COMP251: Mid-Term Review

Jérome Waldispuhl
School of Computer Science
McGill University

Overview

Lecture 2 Hashing

Lecture 3 Heaps & Heapsort

Lecture 4 BST and AVL trees

Lecture 5 Red-black trees

Lecture 6 Disjoint sets

Lecture 7 Greedy algorithms (Scheduling, Huffman coding)
Lecture 8 Elementary graph algorithms

Lecture 9 Topological sort and strongly connected components

Lecture 10 Minimum Spanning Tree
Lecture 11 Single source shortest path
Lecture 12 Bipartite graphs

Lecture 13 Network flow 1

Lecture 14 Network flow 2

Techniques

Running time

f-n :upper boundonf .~

’

f : running time

* Running time is O (n)
 Running time is £2(n)
=Running time is &(n)

Proofs

* Contradiction: Given a proposition, assume opposite
proposition is true, and then shows that it leads to a
contradiction.

* Cut and paste: Used with graphs and greedy algorithms.
Often used to prove an optimal solution of a problem is
build from optimal solution of sub-problem (Optimal
substructure). Assume a sub-problem is not optimal, and
replace with optimal solution to show a contradiction.

* Loop invariants: Used to prove that a loop structure is
doing what it is intended to do. You must specify:
= Loop invariant property
" |nitialization
= Maintenance
= Termination

Optimal substructure

Lemma
Any subpath of a shortest path is a shortest path.

Proof: Puy

Suppose this path p is a shortest path from u to v.

Then 8(u,v) = w(p) = w(p,,) + w(p,,) + w(p,,).

Now suppose there exists a shorter path

Then w(p’,,)<w(p,,). wip,)+w(p’,)+wlp,)<wlp,) +wlp,)+wip,)
Contradiction of the hypothesis that p is the shortest path!

Hashing

Resolution by chaining

* Insertion time in O(1) if we insert at the head of the list.

e Search time in O(1) time in average, but not the worst case.

U h(k,)

(universe of keys)
h(k,)

\"\’\\\’\”

Hash function: h:U —{0,1,...,m -1}

—> ks ky ks
—> kj
—> kg ke

Open addressing

lllustration: Where to store key 2827

index ke
h(282,0)=3 % Y
1 355
h(282,1)=1 »
h(282,2)=5 3 .
4 233
‘/ 5 282
6 799
7

Note: Search must use the same probe sequence.

Linear & Quadratic probing

Linear probing:
h(k,i)=(h'(k)+i)modm

Note: tendency to create clusters.

Quadratic probing:

h(k,i)=(h'(k)+c, i+c, i)modm

Remarks:

* We must ensure that we have a full permutation of (
0,..,m-1).

* Secondary clustering: 2 distinct keys have the same
h' value, if they have the same probe sequence.

Trees

Rotations

Right rotation

Y

S

Left rotation

Rotations:
* Change tree structure
* Preserve the BST property.

Example: right rotation aty

BST & Self-balanced trees

AVL trees Red-black trees

| Niesihrignt | <1 I ﬁ

® 00

* Running time dependent of the height = we try to keep the trees balanced.

* BST (used to store keys)

* AVL & Red-Black trees are 2 types of self-balanced trees
* Challenge is to keep the AVL or Red-Black tree property valid after each operation.

Insert RB Tree — Example

Insert RB Tree — Example

Insert(T,15)

Insert RB Tree — Example

Recolor 10, 8 &11

Insert RB Tree — Example

Right rotate at 18

Insert RB Tree — Example

Right rotate at 18 (parent & child with conflict are aligned)

Insert RB Tree — Example

7

00 ¢

Left rotate at 7

Insert RB Tree — Example

Left rotate at 7

Insert RB Tree — Example

o

Recolor 10 & 7 (root must be black!)

Case 1 —uncle yis red

z is a right child here.
Similar steps if zis a

B Y left child. B ¥

* p[p[z]] (z's grandparent) must be black, since z and p[z] are both red
and there are no other violations of property 4.

* Make p[z] and y black = now z and p[z] are not both red. But
property 5 might now be violated.

* Make p[p|[z]] red = restores property 5.
* The next iteration has p[p[z]] as the new z (i.e., z moves up 2 levels).

Case 2 —y is black, z is a right child

plz]

y) (new) plz]
\

* Left rotate around p[z], p[z] and z switch roles = now z is a left
child, and both z and p|[z] are red.

* Takes us immediately to case 3.

