
COMP251:	Elementary	graph	
algorithms

Jérôme Waldispühl
School	of	Computer	Science

McGill	University
Based	on	(Cormen et	al.,	2002)

Based	on	slides	from	D.	Plaisted (UNC)

The	greedy	choice	is	a	property	that	enable	us	to	make	a	locally	
optimal	choice	at	each	step	of	the	algorithm.	Which	of	the	

following	assertions	are	true?

• It	always	guarantees	to	return	an	optimal	solution	for	any	
problem	where	it	can	be	applied.

• The	algorithm	is	usually	fast.
• It	requires	to	define	optimal	sub-structures. ✓

✓

✓

Consider	the	scheduling	problem	represented	in	the	figure	
above.	What	will	be	the	solution	returned	by	the	greedy	

algorithm	introduced	in	class?

• a7,	a5,	a2,	a9,	a3
• a4,	a1,	a8,	a9,	a3
• a4,	a5,	a6
• a4,	a5,	a2,	a9,	a6
• None of these	solutions

✓

Elements	of	Greedy	Algorithms

No	general	way	to	tell	if	a	greedy	algorithm	is	optimal,	
but	two	key	ingredients	are:
• Greedy-choice	Property

(an	optimal	solution	can	be	found	at	by	making	a	locally	optimal	choice)

• Optimal	Substructure.

Activity-selection	Problem

0									1										2										3									4										5									6										7									8										9								10

s6 a6

a5

a4

a3

a2

a1 a7
s1

s2

s3

s4

s5

s7f1

f2

f3

f4

f5

f6

f7

i 1 2 3 4 5 6 7
si 0 1 2 4 5 6 8
fi 2 3 5 6 9 9 10

Activities	sorted	by	finishing	time.

Activity-selection	Problem

0									1										2										3									4										5									6										7									8										9								10

s6 a6

a5

a4

a3

a2

a1 a7
s1

s2

s3

s4

s5

s7f1

f2

f3

f4

f5

f6

f7

i 1 2 3 4 5 6 7
si 0 1 2 4 5 6 8
fi 2 3 5 6 9 9 10

Activities	sorted	by	finishing	time.

Activity-selection	Problem

0									1										2										3									4										5									6										7									8										9								10

s6 a6

a5

a4

a3

a2

a1 a7
s1

s2

s3

s4

s5

s7f1

f2

f3

f4

f5

f6

f7

i 1 2 3 4 5 6 7
si 0 1 2 4 5 6 8
fi 2 3 5 6 9 9 10

Activities	sorted	by	finishing	time.

Activity-selection	Problem

0									1										2										3									4										5									6										7									8										9								10

s6 a6

a5

a4

a3

a2

a1 a7
s1

s2

s3

s4

s5

s7f1

f2

f3

f4

f5

f6

f7

i 1 2 3 4 5 6 7
si 0 1 2 4 5 6 8
fi 2 3 5 6 9 9 10

Activities	sorted	by	finishing	time.

Graphs
• Graph	G =	(V,	E)
– V =	set	of	vertices
– E =	set	of	edges	Í (V´V)

• Types	of	graphs
– Undirected:	edge	(u,	v)	=	(v,	u);	for	all	v,	(v,	v)	Ï E (No	self	loops.)
– Directed:	(u,	v)	is	edge	from	u to	v,	denoted	as	u	® v.	Self	loops	
are	allowed.

– Weighted:	each	edge	has	an	associated	weight,	given	by	a	weight	
function	w	:	E® R.

– Dense:	|E|	» |V|2.
– Sparse:	|E|	<<	|V|2.

• |E|	=	O(|V|2)

b c

a

d e f

b c

a

d e f

5

11

1

3
1

7

3

2

Properties

• If	(u,	v)	Î E,	then	vertex	v is	adjacent	to	vertex	u.
• Adjacency	relationship	is:
– Symmetric	if	G	is	undirected.
– Not	necessarily	so	if	G is	directed.

• If	G is	connected:
– There	is	a	path	between	every	pair	of	vertices.
– |E|	³ |V|	– 1.
– Furthermore,	if	|E|	=	|V|	– 1,	then	G is	a	tree.

