COMP251: Elementary graph
algorithms

Jérome Waldispuhl
School of Computer Science
McGill University
Based on (Cormen et al., 2002)

Based on slides from D. Plaisted (UNC)

The greedy choice is a property that enable us to make a locally
optimal choice at each step of the algorithm. Which of the
following assertions are true?

* |t always guarantees to return an optimal solution for any
problem where it can be applied. v

e The algorithm is usually fast. v/
* |t requires to define optimal sub-structures.

It always guarantees to return an optimal solution for any problem where it is applied.
It always guar... The algorithm is usually fast.

The algorithm i... It requires to define optimal sub-structures.

It requires to d...

7 35%
7 35%
18 90%

Consider the scheduling problem represented in the figure
above. What will be the solution returned by the greedy
algorithm introduced in class?

a/, a5, a2, a9, a3 ay a, a,
a4, al, a8, a9,a3 v
a4, a5, a6 2| | Jas 36

a4, a5, a2, a9, a6
None of these solutions 1 1 T 1 1]

a7, ab, a2, a9, a3 3 15%
a4,al1,a8,a9,a3 16 80%

a4, a5, a6 0 0%
a4, a5, a2, a9, a6 0 0%

None of these solutions 1 5%

Elements of Greedy Algorithms

No general way to tell if a greedy algorithm is optimal,
but two key ingredients are:

* Greedy-choice Property
(an optimal solution can be found at by making a locally optimal choice)

e Optimal Substructure.

Activity-selection Problem

1 2 3 4 5 6 7

s |0 1 2 4 5 6 8
f 12 3 5 6 9 9 10
Activities sorted by finishing time.
as ¢ cP
Sy @ ° ® @ f6
f3
d) ds
S, @ ® f2 Sc @ ® f5
al a4 a7
o f, | s, @ o f, | S, e o f,
0 1 2 3 4 5 6 7 8 9 10

Activity-selection Problem

1 2 3 4 5 6 7

s |0 1 2 4 5 6 8
f |12 3 5 6 9 9 10
Activities sorted by finishing time.
as ¢ cP
Sy ¢ ® ® @ f6
f3
d; ds
S, @ ® f2 Sc @ ® f5
al a4 a7
o f. | s, @ o f, | S, e o f,
0 1 2 3 4 5 6 7 8 9 10

Activity-selection Problem

1 2 3 4 5 6 7

s |0 1 2 4 5 6 8
f |12 3 5 6 9 9 10
Activities sorted by finishing time.
as S, cP
Sy ¢ ® ® ® f6
f3
S, @ ¢ f, Sc @ ® f5
al a4 a7
o f1 S, ® ® f4 S, @ ® f7
0 1 2 3 4 5 6 7 8 9 10

Activity-selection Problem

1 2 3 4 5 6 7

s |0 1 2 4 5 6 8
f 12 3 5 6 9 9 10
Activities sorted by finishing time.
as S ag
S5 ¢ @ ® -® f6
f3
d) dsg
S, @ ® f2 Sc @ ® f5
al a4 a7
o f. | s, @ o f, | S; 0 o f,
0 1 2 3 4 5 6 7 8 9 10

Graphs

* Graph G = (V, E) (a)
— V =set of vertices
— E =set of edges < (VxV) (4) f

* Types of graphs
— Undirected: edge (u, v) = (v, u); for all v, (v, v) ¢ E (No self loops.)

— Directed: (u, v) is edge from u to v, denoted as u — v. Self loops
are allowed.

— Weighted: each edge has an associated weight, given by a weight
functionw: E —> R.

— Dense: |E| =~ | V|2
— Sparse: |E| << |V|>.
* |E[=0(]V/[?)

Properties

* If (u, v) € E, then vertex v is adjacent to vertex u.
* Adjacency relationship is:
— Symmetric if G is undirected.
— Not necessarily so if G is directed.
* If Gis connected:
— There is a path between every pair of vertices.
— |E| =2 |V]| -1.
— Furthermore, if |E| = |V| —1, then G is a tree.

