ~72% in Q₃.

3rd generation methods best results: ~77% in Q₃.

Sources of improvement:

Larger protein data bases.

PSI – BLAST
 PSI – PRED broke through, many followed...

Improvements

How can we do better than that ?

Through larger data bases (?).

Combination of methods.

Example:

Combining 4 best methods ———Q₃ of ~78%!

 Find why certain proteins predicted poorly.

Bibliography

- Jones DT. Protein secondary structure prediction based on position specific scoring matrices. J Mol Biol. 1999 292:195-202
- Rost B. Rising accuracy of protein secondary structure prediction 'Protein structure determination, analysis, and modeling for drug discovery ' (ed. D Chasman), New York: Dekker, pp. 207-249