COMP251: Mid-Term Review

Jérôme Waldispühl School of Computer Science McGill University

Overview

- Lecture 2 Hashing
- Lecture 3 Heaps & Heapsort
- Lecture 4 BST and AVL trees
- Lecture 5 Red-black trees
- Lecture 6 Disjoint sets
- Lecture 7 Greedy algorithms (Scheduling, Huffman coding)
- Lecture 8 Elementary graph algorithms
- Lecture 9 Topological sort and strongly connected components
- Lecture 10 Minimum Spanning Tree
- Lecture 11 Single source shortest path
- Lecture 12 Bipartite graphs
- Lecture 13 Network flow 1
- Lecture 14 Network flow 2

Techniques

Running time

Proofs

- Contradiction: Given a proposition, assume opposite proposition is true, and then shows that it leads to a contradiction.
- **Cut and paste:** Used with graphs and greedy algorithms. Often used to prove an optimal solution of a problem is build from optimal solution of sub-problem (Optimal substructure). Assume a sub-problem is not optimal, and replace with optimal solution to show a contradiction.
- Loop invariants: Used to prove that a loop structure is doing what it is intended to do. You must specify:
 - Loop invariant property
 - Initialization
 - Maintenance
 - Termination

Optimal substructure

Lemma

Any subpath of a shortest path is a shortest path.

Suppose this path *p* is a shortest path from *u* to *v*. Then $\delta(u,v) = w(p) = w(p_{ux}) + w(p_{xy}) + w(p_{yv})$. Now suppose there exists a shorter path $x \sim y$. Then $w(p'_{xy}) < w(p_{xy})$. $w(p_{ux}) + w(p'_{xy}) + w(p_{yv}) < w(p_{ux}) + w(p_{yy})$. *Contradiction of the hypothesis that p* is the shortest path!

Hashing

Resolution by chaining

- Insertion time in O(1) if we insert at the head of the list.
- Search time in O(1) time in average, but not the worst case.

Open addressing

Illustration: Where to store key 282?

Note: Search must use the same probe sequence.

Linear & Quadratic probing

Linear probing:

$$h(k,i) = (h'(k) + i) \mod m$$

Note: tendency to create clusters.

Quadratic probing:

$$h(k,i) = \left(h'(k) + c_1 \cdot i + c_2 \cdot i^2\right) \mod m$$

Remarks:

- We must ensure that we have a full permutation of (0, ..., m-1).
- Secondary clustering: 2 distinct keys have the same h' value, if they have the same probe sequence.

Trees

Rotations:

- Change tree structure
- Preserve the BST property.

Example: right rotation at y

BST & Self-balanced trees

- BST (used to store keys)
- Running time dependent of the height \Rightarrow we try to keep the trees balanced.
- AVL & Red-Black trees are 2 types of self-balanced trees
- Challenge is to keep the AVL or Red-Black tree property valid after each operation.

Insert(T,15)

Recolor 10, 8 & 11

Right rotate at 18

Right rotate at 18 (parent & child with conflict are aligned)

Left rotate at 7

Insert RB Tree – Example

Left rotate at 7

Insert RB Tree – Example

Recolor 10 & 7 (root must be black!)

- *p*[*p*[*z*]] (*z*'s grandparent) must be black, since *z* and *p*[*z*] are both red and there are no other violations of property 4.
- Make p[z] and y black ⇒ now z and p[z] are not both red. But property 5 might now be violated.
- Make p[p[z]] red \Rightarrow restores property 5.
- The next iteration has p[p[z]] as the new z (i.e., z moves up 2 levels).

Case 2 – y is black, z is a right child

- Left rotate around p[z], p[z] and z switch roles ⇒ now z is a left child, and both z and p[z] are red.
- Takes us immediately to case 3.

Case 3 – y is black, z is a left child

- Make p[z] black and p[p[z]] red.
- Then right rotate right on p[p[z]] (in order to maintain property 4).
- No longer have 2 reds in a row.
- p[z] is now black \Rightarrow no more iterations.

Greedy algorithms

i	1	2	3	4	5	6	7
S _i	0	1	2	4	5	6	8
f _i	2	3	5	6	9	9	10

Activities sorted by finishing time.

i	1	2	3	4	5	6	7
S _i	0	1	2	4	5	6	8
f _i	2	3	5	6	9	9	10

Activities sorted by finishing time.

i	1	2	3	4	5	6	7
S _i	0	1	2	4	5	6	8
f _i	2	3	5	6	9	9	10

Activities sorted by finishing time.

i	1	2	3	4	5	6	7
S _i	0	1	2	4	5	6	8
f _i	2	3	5	6	9	9	10

Activities sorted by finishing time.

