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We	prefer	to	use	an	adjacency	matrix	vs	a	adjacency	list	to	
represent	a	graph	when:

• The	graph	is	sparse
• The	graph	is	dense
• The	graph	is	a	weighted	graph
• The	graph	is	directed✗

✓
✗

✗



Let	G	be	a	directed	graph.	We	explore	G	using	the	BFS	algorithm.	
Which	of	the	following	assertions	are	true?

• The	best	case	running	time	of	BFS	is	Ω(V+E)
• All	vertices	at	distance	d	from	the	source	s	are	visited	before	vertices	at	

distance	d+1
• All	vertices	of	G	are	visited	even	if	G	has	disconnected	components
• The	source	s	can	be	any	vertex	of	G

✓ (if	connected)

✓

✓
✗



Recap:	Breadth-first	Search

• Input:	Graph	G	= (V, E),	either	directed	or	undirected,	
and	source	vertex	s	Î V.

• Output:	
– d[v]	= distance	(smallest	#	of	edges,	or	shortest	path)	from	s	
to	v,	for	all	v Î V.	d[v]	= ¥ if	v is	not	reachable	from	s.

– p[v]	= u	such	that	(u, v) is	last	edge	on	shortest	path	s						 v.
• u is	v’s	predecessor.

– Builds	breadth-first	tree	with	root	s that	contains	all	
reachable	vertices.



Recap:	BFS	Example

1 0

1 2 3

2 3

2

r s t u

v w x y

Q: Æ



Recap:	Depth-first	Search

• Input:	G	= (V, E),	directed	or	undirected.	No	source	
vertex	given.

• Output:
– 2	timestamps on	each	vertex.	Integers	between	1	and	2|V|.

• d[v]	= discovery	time	(v	turns	from	white	to	gray)
• f	[v]	= finishing	time (v turns	from	gray	to	black)

– p[v]	:	predecessor	of	v	=	u,	such	that	v was	discovered	during	
the	scan	of	u’s	adjacency	list.

• Uses	the	same	coloring	scheme	for	vertices	as	BFS.



Recap:	DFS	Example

1/8

4/5 3/6 10/11

2/7 9/12

u v w

x y z

BF C

B

Starting	time
d(x)

Finishing	time
f(x)



Parenthesis	Theorem
Theorem	1:
For	all	u, v,	exactly	one	of	the	following	holds:
1.	d[u]	< f	[u]	< d[v]	< f	[v]	or	d[v]	< f	[v]	< d[u]	< f	[u]	and	neither	u	

nor	v is	a	descendant	of	the	other.
2.	d[u]	< d[v]	< f	[v]	< f	[u]	and	v is	a	descendant	of	u.
3.	d[v]	< d[u]	< f	[u]	< f	[v]	and	u	is	a	descendant	of	v.

w So	d[u]	< d[v]	< f	[u]	< f	[v]	cannot	happen.
w Like	parentheses:

w OK:	(	)	[	]	(	[	]	)	[	(	)	]
w Not	OK:	(	[	)	]	[	(	]	)

Corollary
v is	a	proper	descendant	of	u	if	and	only	if	d[u]	< d[v]	< f	[v]	< f	[u].



Example	(Parenthesis	Theorem)
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White-path	Theorem

Theorem 2
v is	a	descendant	of	u	if	and	only	if	at	time	d[u],	there		is		a	path	
u	 v	consisting	of	only	white	vertices.	(Except	for	u,	which	was	
just	colored	gray.)		



Example	(DFS)

1/

u v w

x y z

v,	y,	and	x	are	descendants	of	u.	



Classification	of	Edges
• Tree	edge: in	the	depth-first	forest.	Found	by	exploring	

(u, v).
• Back	edge: (u, v),	where	u	is	a	descendant	of	v (in	the	
depth-first	tree).

• Forward	edge: (u, v),	where	v is	a	descendant	of	u,	but	
not	a	tree	edge.

• Cross	edge: any	other	edge.	Can	go	between	vertices	in	
same	depth-first	tree	or	in	different	depth-first	trees.

Theorem	3
In	DFS	of	an	undirected	graph,	we	get	only	tree	and	back	edges.	
No	forward	or	cross	edges.