Vocabulary

* Ingoing edges of u: { (v,u) € E} (e.g.in(e)={(b,e), (d,e) })
e Qutgoing edges of u: { (u,v) € E } (e.g. out(d) ={(d,e) })

* |n-degree(u): | in(u) |

e Qut-degree(u): | out(u) |

Representation of Graphs

* Two standard ways.
— Adjacency Lists.

v@
3
=

<

1234
ebvﬁ 10 1 1 1

211010
0‘ 31101
3 4 41010

Adjacency Lists

* Consists of an array Adj of | V| lists.
* One list per vertex.
* For u € V, Adj[u] consists of all vertices adjacent to u.

Qv@ a b | d | (e |/

e

0‘0 ; 91 Note: If weighted, store weights
dal also in adjacency lists.

Q'Q a 1 b 1 d 1 C l/

N e

@ e Hil R

d

Storage Requirement

* For directed graphs:

— Sum of lengths of all adj. lists is

> out-degree(v) = | E|
veV <—

— No. of edges leaving v
— Total storage: ®(V+E)

* For undirected graphs:

— Sum of lengths of all adj. lists is
degree(v) =2|E
EV 5 Ll IEl No. of edges incident on v.
— Edge (u,v) is incident on
— Total storage: ®(V+E) vertices u and v.

Pros and Cons: adj list

* Pros
— Space-efficient, when a graph is sparse.
— Can be modified to support many graph variants.

e Cons

— Determining if an edge (u,v) €E is not efficient.
 Have to search in u’ s adjacency list. ®(degree(u)) time.
* O(V) in the worst case.

Adjacency Matrix
* |V]| x |V| matrix A.
 Number vertices from 1 to | V| in some arbitrary

manner. o 1 it (i, j)ek
* Aisthengivenby: Ali,j]l=a, =

710 otherwise

1
1234
9"3 o111
200 010
0‘0 3100 0 1
3 4 410 0 0 0
1 2
1234
9'0 10 1 1 1 .
' 211 010 A = AT for undirected graphs.
O‘Q 3/11 101
3 4 41010

Space and Time

Space: O(V?).

— Not memory efficient for large sparse graphs.
Time: to list all vertices adjacent to u: O(V).
Time: to determine if (u, v) € E: O(1).

Can store weights instead of bits for weighted graph.

o

[HY
[

O|0|O0|O0O|O|0O|wV
O[O0 |OC|O|U0|T
ORI O(O|IN|[O|O
OOl [([O|lW|(O| D
O[N|IO[W|O|O|—

-~ 0O Q oo T o
O|lO0| OO O

Graph-searching Algorithms
(COMP250)

e Searching a graph:

— Systematically follow the edges of a graph
to visit the vertices of the graph.

* Used to discover the structure of a graph.
* Standard graph-searching algorithms.

— Breadth-first Search (BFS).
— Depth-first Search (DFS).

Breadth-first Search

 Expands the frontier between discovered and
undiscovered vertices uniformly across the breadth of
the frontier.

— A vertex is “discovered” the first time it is encountered during
the search.

— Avertex is “finished” if all vertices adjacent to it have been
discovered.

e Colors the vertices to keep track of progress.
— White — Undiscovered.
— Gray — Discovered but not finished.
— Black — Finished.

* Colors are required only to reason about the algorithm. Can be
implemented without colors.

Breadth-first Search

* Input: Graph G = (V, E), either directed or undirected,
and source vertex s € V.

* Output:

— d[v] = distance (smallest # of edges, or shortest path) from s
tov, forallv € V. d[v] =« if vis not reachable from s.

— n{v] = u such that (u, v) is last edge on shortest path s ~v.
* uisv s predecessor.

— Builds breadth-first tree with root s that contains all
reachable vertices.

