
COMP251:	Topological	Sort	&	
Strongly	Connected	Components

Jérôme Waldispühl
School	of	Computer	Science

McGill	University
Based	on	(Cormen et	al.,	2002)

Based	on	slides	from	D.	Plaisted (UNC)

We	prefer	to	use	an	adjacency	matrix	vs	a	adjacency	list	to	
represent	a	graph	when:

• The	graph	is	sparse
• The	graph	is	dense
• The	graph	is	a	weighted	graph
• The	graph	is	directed✗

✓
✗

✗

Let	G	be	a	directed	graph.	We	explore	G	using	the	BFS	algorithm.	
Which	of	the	following	assertions	are	true?

• The	best	case	running	time	of	BFS	is	Ω(V+E)
• All	vertices	at	distance	d	from	the	source	s	are	visited	before	vertices	at	

distance	d+1
• All	vertices	of	G	are	visited	even	if	G	has	disconnected	components
• The	source	s	can	be	any	vertex	of	G

✓ (if	connected)

✓

✓
✗

Recap:	Breadth-first	Search

• Input:	Graph	G	= (V, E),	either	directed	or	undirected,	
and	source	vertex	s	Î V.

• Output:	
– d[v]	= distance	(smallest	#	of	edges,	or	shortest	path)	from	s	
to	v,	for	all	v Î V.	d[v]	= ¥ if	v is	not	reachable	from	s.

– p[v]	= u	such	that	(u, v) is	last	edge	on	shortest	path	s						 v.
• u is	v’s	predecessor.

– Builds	breadth-first	tree	with	root	s that	contains	all	
reachable	vertices.

Recap:	BFS	Example

1 0

1 2 3

2 3

2

r s t u

v w x y

Q: Æ

Recap:	Depth-first	Search

• Input:	G	= (V, E),	directed	or	undirected.	No	source	
vertex	given.

• Output:
– 2	timestamps on	each	vertex.	Integers	between	1	and	2|V|.

• d[v]	= discovery	time	(v	turns	from	white	to	gray)
• f	[v]	= finishing	time (v turns	from	gray	to	black)

– p[v]	:	predecessor	of	v	=	u,	such	that	v was	discovered	during	
the	scan	of	u’s	adjacency	list.

• Uses	the	same	coloring	scheme	for	vertices	as	BFS.

Recap:	DFS	Example

1/8

4/5 3/6 10/11

2/7 9/12

u v w

x y z

BF C

B

Starting	time
d(x)

Finishing	time
f(x)

Parenthesis	Theorem
Theorem	1:
For	all	u, v,	exactly	one	of	the	following	holds:
1.	d[u]	< f	[u]	< d[v]	< f	[v]	or	d[v]	< f	[v]	< d[u]	< f	[u]	and	neither	u	

nor	v is	a	descendant	of	the	other.
2.	d[u]	< d[v]	< f	[v]	< f	[u]	and	v is	a	descendant	of	u.
3.	d[v]	< d[u]	< f	[u]	< f	[v]	and	u	is	a	descendant	of	v.

w So	d[u]	< d[v]	< f	[u]	< f	[v]	cannot	happen.
w Like	parentheses:

w OK:	()	[]	([])	[()]
w Not	OK:	([)]	[(])

Corollary
v is	a	proper	descendant	of	u	if	and	only	if	d[u]	< d[v]	< f	[v]	< f	[u].

Example	(Parenthesis	Theorem)

3/6

4/5 7/8 12/13

2/9 1/10

y z s

x w v

B F

14/15

11/16

u

t

C C C

C B

(s	(z	(y	(x	x)	y)	(w	w)	z)	s)	(t	(v	v)	(u	u)	t)

White-path	Theorem

Theorem 2
v is	a	descendant	of	u	if	and	only	if	at	time	d[u],	there		is		a	path	
u	 v	consisting	of	only	white	vertices.	(Except	for	u,	which	was	
just	colored	gray.)		

Example	(DFS)

1/

u v w

x y z

v,	y,	and	x	are	descendants	of	u.	

Classification	of	Edges
• Tree	edge: in	the	depth-first	forest.	Found	by	exploring	

(u, v).
• Back	edge: (u, v),	where	u	is	a	descendant	of	v (in	the	
depth-first	tree).