Example	(DFS)

1/8

4/5 3/6 10/11

2/7 9/12

u v w

x y z

BF C

B

Back	edge Cross	edge

Forward	edge Tree	edge



Identification	of	Edges

• Edge	type	for	edge	(u,	v)	can	be	identified	when	it	is	first	
explored	by	DFS.	

• Identification	is	based	on	the	color	of	v.
– White	– tree	edge.
– Gray	– back	edge.
– Black	– forward	or	cross	edge.



Directed	Acyclic	Graph

• DAG	– Directed	graph	with	no	cycles.
• Good	for	modeling	processes	and	structures	that	
have	a	partial	order:
– a	> b	and	b	> c	Þ a	> c.
– But	may	have	a	and	b	such	that	neither	a	> b	nor	
b	> a.

• Can	always	make	a	total	order (either	a	> b	or	b	> a	
for	all	a	¹ b)	from	a	partial	order.	



Example
DAG	of	dependencies	for	putting	on	goalie	equipment.

socks shorts

hose

pants

skates

leg	pads

T-shirt

chest	pad

sweater

mask

catch	glove

blocker

batting	glove



Characterizing	a	DAG

Proof:
• Þ:	Show	that	back	edge	Þ cycle.
– Suppose	there	is	a	back	edge	(u, v).	Then	v is	ancestor	
of	u	in	depth-first	forest.

– Therefore,	there	is	a	path	v u,	so	v  u		 v is	a	
cycle.								

Lemma	1
A	directed	graph	G is	acyclic	iff a	DFS	of	G	yields	no	back	edges.

v u
T T T

B



Characterizing	a	DAG

Proof	(Contd.):
• Ü :	Show	that	a	cycle	implies	a	back	edge.
– c	:	cycle	in	G,	v :	first	vertex	discovered	in	c,	(u, v) : 

preceding edge in c. 
– At	time	d[v],	vertices	of	c	form	a	white	path	v						u.	
– By	white-path	theorem,	u is	a	descendent	of	v in	
depth-first	forest.

– Therefore,	(u, v) is	a	back	edge.

Lemma	1
A	directed	graph	G is	acyclic	iff a	DFS	of	G	yields	no	back	edges.

v u
T T T

B



Topological	Sort
Want	to	“sort” a	directed	acyclic	graph	(DAG).

B

E

D

C

A

C EDA B

Think	of	original	DAG	as	a	partial	order.

Want	a	total	order that	extends	this	partial	order.



Topological	Sort

• Performed	on	a	DAG.
• Linear	ordering	of	the	vertices	of	G such	that	if	(u,	v)	Î E,	

then	u appears	somewhere	before	v.

Topological-Sort	(G)
1. call	DFS(G) to	compute	finishing	times	f	[v]	for	all	v Î V
2. as	each	vertex	is	finished,	insert	it	onto	the	front	of	a	linked	list
3. return	the	linked	list	of	vertices

Time: Q(V	+ E).



Example	1

Linked	List:

A B D

C E

1/



Example	1

Linked	List:

A B D

C E

1/

2/



Example	1

Linked	List:

A B D

C E

1/

2/3

E

2/3



Example	1

Linked	List:

A B D

C E

1/4

2/3

E

2/31/4

D



Example	1

Linked	List:

A B D

C E

1/4

2/3

E

2/31/4

D

5/



Example	1

Linked	List:

A B D

C E

1/4

2/3

E

2/31/4

D

5/

6/



Example	1

Linked	List:

A B D

C E

1/4

2/3

E

2/31/4

D

5/

6/7

6/7

C



Example	1

Linked	List:

A B D

C E

1/4

2/3

E

2/31/4

D

5/8

6/7

6/7

C

5/8

B



Example	1

Linked	List:

A B D

C E

1/4

2/3

E

2/31/4

D

5/8

6/7

6/7

C

5/8

B

9/



Example	1

Linked	List:

A B D

C E

1/4

2/3

E

2/31/4

D

5/8

6/7

6/7

C

5/8

B

9/10

9/10

A



Example	2

socks shorts

hose

pants

skates

leg	pads

T-shirt

chest	pad

sweater

mask

catch	glove

blocker

batting	glove
26	socks
24	shorts
23	hose
22	pants
21	skates
20	leg	pads
14	t-shirt
13	chest	pad
12	sweater
11	mask
6	batting	glove
5	catch	glove
4	blocker

25/26 15/24

16/23

17/22

18/21

19/21

7/14 1/6

8/13

2/5

10/11

3/4

9/12



Correctness	Proof
• Just	need	to	show	if	(u, v) Î E,	then	f	[v]	< f	[u].
• When	we	explore	(u, v),	what	are	the	colors	of	u	and	v?
– u	is	gray.
– Is	v gray,	too?

