COMP251: Greedy algorithms

Jérome Waldispuhl
School of Computer Science
McGill University

Based on (Cormen et al., 2002)

Based on slides from D. Plaisted (UNC) & (goodrich & Tamassia, 2009)

Disjoint sets are represented with an array rep|[], that stores the
representative repli] of each elementi. The running time of the
function find(i) that returns the representative of the set
containing i is:

e Q1) \/ (More interestingly ©(1))
* O(logn)
 O(logn)

Omega(1) 18 69.2%
O(log n) 6 23.1%
Theta(log n) 2 7.7%

Let h(A) (resp. h(B)) be the height of the tree A (resp. B) rooted
at x (resp. y). We assume that h(B) <= h(A) + 1. After union(x,y),
which assertion are true?

h(y) = h(A) + 1
h(y) = max(h(A)+1, h(B)) v
h(y) = h(B) X
h(B) < h(y) x

hiy)=h(A)+1 9 34.6%
h(y) = h(A) + 1 h(y) = max(h(A)+1, h(B)) 16 61.5%
hiy)=h(B) 2 7.7%
h(B)<h(y) 10 385%

h(y) = max(h(A...

h(y) = h(B)

h(B) <h(y)
0 4 8 12

Overview

* Algorithm designh technique to solve optimization
oroblems.

* Problems exhibit optimal substructure.

* |dea (the greedy choice):

— When we have a choice to make, make the one
that looks best right now.

— Make a locally optimal choice in hope of
getting a globally optimal solution.

Greedy Strategy

The choice that seems best at the moment is the
one we go with.
— Prove that when there is a choice to make, one of

the optimal choices is the greedy choice. Therefore,
it Is always safe to make the greedy choice.

— Show that all but one of the sub-problems resulting
from the greedy choice are empty.

Activity-selection Problem

* Input: Set S of n activities, a,, a,, ..., a

nI

— s, = start time of activity /.
— f. = finish time of activity i.

* Qutput: Subset A of maximum number of compatible
activities.

— 2 activities are compatible, if their intervals do not overlap.
Activities in each line

Example: are compatible.
d < 4 :
¢ ® C ®
® ® ® —e ® ®

Activity-selection Problem

1 2 3 4 5 6 7

s |0 1 2 4 5 6 8
f |12 3 5 6 9 9 10
Activities sorted by finishing time.
as S cP
Sy @ ° ® - f6
f3
d) dsg
S, @ ¢ f, Sc @ ® f5
al a4 a7
S, ® o f.| s, @ o f, | S; 0 o f,
0 1 2 3 4 5 6 7 8 9 10

Optimal compatible set: {a,, a5, a }

Optimal Substructure

* Assume activities are sorted by finishing times.

* Suppose an optimal solution includes activity a,. This
solution is obtained from:

— An optimal selection of a,, ..., a, , activities compatible with
one another, and that finish before a, starts.

— An optimal solution of a,, ..., @, activities compatible with
one another, and that start after g, finishes.

Optimal Substructure

* LetS; = subset of activities in S that start after g,
finishes and finish before g; starts.

Sl.j={akES:Vi,j fissk<fkssj}

* A, =optimal solution to S;

Recursive Solution

e Subproblems: Selecting maximum number of
mutually compatible activities from S;..

e Let c[i, j] = size of maximum-size subset of mutually
compatible activities in S;.

0 if S, =0
Recursive solution: ¢li, j] =1 max{c[i,k]+clk, jl1+1} if S, =@
i<k<j and a; ES;;

Note: Here, we do not know which k to use for the optimal solution.

Greedy choice

Theorem:
LetS; # 2, and let a,, be the activity in 5; with the
earliest finish time: f,, = min{ f, : a, €5,}. Then:

1. a, is usedin some maximum-size subset of
mutually compatible activities of S;.

2. S, =9, s0that choosing a,, leaves S, as the only
nonempty subproblem.

Greedy choice

Proof:
(1) a,, is used in some maximum-size subset of mutually
compatible activities of 5.

* Let A; be a maximum-size subset of mutually compatible
activities in S;; (i.e. an optimal solution of S;).

* Order activities in A; in monotonically increasing order of finish
time, and let a, be the first activity in A,;.

* Ifa,=a, = done.

* Otherwise, letA";=A;-{a}U{a,}

* A';isvalid because a, finishes before a,

* Since |A;|=|A’;| and A; maximal = A’; maximal too.

Greedy choice

Proof:
(2) S; =9, so that choosing a,, leaves S, ; as the only nonempty
subproblem.

If thereis a, €S, then f,<s, <f . <s. <f., = f,<f,, which
contradicts the hypothesis that a., has the earlier finish.

Greedy choice

Before theorem

After theorem

subproblems in 2
optimal solution

choices to consider j_i_]_

1

1

!

Y
Aij={am}UAmj

We can now solve the problem S; top-down:

* Choose a,,&S; with the earliest finish time (greedy choice).

