COMP251: Greedy algorithms

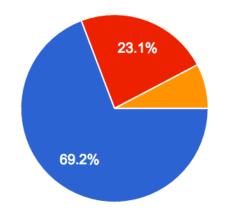
Jérôme Waldispühl School of Computer Science McGill University

Based on (Cormen et al., 2002)

Based on slides from D. Plaisted (UNC) & (goodrich & Tamassia, 2009)

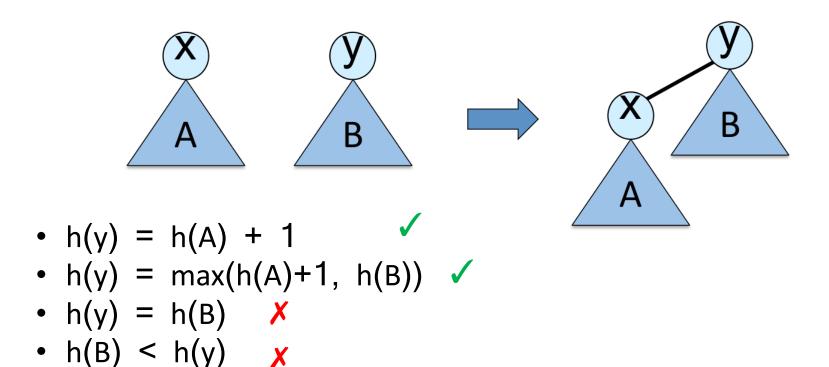
Disjoint sets are represented with an array rep[], that stores the representative rep[i] of each element i. The running time of the function find(i) that returns the representative of the set containing i is:

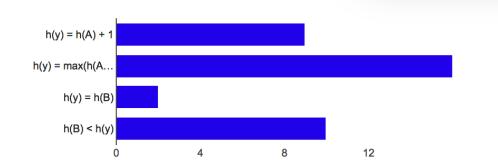
- $\Omega(1)$ (More interestingly $\Theta(1)$)
- O(log n)
- **Θ**(log n)



Omega(1)	18	69.2%
O(log n)	6	23.1%
Theta(log n)	2	7.7%

Let h(A) (resp. h(B)) be the height of the tree A (resp. B) rooted at x (resp. y). We assume that $h(B) \le h(A) + 1$. After union(x,y), which assertion are true?





h(y) = h(A) + 1 9 34.6% h(y) = max(h(A)+1, h(B)) 16 61.5% h(y) = h(B) 2 7.7% h(B) < h(y) 10 38.5%

Overview

- Algorithm design technique to solve optimization problems.
- Problems exhibit optimal substructure.
- Idea (the greedy choice):
 - When we have a choice to make, make the one that looks best right now.
 - Make a locally optimal choice in hope of getting a globally optimal solution.

Greedy Strategy

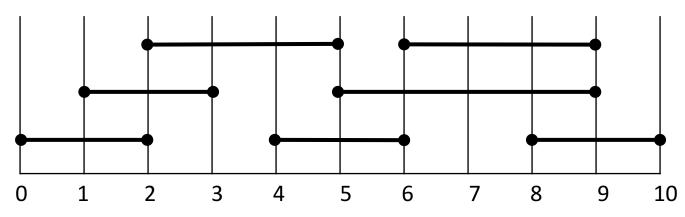
The choice that seems best at the moment is the one we go with.

- Prove that when there is a choice to make, one of the optimal choices is the greedy choice. Therefore, it is always safe to make the greedy choice.
- Show that all but one of the sub-problems resulting from the greedy choice are empty.

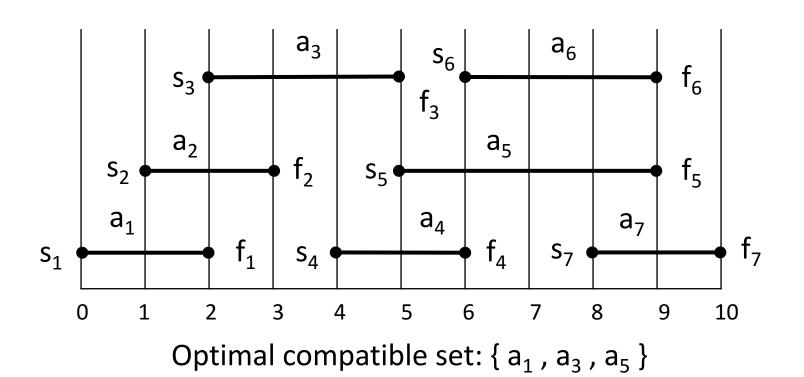
- Input: Set S of n activities, a_1 , a_2 , ..., a_n .
 - $-s_i$ = start time of activity *i*.
 - $-f_i$ = finish time of activity *i*.
- Output: Subset A of maximum number of compatible activities.
 - 2 activities are compatible, if their intervals do not overlap.

