COMP251: Elementary graph algorithms

Jérôme Waldispühl School of Computer Science McGill University

Based on (Cormen et al., 2002)

Based on slides from D. Plaisted (UNC)

The greedy choice is a property that enable us to make a locally optimal choice at each step of the algorithm. Which of the following assertions are true?

- It always guarantees to return an optimal solution for any problem where it can be applied.
- The algorithm is usually fast. ✓
- It requires to define optimal sub-structures.

It always guarantees to retur	n an optimal solution	for any problem where it is applied.	7	35%
-------------------------------	-----------------------	--------------------------------------	---	-----

- The algorithm is usually fast. 7 35%
- It requires to define optimal sub-structures. 18 90%

Consider the scheduling problem represented in the figure above. What will be the solution returned by the greedy algorithm introduced in class?

- a7, a5, a2, a9, a3
- a4, a1, a8, a9, a3 🗸
- a4, a5, a6
- a4, a5, a2, a9, a6
- None of these solutions

a7, a5, a2, a9, a3	3	15%
a4, a1, a8, a9, a3	16	80%
a4, a5, a6	0	0%
a4, a5, a2, a9, a6	0	0%
None of these solutions	1	5%

Elements of Greedy Algorithms

No general way to tell if a greedy algorithm is optimal, but two key ingredients are:

• Greedy-choice Property

(an optimal solution can be found at by making a locally optimal choice)

• Optimal Substructure.

Activities sorted by finishing time.

i	1	2	3	4	5	6	7
S _i	0	1	2	4	5	6	8
f _i	2	3	5	6	9	9	10

Activities sorted by finishing time.

Activities sorted by finishing time.

Activities sorted by finishing time.

Graphs

- Graph G = (V, E)
 - -V = set of vertices
 - $E = \text{set of edges} \subseteq (V \times V)$
- Types of graphs

- Undirected: edge (u, v) = (v, u); for all $v, (v, v) \notin E$ (No self loops.)
- Directed: (u, v) is edge from u to v, denoted as $u \rightarrow v$. Self loops are allowed.
- Weighted: each edge has an associated weight, given by a weight function $w: E \rightarrow \mathbf{R}$.
- Dense: $|E| \approx |V|^2$.
- Sparse: $|E| << |V|^2$.
- $|E| = O(|V|^2)$

Properties

- If $(u, v) \in E$, then vertex v is adjacent to vertex u.
- Adjacency relationship is:

– Symmetric if *G* is undirected.

- Not necessarily so if G is directed.
- If *G* is connected:
 - There is a path between every pair of vertices.

 $-|E|\geq |V|-1.$

- Furthermore, if |E| = |V| - 1, then G is a tree.

Vocabulary

- Ingoing edges of u: { (v,u) ∈ E } (e.g. in(e) = { (b,e), (d,e) })
- Outgoing edges of u: { (u,v) ∈ E } (e.g. out(d) = { (d,e) })
- In-degree(u): | in(u) |
- Out-degree(u): | out(u) |

Representation of Graphs

- Two standard ways.
 - Adjacency Lists.

– Adjacency Matrix.

	1	2	3	4	
1	0	1	1	1	
2	1	0	1	0	
3	1	1	0	1	
4	1	0	1	0	

Adjacency Lists

- Consists of an array *Adj* of |*V*| lists.
- One list per vertex.
- For *u* ∈ *V*, *Adj*[*u*] consists of all vertices adjacent to *u*.

Storage Requirement

• For directed graphs:

 $v \in V$

- Sum of lengths of all adj. lists is

 \sum out-degree(v) = |E|

- For undirected graphs:
 - Sum of lengths of all adj. lists is

$$\sum_{v \in V} \text{degree}(v) = 2|E|$$

- Total storage: $\Theta(V+E)$

No. of edges incident on *v*. Edge (*u*,*v*) is incident on vertices *u* and *v*.

No. of edges leaving v

Pros and Cons: adj list

- Pros
 - Space-efficient, when a graph is sparse.
 - Can be modified to support many graph variants.
- Cons
 - Determining if an edge $(u,v) \in E$ is not efficient.
 - Have to search in u' s adjacency list. $\Theta(\text{degree}(u))$ time.
 - $\Theta(V)$ in the worst case.

Adjacency Matrix

- $|V| \times |V|$ matrix A.
- Number vertices from 1 to |V| in some arbitrary manner.
- A is then given by: $A[i, j] = a_{ij} = \begin{cases} 1 & \text{if } (i, j) \in E \\ 0 & \text{otherwise} \end{cases}$

2 1 0 1 0 3 1 1 0 1

 $A = A^{\mathsf{T}}$ for undirected graphs.

Space and Time

• Space: $\Theta(V^2)$.

Not memory efficient for large sparse graphs.

- **Time:** to list all vertices adjacent to $u: \Theta(V)$.
- **Time:** to determine if $(u, v) \in E: \Theta(1)$.
- Can store weights instead of bits for weighted graph.