Case 3 —vy is black, z is a left child

plplz]]

* Make p|[z] black and p[p[z]] red.
* Then right rotate right on p[p[z]] (in order to maintain property 4).
* No longer have 2 reds in a row.

* p[z] is now black = no more iterations.

Greedy algorithms

Activity-selection Problem

i 1 2 3 4 5 6 7
s |0 1 2 4 5 6 8
f |12 3 5 6 9 9 10
Activities sorted by finishing time.
Sy @ ° ® @ f6
f3
d d
S, @ 2 ® f2 Sc @ > ® f5
a, a, a
S, ¢ o f, | s, @ o f, | S, e o f,
0 1 2 3 4 5 6 7 8 9 10

Activity-selection Problem

i 1 2 3 4 5 6 7
s |0 1 2 4 5 6 8
f |12 3 5 6 9 9 10
Activities sorted by finishing time.
Sy ¢ ® ® @ f6
f3
d d
S, @ 2 ® f2 Sc @ > ® f5
a, a, a
S, ¢ o f. | s, @ o f, | S, e o f,
0 1 2 3 4 5 6 7 8 9 10

Activity-selection Problem

[1 2 3 4 5 6 7
s | 0 1 2 4 5 6 8
f |12 3 5 6 9 9 10
Activities sorted by finishing time.
Sy ¢ ® ® ® f6
f3
d d
S, @ 2 ® f2 Sc @ > ® f5
a, a, a,
S, ¢ o f1 S, ® ® f4 S, @ ® f7
0 1 2 3 4 5 6 7 8 9 10

Activity-selection Problem

i 1 2 3 4 5 6 7
s |0 1 2 4 5 6 8
f 12 3 5 6 9 9 10
Activities sorted by finishing time.
S5 ¢ ® ¢ -® f6
f3
d d
S, @ 2 ® f2 Sc @ > ® f5
al a4 a7
S, ¢ o f. | s, @ o f, | S; 0 o f,
0 1 2 3 4 5 6 7 8 9 10

Graph Algorithms

Topological Sort
Want to “sort” a directed acyclic graph (DAG).

1@
O @@

Think of original DAG as a partial order.

Want a total order that extends this partial order.

Example 1

A B

%

C

Linked List:

Example 1

Linked List:

Example 1

Linked List:

E

Example 1

A B D
C E
Linked List:

@ ©

D E

Example 1

A B D
C E
Linked List:

@ ©

D E

Example 1

A B D
C E
Linked List:

@ ©

D E

Example 1

A B D
C E
Linked List:

o

C D E

Example 1

A B D
C E
Linked List:

A A A

Example 1

A B D
C E
Linked List:

A A A

Example 1

A B D
C E
Linked List:

60064

Minimum Spanning Trees

Minimum Spanning Tree (MST)
3 3

1 6

 Ithas |V | -1 edges.
* It has no cycles.
* It might not be unique.

A cut respects A if
and only if no

edge in A crosses \

Definitions

cut partitions vertices into

disjoint sets, S and V- S. ;

the cut.

A light edge crossing
cut (may not be uniq

This edge crosses the cut.
(one endpointisin S and
ue) the otherisin V-S5.)

Kruskal's Algorithm

Starts with each vertex in its own component.

Repeatedly merges two components into one by choosing a
light edge that connects them (i.e., a light edge crossing the
cut between them).

3. Scans the set of edges in monotonically increasing order by
weight.

4. Uses a disjoint-set data structure to determine whether an
edge connects vertices in different components.

Note: We also covered the Prim’s algorithm to calculate a MST.

Example

y o)) ’ I

= - - -

o0 ’
7
P I
7 |
- _
7
~_ (= =)
N
S I
N |
N
~o (o |
N
00 < A “
~ S |
N ~
-1~ NN S |
/ // ~ S
1 (o . N |
\ @) ~ |
R = AR
N
Q. o ~
m —i - N —i
O \
> _e~
LL] \ /

Example

Example

Safe edge

Theorem 1: Let (S, V-S) be any cut that respects A, and let (u, v) be
a light edge crossing (S, V-S). Then, (u, v) is safe for A.

Proof:

Let T be a MST that includes A.

Case 1: (u, v) in T. We're done.

Case 2: (u, v) not in T. We have the following:

(X, y) crosses cut.

Let T" =T-{(x, y)} U {(u, v)}.
Because (u, v) is light for cut,
w(u, v) <w(x, y). Thus,

w(T") = w(T)-w(x, y)+w(u, v)<w(T).
Hence, T is also a MST.
So, (u, v) is safe for A.