Vocabulary

b c

a

d e f

• Ingoing	edges	of	u:	{	(v,u)	∈ E	}		(e.g.	in(e)	=	{	(b,e),	(d,e)	})
• Outgoing	edges	of	u:	{	(u,v)	∈ E	}	(e.g.	out(d)	=	{	(d,e)	})
• In-degree(u):	|	in(u)	|
• Out-degree(u):	|	out(u)	|	

Representation	of	Graphs

• Two	standard	ways.
– Adjacency	Lists.

– Adjacency	Matrix.

a

dc

b a

b
c
d

b

a

d

d c

c

a b

a c

a

dc

b
1 2

3 4

1			2			3			4
1		0			1			1			1
2		1			0			1			0
3		1			1			0			1
4		1			0			1			0

Adjacency	Lists
• Consists	of	an	array	Adj of	|V|	lists.
• One	list	per	vertex.
• For	u Î V,	Adj[u]	consists	of	all	vertices	adjacent	to	u.

a

dc

b a

b
c
d

b

c

d

d c

a

dc

b a

b
c
d

b

a

d

d c

c

a b

a c

Note:	If	weighted,	store	weights	
also	in	adjacency	lists.

Storage	Requirement

• For	directed	graphs:
– Sum	of	lengths	of	all	adj.	lists	is

åout-degree(v)	=	|E|
vÎV

– Total	storage:Q(V+E)

• For	undirected	graphs:
– Sum	of	lengths	of	all	adj.	lists	is

ådegree(v)	=	2|E|
vÎV

– Total	storage:Q(V+E)

No.	of	edges	leaving	v

No.	of	edges	incident	on	v.	
Edge	(u,v)	is	incident	on	
vertices	u and	v.

Pros	and	Cons:	adj	list	

• Pros
– Space-efficient,	when	a	graph	is	sparse.
– Can	be	modified	to	support	many	graph	variants.

• Cons
– Determining	if	an	edge	(u,v)	ÎE is	not	efficient.
• Have	to	search	in	u’s	adjacency	list.	Q(degree(u))	time.
• Q(V)	in	the	worst	case.

Adjacency	Matrix
• |V|	´ |V|	matrix	A.
• Number	vertices	from	1	to	|V|	in	some	arbitrary	
manner.

• A is	then	given	by:
î
í
ì Î

==
otherwise0

),(if1
],[

Eji
ajiA ij

a

dc

b
1 2

3 4

1			2			3			4
1		0			1			1			1
2		0			0			1			0
3		0			0			0			1
4		0			0			0			0

a

dc

b
1 2

3 4

1			2			3			4
1		0			1			1			1
2		1			0			1			0
3		1			1			0			1
4		1			0			1			0

A =	AT for	undirected	graphs.

Space	and	Time

• Space: Q(V2).
– Not	memory	efficient	for	large	sparse	graphs.

• Time: to	list	all	vertices	adjacent	to	u:	Q(V).
• Time: to	determine	if	(u, v) Î E:	Q(1).
• Can	store	weights	instead	of	bits	for	weighted	graph.

b c

a

d e f

5

11

1

3
1

7

3

2

a b c d e f
a 0 5 0 11 0 0
b 0 0 7 0 3 0
c 0 0 0 0 0 3
d 0 0 0 0 1 0
e 0 0 1 0 0 2
f 0 0 0 0 0 0

Graph-searching	Algorithms	
(COMP250)

• Searching	a	graph:
– Systematically	follow	the	edges	of	a	graph	
to	visit	the	vertices	of	the	graph.

• Used	to	discover	the	structure	of	a	graph.
• Standard	graph-searching	algorithms.

– Breadth-first	Search	(BFS).
– Depth-first	Search	(DFS).

Breadth-first	Search
• Expands	the	frontier	between	discovered	and	
undiscovered	vertices	uniformly	across	the	breadth	of	
the	frontier.
– A	vertex	is	“discovered” the	first	time	it	is	encountered	during	
the	search.