Graph Algorithms

Topological Sort

Want to "sort" a directed acyclic graph (DAG).

Think of original DAG as a partial order.

Want a **total order** that extends this partial order.

Minimum Spanning Trees

Minimum Spanning Tree (MST)

- It has | V | 1 edges.
- It has no cycles.
- It might not be unique.

Definitions

Kruskal's Algorithm

- 1. Starts with each vertex in its own component.
- 2. Repeatedly merges two components into one by choosing a light edge that connects them (i.e., a light edge crossing the cut between them).
- 3. Scans the set of edges in monotonically increasing order by weight.
- 4. Uses a **disjoint-set data structure** to determine whether an edge connects vertices in different components.

Note: We also covered the Prim's algorithm to calculate a MST.

Safe edge

Theorem 1: Let (S, V-S) be any cut that respects A, and let (u, v) be a light edge crossing (S, V-S). Then, (u, v) is safe for A.

Proof:

Let T be a MST that includes A.

Case 1: (u, v) in T. We're done.

Case 2: (u, v) not in T. We have the following:

(x, y) crosses cut. Let T' = T - {(x, y)} \cup {(u, v)}. Because (u, v) is light for cut, w(u, v) \leq w(x, y). Thus, w(T') = w(T)-w(x, y)+w(u, v) \leq w(T). Hence, T' is also a MST. So, **(u, v) is safe for A**.

Single source shortest paths

Relaxing an edge

RELAX(u,v,w)
if
$$d[v] > d[u] + w(u,v)$$
 then
 $d[v] \leftarrow d[u] + w(u,v)$
 $\pi[v] \leftarrow u$

Dijkstra's algorithm

DIJKSTRA(V, E, w, s) INIT-SINGLE-SOURCE(V, s) $s \in \emptyset$ $Q \in V$ while $Q \neq \emptyset$ do $u \in EXTRACT-MIN(Q)$ $s \in s \cup \{u\}$ for each vertex $v \in Adj[u]$ do RELAX(u, v, w)

Q X	Ζ			
-----	---	--	--	--

_			
\cap			
U			
~			

Dijkstra's algorithm

- Variable used to calculate shortest path: *d*
- Property used to calculate shortest path: d[v] = δ(s,v)

Bipartite graphs

Example Q: Is X-C, Y-B, Z-A a good assignment?

Candidates' preferences

	1 st	2 nd	3 rd
Xavier	Alphabet	Baidu	Campbell
Yulia	Baidu	Alphabet	Campbell
Zoran	Alphabet	Baidu	Campbell

	1 st	2 nd	3 rd
Alphabet	Yulia	Xavier	Zoran
Baidu	Xavier	Yulia	Zoran
Campbell	Xavier	Yulia	Zoran

Example

- Q: Is X-C, Y-B, Z-A a good assignment?
- A: No! Xavier and Baidu both prefer to be matched together...

Candidates' preferences

	1 st	2 nd	3 rd
Xavier	Alphabet	Baidu	Campbell
Yulia	Baidu	Alphabet	Campbell
Zoran	Alphabet	Baidu	Campbell

	1 st	2 nd	3 rd
Alphabet	Yulia	Xavier	Zoran
Baidu	Xavier	Yulia	Zoran
Campbell	Xavier	Yulia	Zoran

Gale-Shapley algorithm

For each $\alpha \in A$, let pref[α] be the ordering of its preferences in B For each $\beta \in B$, let pref[β] be the ordering of its preferences in A Let matching be a set of crossing edges between A and B

```
matching \leftarrow \emptyset
while there is \alpha \in A not yet matched do
           \beta \leftarrow pref[\alpha].removeFirst()
           if \beta not yet matched then
                     matching \leftarrow matching \cup {(\alpha,\beta)}
           else
                     \gamma \leftarrow \beta's current match
                      if \beta prefers \alpha over \gamma then
                                matching \leftarrow matching \{(\gamma, \beta)\} \cup \{(\alpha, \beta)\}
return matching
```


	1 st	2 nd	3 rd
Xavier	Baidu	Alphabet	Campbell
Yulia	Baidu	Campbell	Alphabet
Zoran	Alphabet	Campbell	Baidu

	1 st	2 nd	3 rd
Alphabet	Zoran	Xavier	Yulia
Baidu	Yulia	Zoran	Xavier
Campbell	Xavier	Yulia	Zoran

	1 st	2 nd	3 rd
Xavier	Baidu	Alphabet	Campbell
Yulia	Baidu	Campbell	Alphabet
Zoran	Alphabet	Campbell	Baidu

	1 st	2 nd	3 rd
Alphabet	Zoran	Xavier	Yulia
Baidu	Yulia	Zoran	Xavier
Campbell	Xavier	Yulia	Zoran