• Forward	edge: (u, v),	where	v is	a	descendant	of	u,	but	
not	a	tree	edge.

• Cross	edge: any	other	edge.	Can	go	between	vertices	in	
same	depth-first	tree	or	in	different	depth-first	trees.

Theorem	3
In	DFS	of	an	undirected	graph,	we	get	only	tree	and	back	edges.	
No	forward	or	cross	edges.

Example	(DFS)

1/8

4/5 3/6 10/11

2/7 9/12

u v w

x y z

BF C

B

Back	edge Cross	edge

Forward	edge Tree	edge

Identification	of	Edges

• Edge	type	for	edge	(u,	v)	can	be	identified	when	it	is	first	
explored	by	DFS.	

• Identification	is	based	on	the	color	of	v.
– White	– tree	edge.
– Gray	– back	edge.
– Black	– forward	or	cross	edge.

Directed	Acyclic	Graph

• DAG	– Directed	graph	with	no	cycles.
• Good	for	modeling	processes	and	structures	that	
have	a	partial	order:
– a	> b	and	b	> c	Þ a	> c.
– But	may	have	a	and	b	such	that	neither	a	> b	nor	
b	> a.

• Can	always	make	a	total	order (either	a	> b	or	b	> a	
for	all	a	¹ b)	from	a	partial	order.	

Example
DAG	of	dependencies	for	putting	on	goalie	equipment.

socks shorts

hose

pants

skates

leg	pads

T-shirt

chest	pad

sweater

mask

catch	glove

blocker

batting	glove

Characterizing	a	DAG

Proof:
• Þ:	Show	that	back	edge	Þ cycle.
– Suppose	there	is	a	back	edge	(u, v).	Then	v is	ancestor	
of	u	in	depth-first	forest.

– Therefore,	there	is	a	path	v u,	so	v u		 v is	a	
cycle.								

Lemma	1
A	directed	graph	G is	acyclic	iff a	DFS	of	G	yields	no	back	edges.

v u
T T T

B

Characterizing	a	DAG

Proof	(Contd.):
• Ü :	Show	that	a	cycle	implies	a	back	edge.
– c	:	cycle	in	G,	v :	first	vertex	discovered	in	c,	(u, v) :

preceding edge in c.
– At	time	d[v],	vertices	of	c	form	a	white	path	v						u.	
– By	white-path	theorem,	u is	a	descendent	of	v in	
depth-first	forest.

– Therefore,	(u, v) is	a	back	edge.

Lemma	1
A	directed	graph	G is	acyclic	iff a	DFS	of	G	yields	no	back	edges.

v u
T T T

B

Topological	Sort
Want	to	“sort” a	directed	acyclic	graph	(DAG).

B

E

D

C

A

C EDA B

Think	of	original	DAG	as	a	partial	order.

Want	a	total	order that	extends	this	partial	order.

Topological	Sort

• Performed	on	a	DAG.
• Linear	ordering	of	the	vertices	of	G such	that	if	(u,	v)	Î E,	

then	u appears	somewhere	before	v.

Topological-Sort	(G)
1. call	DFS(G) to	compute	finishing	times	f	[v]	for	all	v Î V
2. as	each	vertex	is	finished,	insert	it	onto	the	front	of	a	linked	list
3. return	the	linked	list	of	vertices

Time: Q(V	+ E).

Example	1

Linked	List:

A B D

C E

1/

Example	1

Linked	List:

A B D

C E

1/

2/

Example	1

Linked	List:

A B D

C E

1/

2/3

E

2/3

Example	1

Linked	List:

A B D

C E

1/4

2/3

E

2/31/4

D

Example	1

Linked	List:

A B D

C E

1/4

2/3

E

2/31/4

D

5/

Example	1

Linked	List:

A B D

C E

1/4

2/3

E

2/31/4

D

5/

6/

Example	1

Linked	List:

A B D

C E

1/4

2/3

E

2/31/4

D

5/

6/7

6/7

C

Example	1

Linked	List:

A B D

C E

1/4

2/3

E

2/31/4

D

5/8

6/7

6/7

C

5/8

B

Example	1

Linked	List:

A B D

C E

1/4

2/3

E

2/31/4

D

5/8

6/7

6/7

C

5/8

B

9/

Example	1

Linked	List:

A B D

C E

1/4

2/3

E

2/31/4

D

5/8

6/7

6/7

C

5/8

B

9/10

9/10

A

Example	2

socks shorts

hose

pants

skates

leg	pads

T-shirt

chest	pad

sweater

mask

catch	glove

blocker

batting	glove
26	socks
24	shorts
23	hose
22	pants
21	skates
20	leg	pads
14	t-shirt
13	chest	pad
12	sweater
11	mask
6	batting	glove
5	catch	glove
4	blocker

25/26 15/24

16/23

17/22

18/21

19/21

7/14 1/6

8/13

2/5

10/11

3/4

9/12

Correctness	Proof
• Just	need	to	show	if	(u, v) Î E,	then	f	[v]	< f	[u].
• When	we	explore	(u, v),	what	are	the	colors	of	u	and	v?
– u	is	gray.
– Is	v gray,	too?

No,	because	then	v would	be	ancestor	of	u.
Þ (u, v) is	a	back	edge.
Þ contradiction	of	Lemma	1	(DAG	has	no	back	edges).

– Is	v white?
• Then	becomes	descendant	of	u.
• By	parenthesis	theorem,	d[u]	< d[v]	< f	[v]	< f	[u].

– Is	v black?
• Then	v is	already	finished.
• Since	we’re	exploring	(u, v),	we	have	not	yet	finished	u.
• Therefore,	f	[v]	< f	[u].

• G is	strongly	connected	if	every	pair	(u,	v)	of	
vertices	in	G	is	reachable	from	one	another.

• A	strongly	connected	component	(SCC)	of	G	is	
a	maximal	set	of	vertices	C	Í V	such	that	for	
all	u, v Î C,	both	u			 v and	v u exist.

Strongly	Connected	Components

Component	Graph

• GSCC = (VSCC, ESCC).
• VSCC has	one	vertex	for	each	SCC	in	G.
• ESCC has	an	edge	if	there is	an	edge	between	
the	corresponding	SCC’s	in	G.

• GSCC	for	the	example	considered:

GSCC	is	a	DAG

Proof:
• Suppose	there	is	a	path	v¢ v in	G.	
• Then	there	are	paths	u			 u¢ v¢ and	v¢ v u	in	G.	
• Therefore,	u	and	v¢ are	reachable	from	each	other,	so	
they	are	not	in	separate	SCC’s.

Lemma	2
Let	C	and	C¢ be	distinct	SCC’s	in	G,	let	u, v Î C,	u¢, v¢ Î C¢,	and	
suppose	there	is	a	path	u						 u¢ in	G.	Then	there	cannot	also	be	a	path	
v¢ v in	G.

Transpose	of	a	Directed	Graph

• GT = transpose of	directed	G.
– GT = (V, ET),	ET = {(u, v) :	(v, u) Î E}.
– GT is	G	with	all	edges	reversed.

• Can	create	GT in	Θ(V	+ E) time	if	using	
adjacency	lists.

• G	and	GT have	the	same	SCC’s.	(u	and	v are	
reachable	from	each	other	in	G	if	and	only	if	
reachable	from	each	other	in	GT.)

Algorithm	to	determine	SCCs

SCC(G)
1. call	DFS(G) to	compute	finishing	times	f	[u]	for	all	u
2. compute	GT

3. call	DFS(GT),	but	in	the	main	loop,	consider	vertices	in	order	of	
decreasing	f	[u]	(as	computed	in	first	DFS)

4. output	the	vertices	in	each	tree	of	the	depth-first	forest	formed	
in	second	DFS	as	a	separate	SCC

Time: Q(V	+ E).

Example

a b c

e f g h

d
G

Example

13/14

12/15 3/4 2/7

11/16 1/10

a b c

e f g

5/6

8/9

h

d
G

Example

13/14

12/15 3/4 2/7

11/16 1/10

a b c

e f g

5/6

8/9

h

d
G

Example

a b c

e f g h

d
GT

(b	(a	(e	e)	a)	b)	(c	(d	d)	c)	(g	(f	f)	g) (h)

Example

cd

hfg

abe

How	does	it	work?
• Idea:
– By	considering	vertices	in	second	DFS	in	decreasing	order	
of	finishing	times	from	first	DFS,	we	are	visiting	vertices	of	
the	component	graph	in	topologically	sorted	order.

