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Techniques



Running	time

f	:	running	time	

𝛼·𝑛 :	lower	bound	on	f

𝛽·𝑛 :	upper	bound	on	f

• Running	time	is	𝛰 (n)
• Running	time	is	𝛺(n)	
⟹Running	time	is	𝛩(n)	

n0



Proofs
• Contradiction:	Given	a	proposition,	assume		opposite	
proposition	is	true,	and	then	shows	that	it	leads	to	a	
contradiction.

• Cut	and	paste: Used	with	graphs	and	greedy	algorithms.	
Often	used	to	prove	an	optimal	solution	of	a	problem	is	
build	from	optimal	solution	of	sub-problem	(Optimal	
substructure).	Assume	a	sub-problem	is	not	optimal,	and	
replace	with	optimal	solution	to	show	a	contradiction.

• Loop	invariants: Used	to	prove	that	a	loop	structure	is	
doing	what	it	is	intended	to	do.	You	must	specify:
§ Loop	invariant	property
§ Initialization
§ Maintenance
§ Termination



Optimal	substructure
Lemma
Any	subpath of	a	shortest	path	is	a	shortest	path.

Proof:

Suppose	this	path	p is	a	shortest	path	from	u to	v.
Then	δ(u,v)	=	w(p)	=	w(pux)	+	w(pxy)	+	w(pyv).
Now	suppose	there	exists	a	shorter	path	x								y.
Then	w(p’xy)<w(pxy).		w(pux)	+	w(p’xy)	+	w(pyv)	<	w(pux)	+	w(pxy)	+	w(pyv)	
Contradiction of	the	hypothesis	that	p is	the	shortest	path!

p’xy

u x y v

pxy

p’xy



Hashing



Resolution	by	chaining
• Insertion	time	in	O(1)	if	we	insert	at	the	head	of	the	list.
• Search	time	in	O(1)	time	in	average,	but	not	the	worst	case.

Hash	function:	 h :U→ {0,1,...,m−1}

h(k1)

h(k4)



Open	addressing

index key
1 355
2
3 567
4 233
5
6 799
7

h(282,0)=3

h(282,1)=1

h(282,2)=5

282

Note:	Search	must	use	the	same	probe	sequence.	

Illustration:	Where	to	store	key	282?

Full!

✔



Linear	&	Quadratic	probing

h(k, i) = h '(k)+ i( )modm

h(k, i) = h '(k)+ c1 ⋅ i+ c2 ⋅ i
2( )modm

Note:	tendency	to	create	clusters.

Remarks:
• We	must	ensure	that	we	have	a	full	permutation	of	⟨

0,	…	,	m-1	⟩.
• Secondary	clustering:	2 distinct	keys	have	the	same	

hʹ	value,	if	they	have	the	same	probe	sequence.	

Linear	probing:

Quadratic	probing:



Trees



Rotations

y
x

A B

C

x
y

CB

A

Right	rotation

Left	rotation

Rotations:
• Change	tree	structure
• Preserve	the	BST	property.



Example:	right	rotation	at	y

y
x

A B

C

1 y
x

A B

C

2

x
y

CB

A
4

x
y

CB

A

3



BST	&	Self-balanced	trees

x

|hleft-hright|≤1

26

17

30 47

38 50

NilNil Nil

Nil

Nil

Nil Nil

41

AVL	trees Red-black	trees

• BST	(used	to	store	keys)
• Running	time	dependent	of	the	height	⟹ we	try	to	keep	the	trees	balanced.	
• AVL	&	Red-Black	trees	are	2	types	of	self-balanced	trees
• Challenge	is	to	keep	the	AVL	or	Red-Black	tree	property	valid	after	each	operation.



Insert	RB	Tree	– Example	
7

3

10 20

11 22

NilNil NilNil

Nil Nil

18

Nil
8

NilNil



Insert	RB	Tree	– Example	
7

3

10 20

11 22

NilNilNil

Nil Nil

18

Nil

Insert(T,15)

15

NilNil

8

NilNil



Insert	RB	Tree	– Example	
7

3

10 20

11 22

NilNilNil

Nil Nil

18

Nil

Recolor	10,	8	&11

15

NilNil

8

NilNil



Insert	RB	Tree	– Example	
7

3

10 20

11 22

NilNilNil

Nil Nil

18

Nil

15

NilNil

8

NilNil

Right	rotate	at	18



Insert	RB	Tree	– Example	
7

3

18Nil Nil

10

20

22

NilNil

Nil

Right	rotate	at	18	(parent	&	child	with	conflict	are	aligned)