No,	because	then	v would	be	ancestor	of	u.
Þ (u, v) is	a	back	edge.
Þ contradiction	of	Lemma	1	(DAG	has	no	back	edges).

– Is	v white?
• Then	becomes	descendant	of	u.
• By	parenthesis	theorem,	d[u]	< d[v]	< f	[v]	< f	[u].

– Is	v black?
• Then	v is	already	finished.
• Since	we’re	exploring	(u, v),	we	have	not	yet	finished	u.
• Therefore,	f	[v]	< f	[u].



• G is	strongly	connected	if	every	pair	(u,	v)	of	
vertices	in	G	is	reachable	from	one	another.

• A	strongly	connected	component	(SCC)	of	G	is	
a	maximal	set	of	vertices	C	Í V	such	that	for	
all	u, v Î C,	both	u			 v and	v    u exist.

Strongly	Connected	Components



Component	Graph

• GSCC = (VSCC, ESCC).
• VSCC has	one	vertex	for	each	SCC	in	G.
• ESCC has	an	edge	if	there is	an	edge	between	
the	corresponding	SCC’s	in	G.

• GSCC	for	the	example	considered:



GSCC	is	a	DAG

Proof:
• Suppose	there	is	a	path	v¢ v in	G.	
• Then	there	are	paths	u			 u¢ v¢ and	v¢ v u	in	G.	
• Therefore,	u	and	v¢ are	reachable	from	each	other,	so	
they	are	not	in	separate	SCC’s.

Lemma	2
Let	C	and	C¢ be	distinct	SCC’s	in	G,	let	u, v Î C,	u¢, v¢ Î C¢,	and	
suppose	there	is	a	path	u						 u¢ in	G.	Then	there	cannot	also	be	a	path	
v¢ v in	G.



Transpose	of	a	Directed	Graph

• GT = transpose of	directed	G.
– GT = (V, ET),	ET = {(u, v) :	(v, u) Î E}.
– GT is	G	with	all	edges	reversed.

• Can	create	GT in	Θ(V	+ E) time	if	using	
adjacency	lists.

• G	and	GT have	the	same	SCC’s.	(u	and	v are	
reachable	from	each	other	in	G	if	and	only	if	
reachable	from	each	other	in	GT.)



Algorithm	to	determine	SCCs

SCC(G)
1. call	DFS(G) to	compute	finishing	times	f	[u]	for	all	u
2. compute	GT

3. call	DFS(GT),	but	in	the	main	loop,	consider	vertices	in	order	of	
decreasing	f	[u]	(as	computed	in	first	DFS)

4. output	the	vertices	in	each	tree	of	the	depth-first	forest	formed	
in	second	DFS	as	a	separate	SCC

Time: Q(V	+ E).



Example

a b c

e f g h

d
G



Example

13/14

12/15 3/4 2/7

11/16 1/10

a b c

e f g

5/6

8/9

h

d
G



Example

13/14

12/15 3/4 2/7

11/16 1/10

a b c

e f g

5/6

8/9

h

d
G



Example

a b c

e f g h

d
GT

(b	(a	(e	e)	a)	b)	(c	(d	d)	c)	(g	(f	f)	g) (h)



Example

cd

hfg

abe



How	does	it	work?
• Idea:
– By	considering	vertices	in	second	DFS	in	decreasing	order	
of	finishing	times	from	first	DFS,	we	are	visiting	vertices	of	
the	component	graph	in	topologically	sorted	order.

– Because	we	are	running	DFS	on	GT,	we	will	not	be	visiting	
any	v from	a	u,	where	v	and	u are	in	different	components.