– A	vertex	is	“finished” if	all	vertices	adjacent	to	it	have	been	
discovered.

• Colors	the	vertices	to	keep	track	of	progress.
– White	– Undiscovered.
– Gray	– Discovered	but	not	finished.
– Black	– Finished.

• Colors	are	required	only	to	reason	about	the	algorithm.	Can	be	
implemented	without	colors.

Breadth-first	Search

• Input:	Graph	G	= (V, E),	either	directed	or	undirected,	
and	source	vertex	s	Î V.

• Output:	
– d[v]	= distance	(smallest	#	of	edges,	or	shortest	path)	from	s	
to	v,	for	all	v Î V.	d[v]	= ¥ if	v is	not	reachable	from	s.

– p[v]	= u	such	that	(u, v) is	last	edge	on	shortest	path	s						 v.
• u is	v’s	predecessor.

– Builds	breadth-first	tree	with	root	s that	contains	all	
reachable	vertices.

Example	(BFS)

¥ 0

¥ ¥ ¥

¥ ¥

¥

r s t u

v w x y

Q: s
0

Example	(BFS)

1 0

1 ¥ ¥

¥ ¥

¥

r s t u

v w x y

Q: w		r
1		1

Example	(BFS)

1 0

1 2 ¥

2 ¥

¥

r s t u

v w x y

Q: r			t		x
1		2		2

Example	(BFS)

1 0

1 2 ¥

2 ¥

2

r s t u

v w x y

Q: t		x		v
2		2		2

Example	(BFS)

1 0

1 2 ¥

2 3

2

r s t u

v w x y

Q: x		v		u
2		2		3

Example	(BFS)

1 0

1 2 3

2 3

2

r s t u

v w x y

Q: v		u		y
2		3		3

Example	(BFS)

1 0

1 2 3

2 3

2

r s t u

v w x y

Q: u		y
3		3

Example	(BFS)

1 0

1 2 3

2 3

2

r s t u

v w x y

Q: y
3

Example	(BFS)

1 0

1 2 3

2 3

2

r s t u

v w x y

Q: Æ

Example	(BFS)

1 0

1 2 3

2 3

2

r s t u

v w x y

BF	Tree

Analysis	of	BFS

• Initialization	takes	O(V).
• Traversal	Loop
– After	initialization,	each	vertex	is	enqueued and	dequeued at	
most	once,	and	each	operation	takes	O(1). So,	total	time	for	
queuing	is	O(V).

– The	adjacency	list	of	each	vertex	is	scanned	at	most	once.		The	
sum	of	lengths	of	all	adjacency	lists	is	Q(E).

• Summing	up	over	all	vertices	=>	total	running	time	of	BFS	
is O(V+E), linear	in	the	size	of	the	adjacency	list	
representation	of	graph.	

Depth-first	Search	(DFS)
• Explore	edges	out	of	the	most	recently	discovered	
vertex	v.

• When	all	edges	of	v have	been	explored,	backtrack	to	
explore	other	edges	leaving	the	vertex	from	which	v
was	discovered	(its	predecessor).

• “Search	as	deep	as	possible	first.”
• Continue	until	all	vertices	reachable	from	the	original	
source	are	discovered.

• If	any	undiscovered	vertices	remain,	then	one	of	them	
is	chosen	as	a	new	source	and	search	is	repeated	from	
that	source.

Depth-first	Search

• Input:	G	= (V, E),	directed	or	undirected.	No	source	
vertex	given.

• Output:
– 2	timestamps on	each	vertex.	Integers	between	1	and	2|V|.

• d[v]	= discovery	time	(v	turns	from	white	to	gray)
• f	[v]	= finishing	time (v turns	from	gray	to	black)

– p[v]	:	predecessor	of	v	=	u,	such	that	v was	discovered	during	
the	scan	of	u’s	adjacency	list.

• Uses	the	same	coloring	scheme	for	vertices	as	BFS.