– Because	we	are	running	DFS	on	GT,	we	will	not	be	visiting	
any	v from	a	u,	where	v	and	u are	in	different	components.

• Notation:
– d[u]	and	f	[u]	always	refer	to	first	DFS.
– Extend	notation	for	d	and	f	to	sets	of	vertices	U	Í V:
– d(U) = minuÎU{d[u]} (earliest	discovery	time)
– f	(U) = maxuÎU{ f	[u]} (latest	finishing	time)

SCCs	and	DFS	finishing	times

Proof:
• Case	1:	d(C) < d(C¢)

– Let	x	be	the	first	vertex	discovered	
in	C.	

– At	time	d[x],	all	vertices	in	C	and	C¢
are	white.	Thus,	there	exist	paths	of	
white	vertices	from	x	to	all	vertices	in	
C	and	C¢.

– By	the	white-path	theorem,	all	
vertices	in	C	and	C¢ are	descendants	
of	x	in	depth-first	tree.

– By	the	parenthesis	theorem,	
f	[x]	= f	(C) > f(C¢).

Lemma	3
Let	C	and	C¢ be	distinct	SCC’s	in	G	= (V, E).	Suppose	there	is	an	edge	
(u, v) Î E	such	that	u	Î C	and	v ÎC¢.	Then	f	(C) > f	(C¢).

C C¢

u v

x

SCCs	and	DFS	finishing	times

Proof:
• Case	2:	d(C) > d(C¢)

– Let	y	be	the	first	vertex	discovered	in	C¢.	
– At	d[y],	all	vertices	in	C¢ are	white	and	there	

is	a	white	path	from	y	to	each	vertex	in	C¢ Þ
all	vertices	in	C¢ become	descendants	of	y.	
Again,	f	[y]	= f	(C¢).

– At	d[y],	all	vertices	in	C	are	also	white.
– By	lemma	2,	since	there	is	an	edge	(u, v),	we	

cannot	have	a	path	from	C¢ to	C.
– So	no	vertex	in	C	is	reachable	from	y.
– Therefore,	at	time	f	[y],	all	vertices	in	C	are	

still	white.
– Therefore,	for	all	w Î C,	f	[w]	> f	[y],	which	

implies	that	f	(C) > f	(C¢).

Lemma	4
Let	C	and	C¢ be	distinct	SCC’s	in	G	= (V, E).	Suppose	there	is	an	edge	
(u, v) Î E	such	that	u	Î C	and	v ÎC¢.	Then	f	(C) > f	(C¢).

C C¢

u v

yx

SCCs	and	DFS	finishing	times

Proof:
• (u, v) Î ET	Þ (v, u) Î E.	
• Since	SCC’s	of	G	and	GT are	the	same,		f(C¢) > f	

(C), by Lemma.

Corollary	1
Let	C	and	C¢ be	distinct	SCC’s	in	G	= (V, E).	Suppose	there	is	an	
edge	(u, v) Î ET,	where	u	Î C	and	v Î C¢.	Then	f(C) < f(C¢).

Correctness	of	SCC

• When	we	do	the	second	DFS,	on	GT,	start	with	
SCC	C	such	that	f(C) is	maximum.
– The	second	DFS	starts	from	some	x	Î C,	and	it	
visits	all	vertices	in	C.	

– Corollary	1	says	that	since	f(C) > f	(C¢) for	all	C ¹
C¢, there	are	no	edges	from	C	to	C¢ in	GT.

– Therefore,	DFS	will	visit	only	vertices	in	C.
–Which	means	that	the	depth-first	tree	rooted	at	x	
contains	exactly	the	vertices	of	C.

Correctness	of	SCC
• The	next	root	chosen	in	the	second	DFS	is	in	SCC	C¢
such	that	f	(C¢) is	maximum	over	all	SCC’s	other	than	
C.	
– DFS	visits	all	vertices	in	C¢,	but	the	only	edges	out	of		C¢ go	
to	C,	which	we’ve	already	visited.

– Therefore,	the	only	tree	edges	will	be	to	vertices	in	C¢.
• We	can	continue	the	process.
• Each	time	we	choose	a	root	for	the	second	DFS,	it	can	
reach	only
– vertices	in	its	SCC—get	tree	edges	to	these,
– vertices	in	SCC’s	already	visited	in	second	DFS—get	no	
tree	edges	to	these.