11

Nil 15

NilNil

8

NilNil



Insert	RB	Tree	– Example	
7

3

18Nil Nil

10

20

22

NilNil

Nil

Left	rotate	at	7

11

Nil 15

NilNil

8

NilNil



Insert	RB	Tree	– Example	

7

3

Nil Nil

10

Left	rotate	at	7

18

20

22

NilNil

Nil

11

Nil 15

NilNil

8

NilNil



Insert	RB	Tree	– Example	

7

3

Nil Nil

10

Recolor	10	&	7	(root	must	be	black!)

18

20

22

NilNil

Nil

11

Nil 15

NilNil

8

NilNil



Case	1	– uncle	y is	red

• p[p[z]]	(zʼs	grandparent)	must	be	black,	since	z	and	p[z]	are	both	red	
and	there	are	no	other	violations	of	property	4.
•Make	p[z]	and	y	black	Þ now	z	and	p[z]	are	not	both	red.	But	
property	5	might	now	be	violated.
•Make	p[p[z]]	red	Þ restores	property	5.
• The	next	iteration	has	p[p[z]]	as	the	new	z	(i.e.,	z	moves	up	2	levels).

z is	a	right	child	here.
Similar	steps	if	z is	a	
left	child.

C

A D

B
a

b g

d e
z

yp[z]

p[p[z]]

a

b g

d e

new z
C

A D

B



Case	2	– y	is	black,	z is	a	right	child

• Left	rotate	around	p[z],	p[z]	and	z switch	roles	Þ now	z	is	a	left	
child,	and	both	z	and	p[z]	are	red.
• Takes	us	immediately	to	case	3.

C

A

B
a

b g

z

yp[z]
C

B

A

a b

g(new)	z

y(new)	p[z]
D D

δ λ δ λ



Case	3	– y	is	black,	z is	a	left	child

•Make	p[z]	black	and	p[p[z]]	red.
• Then	right	rotate	right	on	p[p[z]]	(in	order	to	maintain	property	4).
• No	longer	have	2	reds	in	a	row.
• p[z]	is	now	black	Þ no	more	iterations.

C

B

A

a b

g

yp[z]

z

D

B

A

a b g

C

D
δ λ

δ λ

p[p[z]]

z

p[z]



Greedy	algorithms



Activity-selection	Problem

0									1										2										3									4										5									6										7									8										9								10

s6 a6

a5

a4

a3

a2

a1 a7
s1

s2

s3

s4

s5

s7f1

f2

f3

f4

f5

f6

f7

i 1 2 3 4 5 6 7
si 0 1 2 4 5 6 8
fi 2 3 5 6 9 9 10

Activities	sorted	by	finishing	time.
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Activity-selection	Problem
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Graph	Algorithms



Topological	Sort
Want	to	“sort” a	directed	acyclic	graph	(DAG).

B

E

D

C

A

C EDA B

Think	of	original	DAG	as	a	partial	order.

Want	a	total	order that	extends	this	partial	order.



Example	1

Linked	List:

A B D

C E

1/



Example	1

Linked	List:

A B D

C E

1/

2/



Example	1

Linked	List:

A B D

C E

1/

2/3

E

2/3



Example	1

Linked	List:

A B D

C E

1/4

2/3

E

2/31/4

D



Example	1

Linked	List:

A B D

C E

1/4

2/3

E

2/31/4

D

5/



Example	1

Linked	List:

A B D

C E
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Example	1

Linked	List:

A B D

C E

1/4

2/3

E

2/31/4

D

5/

6/7

6/7

C



Example	1

Linked	List:

A B D

C E

1/4

2/3

E

2/31/4

D

5/8

6/7

6/7

C

5/8

B



Example	1

Linked	List:

A B D

C E

1/4

2/3

E

2/31/4

D

5/8

6/7

6/7

C

5/8

B

9/



Example	1

Linked	List:

A B D

C E

1/4

2/3

E

2/31/4

D

5/8

6/7

6/7

C

5/8

B

9/10

9/10

A



Minimum	Spanning	Trees



Minimum	Spanning	Tree	(MST)

a

b

c

e

d

f h

g

i

10		

12

9

8																

7

3 3

1

8

5

6

2

11

9

• It	has	|V	|	−	1	edges.
• It	has	no	cycles.
• It	might	not	be	unique.