Graph-searching Algorithms (COMP250)

- Searching a graph:
 - Systematically follow the edges of a graph to visit the vertices of the graph.
- Used to discover the structure of a graph.
- Standard graph-searching algorithms.
 - Breadth-first Search (BFS).
 - Depth-first Search (DFS).

Breadth-first Search

- Expands the frontier between discovered and undiscovered vertices uniformly across the breadth of the frontier.
 - A vertex is "discovered" the first time it is encountered during the search.
 - A vertex is "finished" if all vertices adjacent to it have been discovered.
- Colors the vertices to keep track of progress.
 - White Undiscovered.
 - Gray Discovered but not finished.
 - Black Finished.
 - Colors are required only to reason about the algorithm. Can be implemented without colors.

Breadth-first Search

- Input: Graph G = (V, E), either directed or undirected, and source vertex s ∈ V.
- Output:
 - d[v] = distance (smallest # of edges, or shortest path) from s to v, for all v ∈ V. $d[v] = \infty$ if v is not reachable from s.
 - $\pi[v] = u$ such that (u, v) is last edge on shortest path $s \sim v$.
 - *u* is *v*'s predecessor.
 - Builds breadth-first tree with root s that contains all reachable vertices.

C) :	S	
		0	

BF Tree

Analysis of BFS

- Initialization takes O(V).
- Traversal Loop
 - After initialization, each vertex is enqueued and dequeued at most once, and each operation takes O(1). So, total time for queuing is O(V).
 - The adjacency list of each vertex is scanned at most once. The sum of lengths of all adjacency lists is $\Theta(E)$.
- Summing up over all vertices => total running time of BFS is O(V+E), linear in the size of the adjacency list representation of graph.

Depth-first Search (DFS)

- Explore edges out of the most recently discovered vertex *v*.
- When all edges of *v* have been explored, backtrack to explore other edges leaving the vertex from which *v* was discovered (its *predecessor*).
- "Search as deep as possible first."
- Continue until all vertices reachable from the original source are discovered.
- If any undiscovered vertices remain, then one of them is chosen as a new source and search is repeated from that source.

Depth-first Search

- Input: G = (V, E), directed or undirected. No source vertex given.
- Output:
 - 2 timestamps on each vertex. Integers between 1 and 2|V|.
 - d[v] = discovery time (v turns from white to gray)
 - *f* [*v*] = *finishing time* (*v* turns from gray to black)
 - $\pi[v]$: predecessor of v = u, such that v was discovered during the scan of u' s adjacency list.
- Uses the same coloring scheme for vertices as BFS.

Pseudo-code

6.

7.

<u>DFS(G)</u>

- 1. **for** each vertex $u \in V[G]$
- 2. **do** *color*[u] \leftarrow white
- 3. $\pi[u] \leftarrow \text{NIL}$
- 4. time $\leftarrow 0$
- 5. **for** each vertex $u \in V[G]$
- 6. **do if** color[u] = white
- 7. **then** DFS-Visit(*u*)

Uses a global timestamp *time*.

DFS-Visit(u)

- 1. $color[u] \leftarrow GRAY \nabla$ White vertex u has been discovered
- *2. time* \leftarrow *time* + 1
- 3. $d[u] \leftarrow time$
- 4. **for** each $v \in Adj[u]$
- 5. **do if** color[v] = WHITE

then $\pi[v] \leftarrow u$

- 8. $color[u] \leftarrow BLACK \quad \nabla Blacken u;$ it is finished.
- 9. $f[u] \leftarrow time \leftarrow time + 1$

Analysis of DFS

- Loops on lines 1-2 & 5-7 take Θ(V) time, excluding time to execute DFS-Visit.
- DFS-Visit is called once for each white vertex $v \in V$ when it's painted gray the first time. Lines 3-6 of DFS-Visit is executed |Adj[v]| times. The total cost of executing DFS-Visit is $\sum_{v \in V} |Adj[v]| = \Theta(E)$
- Total running time of DFS is $\Theta(V+E)$.

Parenthesis Theorem

Theorem 1:

For all *u*, *v*, exactly one of the following holds:

- 1. d[u] < f[u] < d[v] < f[v] or d[v] < f[v] < d[u] < f[u] and neither u nor v is a descendant of the other.
- 2. d[u] < d[v] < f[v] < f[u] and v is a descendant of u.

3. d[v] < d[u] < f[u] < f[v] and u is a descendant of v.

- So d[u] < d[v] < f [u] < f [v] cannot happen.
- Like parentheses:
 - OK:()[]([])[()]
 - Not OK: ([)][(])

Corollary

v is a proper descendant of u if and only if d[u] < d[v] < f[v] < f[u].

Example (Parenthesis Theorem)

(s (z (y (x x) y) (w w) z) s) (t (v v) (u u) t)