We show
edgesinT

Single source shortest paths

Relaxing an edge

RELAX(u,v,w)

if d[v]>d[u]+w(u,v) then
d[v] € d[u]+w(u,V)
nm[v]<u

Dijkstra’s algorithm

DIJKSTRA(V, E,w,S)
INIT-SINGLE-SOURCE(V, s)
S & 9
O <V
while O # 9 do
u ¢ EXTRACT-MIN(Q)
S & S U {u}
for each vertex v &€ Adj[u] do
RELAX(u,v,w)

Example

Example

Example

t 9 X
6 9
o &9 29,
S 2

Example

Example

Example

Example

Dijkstra’s algorithm

* Variable used to calculate shortest path: d
* Property used to calculate shortest path: d[v] = 6(s,v)

e DIJKSTRA(V, E,w,s):
nitialization INIT-SINGLE-SOURCE(V, s)
Initially, S = 9 = True

S & 9
0O <V
while 0 # 9 do
Loop Invariant: u < EXTRACT-MIN(Q)
At the start of each iteration: S ¢« s U {u}
d[v] = 6(s,v) Vv € S. for each vertex v&Adj[u] do
RELAX(u,v,w) k
Termination: Maintenance:
Stops when Q=2 = Show that d[u] = 6(s,u) when
dlv]=6(sv) VvEV uis added to S in each
(by Loop Invariant Property) lteration.

Bipartite graphs

Example
Q: Is X-C, Y-B, Z-A a good assignment?

Candidates
Candidates’ preferences Companies’ preferences
1st 2nd 3rd 1st 2nd
Xavier Alphabet Baidu - Alphabet Xavier
Yulia Alphabet | Campbell Baidu
Zoran Baidu Campbell Campbell

Example

Q: Is X-C, Y-B, Z-A a good assignment?
A: No! Xavier and Baidu both prefer to be matched together...

o= o= Ty
7 S / N
/ S / \
/ \
I \
Candidates ! . Companies
\ I
\ 7 /
v G Y @ /
S -_— 7 - s
Candidates’ preferences Companies’ preferences
st 1st 2nd

Xavier Alphabet Alphabet Xavier
Yulia Alphabet | Campbell Baidu
Zoran Baidu Campbell Campbell

Gale-Shapley algorithm

For each a=A, let pref[a] be the ordering of its preferences in B
For each B<B, let pref[B] be the ordering of its preferences in A
Let matching be a set of crossing edges between A and B

matching<«J
while there is a & A not yet matched do
B<«—pref[a].removeFirst()
if B not yet matched then
matching<matchingui{(a,B)}
else
y<—PB’s current match
if B prefers a over y then
matching<matching-{(y,B)}v{(a,B)}

returnmatching

Example

Candidates

Candidates’ preferences

1st 2nd 3
Xavier Baidu Alphabet | Campbell
Yulia Baidu Campbell | Alphabet
Zoran Alphabet | Campbell Baidu

A
B Companies
C
Companies’ preferences
1st 2nd 3rd
Alphabet Zoran Xavier Yulia
Baidu Yulia Zoran Xavier
Campbell Xavier Yulia Zoran

Example

/7 \ ’ S .
/ /
/ . PGV
| \
Candidates ! (V) ' Companies
| I
\ I' ‘\ I
\ /
\ @ / \ @ /
S -_— 7 » - s
Candidates’ preferences Companies’ preferences
1st 2nd 3rd 1st 2nd 3rd

Xavier - Alphabet | Campbell Alphabet Zoran Xavier Yulia
Yulia Baidu Campbell | Alphabet Baidu Yulia Zoran -

Zoran Alphabet | Campbell Baidu Campbell Xavier Yulia Zoran

Example

P -~ o P i N
" O O
/ / \
| \
. l .
Candidates :) ., Companies
\ J \ I
\ / \ /
\ / \ /
S -_— 7 ~ - s
Candidates’ preferences Companies’ preferences
1st 2nd 3rd 1st 2nd 3rd
Xavier Alphabet | Campbell Alphabet Zoran Xavier Yulia
Yulia Campbell | Alphabet Baidu Yulia Zoran -
Zoran Alphabet | Campbell Baidu Campbell Xavier Yulia Zoran