Example:

Activities in each line are compatible.

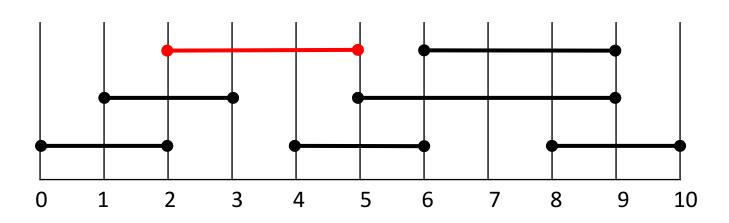


				4			
S _i	0	1	2	4	5	6	8
f_i	2	3	5	6	9	9	10



Optimal Substructure

- Assume activities are sorted by finishing times.
- Suppose an optimal solution includes activity a_k . This solution is obtained from:
 - An optimal selection of a_1 , ..., a_{k-1} activities compatible with one another, and that finish **before** a_k starts.
 - An optimal solution of a_{k+1} , ..., a_n activities compatible with one another, and that start **after** a_k finishes.



Optimal Substructure

• Let S_{ij} = subset of activities in S that start after a_i finishes and finish before a_i starts.

$$S_{ij} = \left\{ a_k \in S : \forall i, j \quad f_i \le s_k < f_k \le s_j \right\}$$

- A_{ij} = optimal solution to S_{ij}
- $A_{ij} = A_{ik} U \{ a_k \} U A_{kj}$

Recursive Solution

- Subproblems: Selecting maximum number of mutually compatible activities from S_{ii} .
- Let c[i, j] = size of maximum-size subset of mutually compatible activities in S_{ii} .

Recursive solution:
$$c[i,j] = \begin{cases} 0 & \text{if } S_{ij} = \emptyset \\ \max\{c[i,k] + c[k,j] + 1\} & \text{if } S_{ij} \neq \emptyset \end{cases}$$

Note: Here, we do not know which k to use for the optimal solution.

Theorem:

Let $S_{ij} \neq \emptyset$, and let a_m be the activity in S_{ij} with the earliest finish time: $f_m = \min\{f_k : a_k \subseteq S_{ii}\}$. Then:

- 1. a_m is used in some maximum-size subset of mutually compatible activities of S_{ii} .
- 2. $S_{im} = \emptyset$, so that choosing a_m leaves S_{mj} as the only nonempty subproblem.

Proof:

(1) a_m is used in some maximum-size subset of mutually compatible activities of S_{ij} .

- Let A_{ij} be a maximum-size subset of mutually compatible activities in S_{ii} (i.e. an optimal solution of S_{ii}).
- Order activities in A_{ij} in monotonically increasing order of finish time, and let a_k be the first activity in A_{ii} .
- If $a_k = a_m \Rightarrow$ done.
- Otherwise, let A'_{ij} = A_{ij} { a_k} U { a_m }
- A'_{ij} is valid because a_m finishes before a_k
- Since $|A_{ij}| = |A'_{ij}|$ and A_{ij} maximal \Rightarrow A'_{ij} maximal too.

Proof:

(2) $S_{im} = \emptyset$, so that choosing a_m leaves S_{mj} as the only nonempty subproblem.

If there is $a_k \in S_{im}$ then $f_i \le s_k < f_k \le s_m < f_m \Rightarrow f_k < f_m$ which contradicts the hypothesis that a_m has the earlier finish.