Example (BFS)

@
9

OO

Q: s

0

Example (BFS)

Example (BFS)

Example (BFS)

Example (BFS)

N X
N <
w <

Example (BFS)

N <
w
w <

Example (BFS)

W c
w <<

Example (BFS)

Example (BFS)

Example (BFS)

BF Tree

Analysis of BFS

Initialization takes O(V).

Traversal Loop

— After initialization, each vertex is enqueued and dequeued at
most once, and each operation takes O(1). So, total time for
qgueuing is O(V).

— The adjacency list of each vertex is scanned at most once. The
sum of lengths of all adjacency lists is G(E).

Summing up over all vertices => total running time of BFS
is O(V+E), linear in the size of the adjacency list

representation of graph.

Depth-first Search (DFS)

Explore edges out of the most recently discovered
vertex v.

When all edges of v have been explored, backtrack to
explore other edges leaving the vertex from which v
was discovered (its predecessor).

“Search as deep as possible first.”

Continue until all vertices reachable from the original
source are discovered.

If any undiscovered vertices remain, then one of them
is chosen as a new source and search is repeated from
that source.

Depth-first Search

* Input: G=(V, E), directed or undirected. No source
vertex given.

* Output:

— 2 timestamps on each vertex. Integers between 1 and 2|V|.
* d[v] =discovery time (v turns from white to gray)
* f[v] = finishing time (v turns from gray to black)

— 7t[v] : predecessor of v = u, such that v was discovered during
the scan of u’ s adjacency list.

e Uses the same coloring scheme for vertices as BFS.

Pseudo-code

DFS(G)

1. for each vertex u € V[G]
2. do color[u] < white
3. n[u] < NIL

4. time <0

5. for each vertex u € V[G]
6. do if color[u] = white
7. then DFS-Visit(u)

Uses a global timestamp time.

DFS-Visit(u)

1.

0ol IO U SO

color[u] <~ GRAY V White vertex u has
been discovered

time < time + 1
d[u] < time
for each v € Adj[u]
do if color[v] = WHITE
then t[v] < u
DFS-Visit(v)

color[u] <~ BLACK V Blacken u; itis
finished.

flu]l « time <« time + 1

ample (DFS)
EX

1/

ample (DFS)
EX

1/

Example (DFS)

u Vv W
D— O
X Z

y

Example (DFS)

Example (DFS)

Example (DFS)

Starting time Finishing time
d(x) f(x)

Example (DFS)

Example (DFS)

Example (DFS)

Example (DFS)

Example (DFS)

Example (DFS)

Example (DFS)

Example (DFS)

Example (DFS)

Example (DFS)

Analysis of DFS

* Loops on lines 1-2 & 5-7 take ©(V) time, excluding time
to execute DFS-Visit.

* DFS-Visit is called once for each white vertex veV when
it’ s painted gray the first time. Lines 3-6 of DFS-Visit is
executed |Adj[v]| times. The total cost of executing
DFS-Visit is 2_,_,| Adj[v]| = O(E)

e Total running time of DFS is ®(V+E).

Example (DFS)

Starting time Finishing time
d(x) f(x)

Parenthesis Theorem

Theorem 1:
For all u, v, exactly one of the following holds:

1.d[u] <flu] <d[v] <flv]ord|v] <f][v] <d[u]<f[u]and neitheru
nor v is a descendant of the other.

2.d[u] <d[v] <f[v] <f[u]andvisadescendant of u.
3.d[v] <d[u] <f[u] <f[v]anduisadescendant of v.

¢ Sod[u] <d[v] <f[u] <f][v] cannot happen.
¢ Like parentheses:

* OK:()[TCLT0)]
* Not OK: ([)][(])

Corollary

vis a proper descendant of u if and only if d[u] < d[v] < f[v] < f[u].

Example (Parenthesis Theorem)

(s (z (y (xx) y) (Www)z)s)(t(vv)(uu)t)