Example

®

I
Candidates : @
@

Candidates’ preferences

1st 2nd 3rd

®

I

:‘ -B) | Companies
©

Xavier Baidu Alphabet | Campbell

Alphabet

Yulia - Campbell

Zoran Alphabet | Campbell Baidu

/
\ /
\ /
~ - s
Companies’ preferences
1st 2nd 3rd
Alphabet Zoran Xavier Yulia
Baidu - Zoran Xavier
Campbell Xavier Yulia Zoran

Example

/’"\\

/

/’@ \
\

®

I
Candidates : @
@

Candidates’ preferences

. Companies

—®

Companies’ preferences

3rd
Xavier Campbell
Yulia Campbell | Alphabet
Zoran Alphabet | Campbell Baidu

3rd

Alphabet Yulia
Baidu Xavier
Campbell Xavier Yulia Zoran

Example

Candidates

\
1

—_~

/"‘\\
// ®_"
U,

Candidates’ preferences

Xavier

Yulia

Zoran

3rd
Campbell
Campbell | Alphabet
Campbell Baidu

\ I
\ /
\ @ /
N\ - 7
Companies’ preferences
3rd
Alphabet Yulia
Baidu Xavier
Campbell Xavier Yulia Zoran

Example

o= o= Ty
/ ~
/ \ / \
/ @ \

\
——B) | Companies

I
Candidates :

\ \ I
‘ O
\ /
S -_— 7 ~ - s
Men’s preferences Companies’ preferences
1st 2nd 3rd 1st 2nd 3rd
Xavier Baidu Alphabet | Campbell Alphabet Xavier Yulia
Yulia Campbell | Alphabet Baidu Zoran Xavier
Zoran Campbell Baidu Campbell Xavier Yulia Zoran

Example

Candidates

-—

Candidates’ preferences

1st 2nd 3
Xavier Baidu Alphabet -
Yulia Campbell | Alphabet
Zoran Campbell Baidu

. Companies

Companies’ preferences

1st

Alphabet

Baidu

Campbell

2nd 3rd
Xavier Yulia
Zoran Xavier
Yulia Zoran

Example

Candidates

-—

Candidates’ preferences

1st 2nd 3
Xavier Baidu Alphabet -
Yulia Campbell | Alphabet
Zoran Campbell Baidu

. Companies

Companies’ preferences

1St

Alphabet

Baidu

Campbell

2nd 3rd
Xavier Yulia
Zoran Xavier
Yulia Zoran

Flow networks

Definitions

Positive flow: A function p : V x V - R satisfying.

Capacity constraint: Forallu,v &€ V, 0 < p(u, v) £ c(u, v),

Positive flow

Capacity

O

1/2
O

Flow conservation: Forallu € V - {s, t}, EP(VM) = EP(M,V)

0/2

2/2

‘VEV

)

(

vev

)

Y
Flow into u

Flowin:0+2+1=3
Flowout:2+1=3

Y
Flow out of u

Max flow

* Flow out of source s == Flow in the sink t

* Objective: find maximum flow

2/2

2/3
1/1

0/1

2/2

Example

0/2

Flow in G

3/3

Residual
graph G;

Example

Residual
graph G;

Flow in G;

Example

|£]=3

Question: How do we know
if a flow is maximum?

Flow through a cut

Claim: Given a flow network. Let f be a flow and A, B be a s-t cut.

B VT N (O S

eccut(A,B) eScut(B,A)

Notation: |f| = f°U{(A) - f"(A)

Max flow = Min cut

* Ford-Fulkerson terminates when there is no path s-t in the
residual graph G;

* The set of nodes accessible from s in G; defines a cutin G
fl=1"(A) - f"(A)

= Y flo- Y f

eScut(A,B) eScut(B,A)

* Ford-Fulkerson flow = E c(e)-0
eCcut(A,B)
= capacity of cut(A,B)

Example: Min Cut

Note: All edges have a capacity of 1.

Not a cut! min cut!

Example: Calculate Min Cut

To find a min cut compute a max flow.

Flow
AT~ L= backward
‘ ! \ forward
Residual
S t
graph

Example: Calculate Min Cut

To find the cut run BFS (or DFS) from s on the residual graph.
The reachable vertices define the (min) cut.

/— ~
’ \\ \\
. I "
Residual : C \ /I/VO \
I
graph I |
|

with DFS

'/
Min cut E S
(in GI) N

NS

Announces

e Office hours extended until 3pm today.

e Office hours (Carlos & Roman) on wednesday from 2pm to
4pm in TR3110.

 Mid-term exam scheduled at 11h30 (regular class hours) in
ADAMS Auditorium.

* One crib sheet (2 pages) allowed.