* Solve S,

Activity-selection Problem

1 2 3 4 5 6 7

s |0 1 2 4 5 6 8
f 12 3 5 6 9 9 10
Activities sorted by finishing time.
as ¢ cP
Sy @ ° ® @ f6
f3
d) ds
S, @ ® f2 Sc @ ® f5
al a4 a7
o f, | s, @ o f, | S, e o f,
0 1 2 3 4 5 6 7 8 9 10

Activity-selection Problem

1 2 3 4 5 6 7

s |0 1 2 4 5 6 8
f |12 3 5 6 9 9 10
Activities sorted by finishing time.
as ¢ cP
Sy ¢ ® ® @ f6
f3
d; ds
S, @ ® f2 Sc @ ® f5
al a4 a7
o f. | s, @ o f, | S, e o f,
0 1 2 3 4 5 6 7 8 9 10

Activity-selection Problem

1 2 3 4 5 6 7

s |0 1 2 4 5 6 8
f |12 3 5 6 9 9 10
Activities sorted by finishing time.
as S, cP
Sy ¢ ® ® ® f6
f3
S, @ ¢ f, Sc @ ® f5
al a4 a7
o f1 S, ® ® f4 S, @ ® f7
0 1 2 3 4 5 6 7 8 9 10

Activity-selection Problem

1 2 3 4 5 6 7

s |0 1 2 4 5 6 8
f 12 3 5 6 9 9 10
Activities sorted by finishing time.
as S ag
S5 ¢ @ ® -® f6
f3
d) dsg
S, @ ® f2 Sc @ ® f5
al a4 a7
o f. | s, @ o f, | S; 0 o f,
0 1 2 3 4 5 6 7 8 9 10

Recursive Algorithm

Recursive-Activity-Selector (s, f, i, n)

1. m<«i+l

2. whilem<nands,<f //Findfirst activity in S

3 do m <« m+1

4. if m<n

5 then return {a } U
Recursive-Activity-Selector(s, f, m, n)

6. else return &

,n+1

Initial Call: Recursive-Activity-Selector (s, f, 0, n+1)
Complexity: ®(n)

Note 1: We assume activities are already ordered by finishing time.
Note 2: Straightforward to convert the algorithm to an iterative one.

Typical Steps

Cast the optimization problem as one in which we
make a choice and are left with one subproblem to
solve.

Prove that there Is always an optimal solution that
makes the greedy choice (greedy choice is safe).

Show that greedy choice and optimal solution to
subproblem = optimal solution to the problem.

Make the greedy choice and solve top-down.

You may have to preprocess input to put it into
greedy order (e.g. sorting activities by finish time).

Elements of Greedy Algorithms

No general way to tell if a greedy algorithm is optimal,
but two key ingredients are:

* Greedy-choice Property.

— A globally optimal solution can be arrived at by
making a locally optimal (greedy) choice.

* Optimal Substructure.

Text Compression

* Given a string X, efficiently encode X into a smaller
string Y
— Saves memory and/or bandwidth
* A good approach: Huffman encoding
— Compute frequency f(c) for each character c.
— Encode high-frequency characters with short code words
— No code word is a prefix for another code
— Use an optimal encoding tree to determine the code words

Encoding Tree Example

* A code is a mapping of each character of an alphabet to a binary
code-word

* A prefix code is a binary code such that no code-word is the prefix
of another code-word

* An encoding tree represents a prefix code

— Each external node (leaf) stores a character

— The code word of a character is given by the path from the root to the
external node storing the character (O for a left child and 1 for a right child)

Encoding Example

Initial string: X = acda
Encoded string: X=00011 10 00

Encoding Tree Optimization

* Given a text string X, we want to find a prefix code for the
characters of X that yields a small encoding for X

— Frequent characters should have long code-words
— Rare characters should have short code-words

 Example
— X = abracadabra
— T, encodes X into 29 bits
— T, encodes X into 24 bits

T,

Example

X = abracadabra

Frequencies a

a | b|lc|d]|r

b r
a b C d r /6
5 2 1 1 2
C d b r

I :

O
A T A A

5 2 2 5

Extended Huffman Tree Example

String: a fast runner need never be afraid of the dark

Character | a e i o|r|s v

b’d

|

k’n

t‘u

Frequency |9‘5‘1‘3‘7‘3‘1‘1 ‘1‘4‘1 ‘5‘1‘2‘1‘1

Huffman tree

Huffman’ s Algorithm

Given a string X,
Huffman’ s algorithm
construct a prefix code
the minimizes the size
of the encoding of X

It runs in time

O(n + dlog d), where n
is the size of Xand d is
the number of distinct
characters of X

A heap-based priority

gueue is used as an
auxiliary structure

Algorithm HuffmanEncoding(X)
Input string X of size n
Output optimal encoding trie for X
C < distinctCharacters(X)
computeFrequencies(C, X)
0 < new empty heap
forallc e C
T < new single-node tree storing ¢
Q.insert(getFrequency(c), T)
while O.size() > 1
f; < O.minKey()
T, < Q.removeMin()
f> < O.minKey()
T, < Q.removeMin()
T < join(T,, T,)
Q.insert(f, + f,, T)

return Q.removeMin()

10

