
Comp 251: Practice problems

Instructor: Jérôme Waldispühl

This is a collection of problems that you can use to prepare the COMP 251 final
exam. This selection of problems covers the second part of the class (i.e. after
the mid-term exam). However, the final exam will also cover the material of the
first part of the class. Please, refer to the practice problems for the mid-term, and
solution of the midterm (last lecture) to fully prepare the exam.

Dynamic programming
1. The Coin Row Problem: Suppose you have a row of coins with values that are positive integers

c1, · · · , cn. These values might not be distinct. Your task is to pick up coins have as much total
value as possible, subject to the constraint that you don’t ever pick up two coins that lie beside
each other. How would you solve this using dynamic programming?
Solve the problem for coins with values c1 to c6 as follows: (5, 1, 2, 10, 6, 2).

2. The Coin Change Problem: Suppose we have m types of coins with values c1 < c2 < · · · cm
(e.g. in the case of pennies, nickels, dimes, ... we would have c1 = 1, c2 = 5, c3 = 10,
· · · ). Let f(n) be the minimum number of coins whose values add up to exactly n. Write a
recurrence for f(n) in terms of the values of the coins. You may use as many of each type of
coin as you wish.
As an example, suppose the coin values c1, c2, and c3 are 1, 3, 4. Solve the problem for n = 6
using dynamic programming.

3. What is the optimal substructure of the Neddleman-Wunch algorithm (i.e. optimal pairwise
sequence alignment)?

Divide-and-Conquer
4. In Karatsuba multiplication, when you do the multiplication (x1+x0)·(y1+y0), the two values

you are multiplying might be n/2 + 1 digits each, rather than n/2 digits, since the addition
might have led to a carry e.g. 53+52 = 105. Does this create a problem for the argument that
the recurrence is t(n) = 3t(n/2) + cn?

5. Apply the master method to determine the asymptotic behavior of the function T (n).

1. T (n) = 2 · T (n/4) + n0.51

1



2. T (n) = 0.5 · T (n/2) + 1/n

3. T (n) = 64 · T (n/8)− n2 · logn
4. T (n) =

√
2 · T (n/2) + log n

5. T (n) = 6 · T (n/3) + n2 · log n
6. T (n) = 3 · T (n/3) + n/2

6. Write a recurrence that describes its worst-case running time of the quicksort algorithm.

Amortized analysis
7. Suppose we perform a sequence of stack operations on a stack whose size never exceeds k.

After every k operations, we make a copy of the entire stack for backup purposes. Show
that the cost of n stack operations, including copying the stack, is O(n) by assigning suitable
amortized costs to the various stack operations.

8. Suppose we perform a sequence of n operations on a data structure in which the ith operation
costs i if i is an exact power of 2, and 1 otherwise. Use aggregate analysis or accounting
method to determine the amortized cost per operation.

Page 2


