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Folding problem
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Amino acids: The simple ones
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Amino acids: Aliphatics
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Amino acids: Cyclic and Sulthydryl
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Amino acids: Aromatics

Phenylalanine Tyrosine Tryptophan
(Phe, F) (Tyr, Y) _ (Trp, W)
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Amino acids: Aliphatic hydroxyl
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Amino acids: Carboxamides & Carboxylates
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Amino acids: Basics
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Histidine 1onisation
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Primary structure
A peptide bond assemble two amino acids together:
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A chain 1s obtained through the concatenation of several amino acids:
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Peptide bond 1s pH dependent

R + R + R
H H H / H H
B - -
*+H3N COOH . YHsN coo- . HoN Ccoo-
X \ Zwitterionic \ Both groups
form deprotonated
s
© Both groups
;&; / protonated
g
S
! | | |
0 2 q 6 8 10 12 14

Figure 2-6
Biochemistry. Sixth Edition
© 2007 W.H. Freeman and Company



Peptide bond features (1)

Bond lengths

Peptide bonds lies on a plane

igure 2-23
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Peptide bond features (2)
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The chain has 2 degrees of liberty given by the dihedral angles ® and V.
The geometry of the chain can be characterized though & and V.



Peptide bond features (3)

Cis/trans 1somers of the peptide group

Trans configuration 1s
preferred versus Cis

(ratio ~1000:1) )

Trans Cis

An exception is the
Proline with a preference
ratio of ~3:1




Ramachandran diagram gives the values which can
be adopted by ® and ¥
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The side chains also have flexible torsion angles




The preferred side-chains conformations

are called ‘“‘rotamers”

Example: Asparagine

Energy (chil,chi2)
140
100
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O Typical conformations experimentally observed
[ J . . .
conformations observed by simulation



In helices and sheets, polar groups are involved into

hydrogen bonds

a helix

Pseudo-periodicity of 2




Figure 2-29b
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3.6 residues per turn, H-bond between residue n and n+4

Although other (rare) helices are observed: m-helices, 3.10-helices...




Figure 2-35
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B-strands are assembled into

(parallel, anti-parallel)B—sheets.
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B-sheets

Various shapes of [3 structures
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Antiparallel beta-sheet
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B-sheets

The different types of
beta-sheet. Dashed lines
indicate main chain
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~ 1/3 of amino acids



Super-secondary & Tertiary structure

Secondary structure elements

(A)

Heme group 8 Hemegroup can be assembled into
super-secondary motifs.

Figure 2-48
Biochemistry, Sixth Edition
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The tertiary structure is the set of
3D coordinates of atoms of a single

amino acid chain

Figure 2-51
Blochemistry, Sixth Edition
© 3007 W.H. Freeman and Company



Quaternary structure

A protein can be composed

Figure 2-53
Biochemistry, Sixth Edition
& 2007 W.H.Freeman and Compary

of multiple chains with
interacting subunits.

Figure 2-54
Biochemistry, Sixth Edition
& 2007 W.H.Freeman and Compary



Protein can interact with molecules
Example: Hemoglobin
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An Heme (iron + organic ring) binds to the protein, and
allow the capture of oxygen atoms.



Disulfide bond

Two cysteines can interact
and create a disulfide bond.
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The tertiary structure is globular, with a preference
for polar residues on its surface but rather apolar in

its interior

Cytochrom ¢
Hemoglobine




Membrane proteins are an exception

Hydrophobic
core

Hydrophilic

region
Cytochrom oxidase

~ 30% of human genome, ~ 50% of antibiotics



Proteins folds 1into a native structure
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Overview of the methods used to predict
the protein structure

Several 1ssue must be addressed first:

* Which degree of definition?

®* What's the length of the sequence?

* Which representation/modeling suits the best?

* Should we simulate the folding or predict the structure?
* Do we want a single prediction or a set of candidates?

* Machine learning approach or physical model?
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HP lattice model




Hidden Markov models

(and other machine learning approaches)

Periplasmic Membrane Extracellular




Structural template methods
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Protein Secondary Structure
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Protein Secondary Structure
Prediction Using Statistical Models

* Sequences determine structures
* Proteins fold into minimum energy state.

e Structures are more conserved than
sequences. Two proteins with 30% 1dentity

likely share the same fold.



How to evaluate a prediction?

In 2D: The Q. test.

O; - correctly predicted residues
number of residues

In 3D: The Root Mean Square Deviation (RMSD)

N
: — 1 2
RMSD = | & Z 5



Old methods

 First generation — single residue statistics

Fasman & Chou (1974) :

Some residues have particular secondary
structure preference.

Examples: Glu mmmp- 0-Helix

Val === [}-strand

 Second generation — segment statistics
Similar, but also considering adjacent residues.




Difficulties

Bad accuracy - below 66% (Q3 results).

Q3 of strands (E) : 28% - 48%.

Predicted structures were too short.




Methods Accuracy Comparison
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31d generation methods

e Third generation methods reached 77%
accuracy.

* They consist of two new 1deas:
1. A biological idea —
Using evolutionary information.
2. A technological idea —

Using neural networks.



How can evolutionary information
help us?

Homologues === similar structure

/




How can evolutionary information
help us?

Where can we find high sequence conservation?

Some examples:
nmmp |n defined secondary structures.

nmmmp N protein core’ s segments (more
nydrophobic).

=y | amphipatic helices (cycle of hydrophobic
and hydrophilic residues).




How can evolutionary information
help us?

* Predictions based on multiple
alignments were made manually.

Problem:
« There isn’ t any well defined algorithm!

Solution: g o
» Use Neural Networks . [uup St




Artificial Neural Network

The neural network basic l
structure :

* Big amount of processors —
“neurons”.