• Notation:
– d[u]	and	f	[u]	always	refer	to	first	DFS.
– Extend	notation	for	d	and	f	to	sets	of	vertices	U	Í V:
– d(U) = minuÎU{d[u]} (earliest	discovery	time)
– f	(U) = maxuÎU{ f	[u]} (latest	finishing	time)



SCCs	and	DFS	finishing	times

Proof:
• Case	1:	d(C) < d(C¢)

– Let	x	be	the	first	vertex	discovered	
in	C.	

– At	time	d[x],	all	vertices	in	C	and	C¢
are	white.	Thus,	there	exist	paths	of	
white	vertices	from	x	to	all	vertices	in	
C	and	C¢.

– By	the	white-path	theorem,	all	
vertices	in	C	and	C¢ are	descendants	
of	x	in	depth-first	tree.

– By	the	parenthesis	theorem,	
f	[x]	= f	(C) > f(C¢).

Lemma	3
Let	C	and	C¢ be	distinct	SCC’s	in	G	= (V, E).	Suppose	there	is	an	edge	
(u, v) Î E	such	that	u	Î C	and	v ÎC¢.	Then	f	(C) > f	(C¢).

C C¢

u v

x



SCCs	and	DFS	finishing	times

Proof:
• Case	2:	d(C) > d(C¢)

– Let	y	be	the	first	vertex	discovered	in	C¢.	
– At	d[y],	all	vertices	in	C¢ are	white	and	there	

is	a	white	path	from	y	to	each	vertex	in	C¢ Þ
all	vertices	in	C¢ become	descendants	of	y.	
Again,	f	[y]	= f	(C¢).

– At	d[y],	all	vertices	in	C	are	also	white.
– By	lemma	2,	since	there	is	an	edge	(u, v),	we	

cannot	have	a	path	from	C¢ to	C.
– So	no	vertex	in	C	is	reachable	from	y.
– Therefore,	at	time	f	[y],	all	vertices	in	C	are	

still	white.
– Therefore,	for	all	w Î C,	f	[w]	> f	[y],	which	

implies	that	f	(C) > f	(C¢).

Lemma	4
Let	C	and	C¢ be	distinct	SCC’s	in	G	= (V, E).	Suppose	there	is	an	edge	
(u, v) Î E	such	that	u	Î C	and	v ÎC¢.	Then	f	(C) > f	(C¢).

C C¢

u v

yx



SCCs	and	DFS	finishing	times

Proof:
• (u, v) Î ET	Þ (v, u) Î E.	
• Since	SCC’s	of	G	and	GT are	the	same,		f(C¢) > f	

(C), by Lemma.

Corollary	1
Let	C	and	C¢ be	distinct	SCC’s	in	G	= (V, E).	Suppose	there	is	an	
edge	(u, v) Î ET,	where	u	Î C	and	v Î C¢.	Then	f(C) < f(C¢).



Correctness	of	SCC

• When	we	do	the	second	DFS,	on	GT,	start	with	
SCC	C	such	that	f(C) is	maximum.
– The	second	DFS	starts	from	some	x	Î C,	and	it	
visits	all	vertices	in	C.	

– Corollary	1	says	that	since	f(C) > f	(C¢) for	all	C ¹
C¢, there	are	no	edges	from	C	to	C¢ in	GT.

– Therefore,	DFS	will	visit	only	vertices	in	C.
–Which	means	that	the	depth-first	tree	rooted	at	x	
contains	exactly	the	vertices	of	C.



Correctness	of	SCC
• The	next	root	chosen	in	the	second	DFS	is	in	SCC	C¢
such	that	f	(C¢) is	maximum	over	all	SCC’s	other	than	
C.	
– DFS	visits	all	vertices	in	C¢,	but	the	only	edges	out	of		C¢ go	
to	C,	which	we’ve	already	visited.

– Therefore,	the	only	tree	edges	will	be	to	vertices	in	C¢.
• We	can	continue	the	process.
• Each	time	we	choose	a	root	for	the	second	DFS,	it	can	
reach	only
– vertices	in	its	SCC—get	tree	edges	to	these,
– vertices	in	SCC’s	already	visited	in	second	DFS—get	no	
tree	edges	to	these.