	1 st	2 nd	3 rd
Xavier	Baidu	Alphabet	Campbell
Yulia	Baidu	Campbell	Alphabet
Zoran	Alphabet	Campbell	Baidu

	1 st	2 nd	3 rd
Alphabet	Zoran	Xavier	Yulia
Baidu	Yulia	Zoran	Xavier
Campbell	Xavier	Yulia	Zoran

	1 st	2 nd	3 rd
Xavier	Baidu	Alphabet	Campbell
Yulia	Baidu	Campbell	Alphabet
Zoran	Alphabet	Campbell	Baidu

	1 st	2 nd	3 rd
Alphabet	Zoran	Xavier	Yulia
Baidu	Yulia	Zoran	Xavier
Campbell	Xavier	Yulia	Zoran

Example Candidates

Candidates' preferences

	1 st	2 nd	3 rd
Xavier	Baidu	Alphabet	Campbell
Yulia	Baidu	Campbell	Alphabet
Zoran	Alphabet	Campbell	Baidu

	1 st	2 nd	3 rd
Alphabet	Zoran	Xavier	Yulia
Baidu	Yulia	Zoran	Xavier
Campbell	Xavier	Yulia	Zoran

Example Candidates

Candidates' preferences

	1 st	2 nd	3 rd
Xavier	Baidu	Alphabet	Campbell
Yulia	Baidu	Campbell	Alphabet
Zoran	Alphabet	Campbell	Baidu

	1 st	2 nd	3 rd
Alphabet	Zoran	Xavier	Yulia
Baidu	Yulia	Zoran	Xavier
Campbell	Xavier	Yulia	Zoran

Men's preferences

	1 st	2 nd	3 rd
Xavier	Baidu	Alphabet	Campbell
Yulia	Baidu	Campbell	Alphabet
Zoran	Alphabet	Campbell	Baidu

	1 st	2 nd	3 rd
Alphabet	Zoran	Xavier	Yulia
Baidu	Yulia	Zoran	Xavier
Campbell	Xavier	Yulia	Zoran

	1 st	2 nd	3 rd
Xavier	Baidu	Alphabet	Campbell
Yulia	Baidu	Campbell	Alphabet
Zoran	Alphabet	Campbell	Baidu

	1 st	2 nd	3 rd
Alphabet	Zoran	Xavier	Yulia
Baidu	Yulia	Zoran	Xavier
Campbell	Xavier	Yulia	Zoran

	1 st	2 nd	3 rd
Xavier	Baidu	Alphabet	Campbell
Yulia	Baidu	Campbell	Alphabet
Zoran	Alphabet	Campbell	Baidu

	1 st	2 nd	3 rd
Alphabet	Zoran	Xavier	Yulia
Baidu	Yulia	Zoran	Xavier
Campbell	Xavier	Yulia	Zoran

Flow networks

Definitions

Positive flow: A function $p : V \times V \rightarrow \mathbf{R}$ satisfying.

Capacity constraint: For all $u, v \in V$, $0 \le p(u, v) \le c(u, v)$,

Max flow

• Flow out of source *s* == Flow in the sink *t*

• Flow =
$$\sum_{v \in V} f(s, v)$$

• **Objective:** find maximum flow

Example

Flow through a cut

Claim: Given a flow network. Let f be a flow and A, B be a s-t cut. Then, $|f| = \sum f(e) - \sum f(e)$

 $e \in cut(A,B)$ $e \in cut(B,A)$

Notation: $|f| = f^{out}(A) - f^{in}(A)$

Max flow = Min cut

- Ford-Fulkerson terminates when there is no path s-t in the residual graph $\rm G_{\rm f}$
- The set of nodes accessible from *s* in G_f defines a cut in G

$$|f| = f^{out}(A) - f^{in}(A)$$

= $\sum_{e \in cut(A,B)} f(e) - \sum_{e \in cut(B,A)} f(e)$
• Ford-Fulkerson flow = $\sum_{e \in cut(A,B)} c(e) - 0$
= capacity of cut(A,B)

Example: Min Cut

Note: All edges have a capacity of 1.

Not a cut!

min cut!

Example: Calculate Min Cut

To find a min cut compute a max flow.

Example: Calculate Min Cut

To find the cut run BFS (or DFS) from s on the residual graph. The reachable vertices define the (min) cut.

Announces

- Office hours extended until 3pm today.
- Office hours (Carlos & Roman) on wednesday from 2pm to 4pm in TR3110.
- Mid-term exam scheduled at 11h30 (regular class hours) in ADAMS Auditorium.
- One crib sheet (2 pages) allowed.