Pseudo-code

DFS(G)
1.		for each	vertex	u	Î V[G]
2.							do color[u]	¬ white
3.												p[u]	¬ NIL
4.		time¬ 0
5.		for each	vertex	u	Î V[G]
6.								do if color[u]	= white
7.																	then DFS-Visit(u)

Uses	a	global	timestamp	time.

DFS-Visit(u)
1. color[u]	¬ GRAY		ÑWhite	vertex	u has	

been	discovered
2. time¬ time +	1
3. d[u]	¬ time
4. for each	v	Î Adj[u]
5. do if color[v]	= WHITE
6. then p[v]	¬ u
7. DFS-Visit(v)
8. color[u]	¬ BLACK					Ñ Blacken	u;		it	is	

finished.
9. f[u]	¬ time	¬ time	+	1

Example	(DFS)

1/

u v w

x y z

Example	(DFS)

1/ 2/

u v w

x y z

Example	(DFS)

1/

3/

2/

u v w

x y z

Example	(DFS)

1/

4/ 3/

2/

u v w

x y z

Example	(DFS)

1/

4/ 3/

2/

u v w

x y z

B

Example	(DFS)

1/

4/5 3/

2/

u v w

x y z

B

Starting	time
d(x)

Finishing	time
f(x)

Example	(DFS)

1/

4/5 3/6

2/

u v w

x y z

B

Example	(DFS)

1/

4/5 3/6

2/7

u v w

x y z

B

Example	(DFS)

1/

4/5 3/6

2/7

u v w

x y z

BF

Example	(DFS)

1/8

4/5 3/6

2/7

u v w

x y z

BF

Example	(DFS)

1/8

4/5 3/6

2/7 9/

u v w

x y z

BF

Example	(DFS)

1/8

4/5 3/6

2/7 9/

u v w

x y z

BF C

Example	(DFS)

1/8

4/5 3/6 10/

2/7 9/

u v w

x y z

BF C

Example	(DFS)

1/8

4/5 3/6 10/

2/7 9/

u v w

x y z

BF C

B

Example	(DFS)

1/8

4/5 3/6 10/11

2/7 9/

u v w

x y z

BF C

B

Example	(DFS)

1/8

4/5 3/6 10/11

2/7 9/12

u v w

x y z

BF C

B

Analysis	of	DFS

• Loops	on	lines	1-2	&	5-7	take	Q(V) time,	excluding	time	
to	execute	DFS-Visit.

• DFS-Visit	is	called	once	for	each	white	vertex	vÎV when	
it’s	painted	gray	the	first	time.		Lines	3-6	of	DFS-Visit	is	
executed	|Adj[v]|	times.	The	total	cost	of	executing	
DFS-Visit	is	åvÎV|Adj[v]|	=	Q(E)

• Total	running	time	of	DFS	is Q(V+E).

Example	(DFS)

1/8

4/5 3/6 10/11

2/7 9/12

u v w

x y z

BF C

B

Starting	time
d(x)

Finishing	time
f(x)

Parenthesis	Theorem
Theorem	1:
For	all	u, v,	exactly	one	of	the	following	holds:
1.	d[u]	< f	[u]	< d[v]	< f	[v]	or	d[v]	< f	[v]	< d[u]	< f	[u]	and	neither	u	

nor	v is	a	descendant	of	the	other.
2.	d[u]	< d[v]	< f	[v]	< f	[u]	and	v is	a	descendant	of	u.
3.	d[v]	< d[u]	< f	[u]	< f	[v]	and	u	is	a	descendant	of	v.

w So	d[u]	< d[v]	< f	[u]	< f	[v]	cannot	happen.
w Like	parentheses:

w OK:	()	[]	([])	[()]
w Not	OK:	([)]	[(])

Corollary
v is	a	proper	descendant	of	u	if	and	only	if	d[u]	< d[v]	< f	[v]	< f	[u].

Example	(Parenthesis	Theorem)

3/6

4/5 7/8 12/13

2/9 1/10

y z s

x w v

B F

14/15

11/16

u

t

C C C

C B

(s	(z	(y	(x	x)	y)	(w	w)	z)	s)	(t	(v	v)	(u	u)	t)