Definitions

a

b

c

e

d

f h

g

i

10

12

9

8

7
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1

8

5

6

2

11

9

cut partitions	vertices	into
disjoint	sets,	S and	V – S.

S V	- S

This	edge	crosses the	cut.
(one	endpoint	is	in	S and	
the	other	is	in	V	– S.)

A	light edge	crossing	
cut	(may	not	be	unique)

A	cut	respects A	if	
and	only	if	no	
edge	in	A	crosses	
the	cut.

b

a

c

e



Kruskalʼs	Algorithm

1. Starts	with	each	vertex	in	its	own	component.
2. Repeatedly	merges	two	components	into	one	by	choosing	a	

light	edge	that	connects	them	(i.e.,	a	light	edge	crossing	the	
cut	between	them).

3. Scans	the	set	of	edges	in	monotonically	increasing	order	by	
weight.

4. Uses	a	disjoint-set	data	structure	to	determine	whether	an	
edge	connects	vertices	in	different	components.

Note:	We	also	covered	the	Prim’s	algorithm	to	calculate	a	MST.	
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Reject!
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Proof:
Let	T	be	a	MST	that	includes	A.
Case	1: (u,	v)	in	T.	Weʼre	done.
Case	2: (u,	v)	not	in	T.		We	have	the	following:	

u y

x

v

edge	in	A

cut

We	show	
edges	in	T

Safe	edge

Theorem	1: Let	(S,	V-S)	be	any	cut	that	respects	A,	and	let	(u,	v)	 be	
a	light	edge	crossing	(S,	V-S).	Then,	(u,	v)	is	safe	for	A.

(x,	y)	crosses	cut.
Let	T´ =	T	- {(x,	y)}	È {(u,	v)}.
Because	(u,	v)	is	light	for	cut,
w(u,	v)	£ w(x,	y).	Thus,	
w(T´)	=	w(T)-w(x,	y)+w(u,	v)£w(T).
Hence,	T´ is	also	a	MST.	
So,	(u,	v)	is	safe	for	A.



Single	source	shortest	paths



Relaxing	an	edge

RELAX(u,v,w)
if d[v]>d[u]+w(u,v) then
d[v] ß d[u]+w(u,v)
π[v]ßu

4 9
3 vu

4 7

Relax

4 6
3 vu

4 6



Dijkstra’s algorithm

DIJKSTRA(V, E,w,s)
INIT-SINGLE-SOURCE(V,s)
S ← ∅
Q ← V
while Q ≠ ∅ do

u ← EXTRACT-MIN(Q)
S ← S ∪ {u}
for each vertex v ∈ Adj[u] do

RELAX(u,v,w)
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Dijkstra’s algorithm

DIJKSTRA(V, E,w,s):
INIT-SINGLE-SOURCE(V,s)
S ← ∅
Q ← V
while Q ≠ ∅ do

u ← EXTRACT-MIN(Q)
S ← S ∪ {u}
for each vertex v∈Adj[u] do

RELAX(u,v,w)

Loop	Invariant:
At	the	start	of	each	iteration:
d[v]	=	δ(s,v)	∀v	∈ S.

• Variable	used	to	calculate	shortest	path:	d
• Property	used	to	calculate	shortest	path:	d[v]	=	δ(s,v)	

Initialization
Initially,	S	=	∅⟹ True	

Termination:
Stops	when	Q=∅ ⇒
d[v]	=	δ(s,v)	∀ v	∈ V
(by	Loop	Invariant	Property)

Maintenance:
Show	that	d[u]	=	δ(s,u)	when	
u	is	added	to	S	in	each	
Iteration.



Bipartite	graphs



Example
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1st 2nd 3rd

Xavier Alphabet Baidu Campbell

Yulia Baidu Alphabet Campbell

Zoran Alphabet Baidu Campbell

Candidates’	preferences
1st 2nd 3rd

Alphabet Yulia Xavier Zoran

Baidu Xavier Yulia Zoran

Campbell Xavier Yulia Zoran

Companies’	preferences

Q:	Is	X-C,	Y-B,	Z-A	a	good	assignment?