* Highly connected.

» Working together.



Artificial Neural Network

What does a neuron do?

- Gets “signals” from its neighbors.
- Each signal has different weight.
- When achieving certain threshold - sends signals.




Artificial Neural Network

General structure of ANN :

* One input layer.

« Some hidden layers.

* One output layer.

 Our ANN have one-direction flow !



Artificial Neural Network

Network training and testing :

- Back - propagation .

* Training set - inputs for which we know the wanted output.

« Back propagation - algorithm for changing neurons pulses

* Test set - inputs used for final network performance test.



Artificial Neural Network

The Network is a ‘black box’ :

« Even when it succeeds
it’ s hard to understand
how.

« |t s difficult to conclude
an algorithm from the
network.

* [t" s hard to deduce
new scientific principles.



Structure of 3™ generation methods




Structure of 3™ generation methods

The ANN learning process:
Training & testing set:
- Proteins with known sequence & structure.

Training:
- Insert training set to ANN as input.
- Compare output to known structure.
- Back propagation.



31 generation methods - difficulties

Main problem - unwise selection of training & test
sets for ANN.

* First problem — unbalanced training

Overall protein composition: accuracy

A
* Helices - 32% tribakuiced 6% CM

e Strands - 21%
* Coils —47%

33:33.33

What will happen if we train the ANN with random segments ?



31 generation methods - difficulties

« Second problem — unwise separation between training
& test proteins

What will happen if homology / correlation exists
between test & training proteins?

Above 80% accuracy in testing.

 Third problem — similarity between test proteins.




Protein Secondary Structure Prediction Based on

Position — specific Scoring Matrices
David T. Jones

PSI - PRED : 3RD generation method based on the iterated
PSI - BLAST algorithm.




PSI - BLAST

PSSM - position specific scoring matrix
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* PSI — BLAST finds distant homologues.

(It exists now alternatives such as HMMER 3.0 or HHblits)

 PSSM - input for PSI - PRED.



PSI - PRED

ANN’ s architecture:
* Two ANNs working together.

l Sequence + PSSM

Prediction

—
—
ot



PSI - PRED

Step 1:
* Create PSSM from sequence - 3 iterations of
PSI — BLAST.

Step 2: 15T ANN
« Sequence + PSSM === 15t ANN’ s input.

ADCQEILHTSTTWYYV
15 RESIDUES

output: central amino acid
secondary state prediction. ADCQEILHTSTTWYV



PSI - PRED

Using PSI - BLAST brings up PSI — BLAST
difficulties:

v safe zones of close
homologues

reached through
position-specific
family profile

lost after
ieranon

safe for
pairwise

extension by
search error




PSI - PRED
Step 3: 2" ANN

* S0 why do we need a second ANN ?

possible output for 15t ANN:
A
what’s wrong with that ?

Solution: ANN that “looks” at the whole context !

Input: output of 1st ANN.
Output: final prediction.



Training :

Testing :

PSI - PRED

Balanced training.

* 187 proteins, Highly resolved
structure.

 PSI — BLAST was used for
removing homologues.

 \Without structural similarities.



PSI - PRED
Jones’ s reported results :Qsresults : 76% - 77%
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PSI - PRED

PSIPRED PREDICTION RESULTS

Reliability numbers:

* The way the ANN tells us , .
e Confidence (0=low, 9=high)
how much it is sure about Predicted secondary structure (H=helix, E=strand, C=coil)

the assignment : Target sequence

Key

97898377188899998530367741489987089

« Used by many methods. CEEEEECCHRHHHHHKHHHHCCCCCCEEEREECCO
: KVVIIIKPPLVLVLVLVRRRAGAGAGALLILIKPD

con: 111]102002037000303322300222000032 00
» Correlates with accuracy. 7 =>4 j———

Pred: CEEEEECCHHHHHHHHHHHHCCCCCCEEEEEECCC
Ad: KWIIIKFPPLVLVLVLVRRRAGAGAGALLILIKFF

10 20 30
Lagand!
D = halix Conf ! ],:J]][ = confidence of pradiction
- +
@ - dtcand Fced! pradicted Jdezondacy dtcuctuca
-coil Ah! tacget Jdequanca




Performance Evaluation

* Through 3rd generation methods accuracy
jumped ~10%.

SEP  KELVLALYDYQEXKSPREVIMKKGDI LT LINSTNKDNNEKVEVNDROGF VP ARY VEKLD

OES BEEE E--E 1333333 EFFFFE FEEFFFrPHHHEEFE
1st C+F 1333333 1333333, 11
2nd GOR K H HH} 1333333 13333 HHH
3rd PHD EEEEEE EEE  EEEEEEEE EEEE HHEEEE

Rel 945999972587775211443554599547697514344045955111321221558

* EEEEEE EEEEE *t EEEE EEEE hhd *h*

« Many 3" generation methods exist today.

Which method is the best one ?
How to recognize “over-optimism” ?



Performance Evaluation
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Performance Evaluation

Conclusion :
PSI-PRED seams to be one of the most reliable
method today.

Reasons :

* The widest evolutionary information
(PSI - BLAST profiles).

* Strict training & testing criterions for ANN.



Improvements

The first 3" generation method PHD: ~72% in Q.
3rd generation methods best results: ~77% in Qs.
Sources of improvement :

 Larger protein data bases.

 PSI - BLAST
PS| — PRED broke through, many followed...



Improvements

How can we do better than that ?
Through larger data bases (7).

« Combination of methods.

Example:
Combining 4 best methods

Qs of ~78% !

* Find why certain proteins :
predicted poorly. |

5.
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Q3 Score (%)
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