Candidates



Example

Z

X

Y

A

C

B Companies

1st 2nd 3rd

Xavier Alphabet Baidu Campbell

Yulia Baidu Alphabet Campbell

Zoran Alphabet Baidu Campbell

Candidates’	preferences
1st 2nd 3rd

Alphabet Yulia Xavier Zoran

Baidu Xavier Yulia Zoran

Campbell Xavier Yulia Zoran

Companies’	preferences

Q:	Is	X-C,	Y-B,	Z-A	a	good	assignment?
A:	No!	Xavier	and	Baidu	both	prefer	to	be	matched	together…

Candidates



Gale-Shapley	algorithm
For	each	α∈A,	let	pref[α]	be	the	ordering	of	its	preferences	in	B
For	each	β∈B,	let	pref[β]	be	the	ordering	of	its	preferences	in	A	
Let	matching	be	a	set	of	crossing	edges	between	A	and	B	

matching¬Æ
while there	is	α∈A	not	yet	matched	do

β¬pref[α].removeFirst()
if	β	not	yet	matched	then

matching¬matchingÈ{(α,β)}
else

γ¬β’s	current	match	
if β	prefers	α	over	γ then

matching¬matching-{(γ,β)}È{(α,β)}
return matching
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Flow	networks



Definitions
Positive	flow:	A	function	p	:	V	× V	→	R	satisfying.

Capacity	constraint:	For	all	u,	v	∈ V,	0	≤	p(u,	v)	≤	c(u,	v),	��

Flow	conservation:	For	all	u	∈ V	−	{s,	t},	 p(v,u)
v∈V
∑ = p(u,v)

v∈V
∑

Flow	into	u Flow	out	of	u

1/2

Positive	flow Capacity

0/2 2/2
2/3

1/1 1/2
Flow	in:	0	+	2	+	1	=	3
Flow	out:	2	+	1	=	3



s

1/3

2/2

1/3

2/2

2/3

0/1
0/21/3

1/1

2/3

t1/2

• Flow	out	of	source	s ==	Flow	in	the	sink	t

• Flow	=	

• Objective: find	maximum	flow	

f (s,v)
v∈V
∑

Max	flow



Example
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Flow	in	Gf
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Example

G

Gf s

2

0

2

2

2
0

t

2

0

s

0/2

3/3

0/2

0/3

3/4
3/3

t

0/2

s

2/2

3/3

2/2

2/3

1/4
3/3

t

2/2

|f|=3

|f|=5

β=2

Question:	How	do	we	know	
if	a	flow	is	maximum?



Flow	through	a	cut

Claim:	Given	a	flow	network.	Let	f	be	a	flow	and	A,	B	be	a	s-t	cut.	
Then,

Notation:		|f|	=	fout(A) – fin(A)

f = f (e)− f (e)
e∈cut (B,A)
∑

e∈cut (A,B)
∑

t
3

s

5

1

2

4A

B

1

|f|=9-4=5



Max	flow	=	Min	cut

• Ford-Fulkerson	terminates	when	there	is	no	path	s-t	in	the	
residual	graph	Gf

• The	set	of	nodes	accessible	from	s in	Gf defines	a	cut	in	G

• Ford-Fulkerson	flow	=		

=	capacity	of	cut(A,B)

c(e)− 0
e∈cut (A,B)
∑

f = f out (A)− f in (A)

= f (e)
e∈cut (A,B)
∑ − f (e)

e∈cut (B,A)
∑



Example:	Min	Cut

s t

s t

s t

s t

Not	a	cut!

Not	a	cut!

Not	a	min	cut!

min	cut!

Note:	All	edges	have	a	capacity	of	1.



Example:	Calculate	Min	Cut

s t

To	find	a	min	cut	compute	a	max	flow.

s t

backward
forward

1

0 0 0 0

1

1

1 1

1

Flow

Residual
graph



Example:	Calculate	Min	Cut
To	find	the	cut	run	BFS	(or	DFS)	from	s	on	the	residual	graph.
The	reachable	vertices	define	the	(min)	cut.

Min	cut
(in	G!)

Residual
graph
with	DFS

s t

s t



Announces

• Office	hours	extended	until	3pm	today.

• Office	hours	(Carlos	&	Roman)	on	wednesday from	2pm	to	
4pm	in	TR3110.

• Mid-term	exam	scheduled	at	11h30	(regular	class	hours)	in	
ADAMS	Auditorium.

• One	crib	sheet	(2	pages)	allowed.