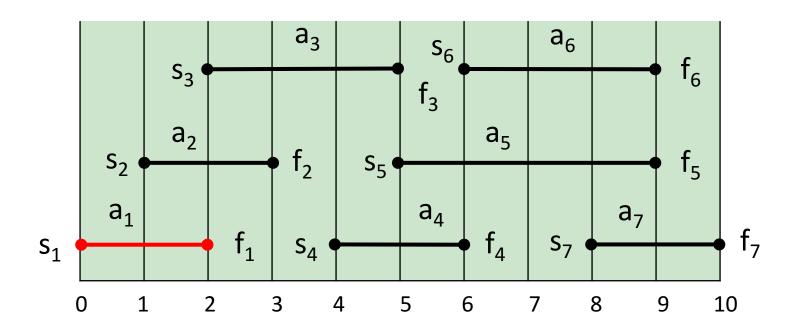
Before theorem After theorem # subproblems in optimal solution # choices to consider j-i-1 $A_{ii} = \{ a_m \} U A_{mi}$

 $A_{ii} = A_{ik} U \{ a_k \} U A_{ki}$

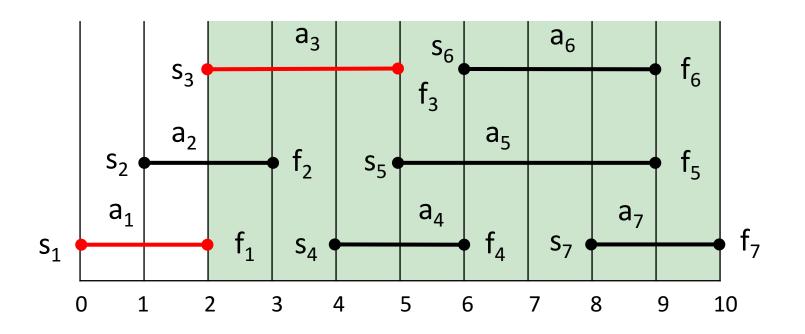
We can now solve the problem S_{ii} top-down:

- Choose $a_m \subseteq S_{ii}$ with the earliest finish time (greedy choice).
- Solve S_{mi} .

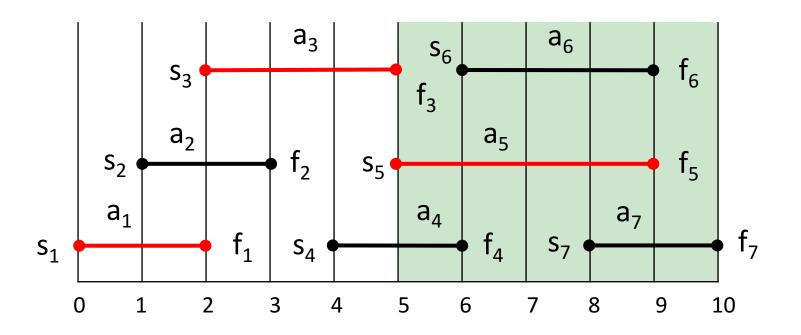
i	1	2	3	4	5	6	7
Si	0	1	2	4	5	6	8
f_i	2	3	5	6	9	9	10



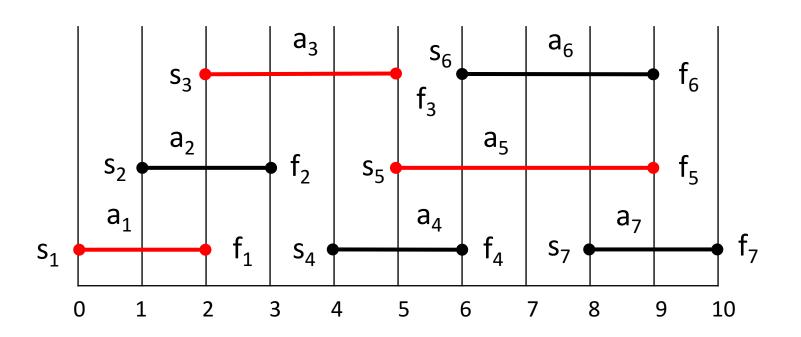
				4			
S _i	0	1	2	4	5	6	8
f_i	2	3	5	6	9	9	10



							7
S _i	0	1	2	4	5	6	8
f_i	2	3	5	6	9	9	10



i	1	2	3	4	5	6	7
S _i	0	1	2	4	5	6	8
f_i	2	3	5	6	9	9	10



Recursive Algorithm

```
Recursive-Activity-Selector (s, f, i, n)

1. m \leftarrow i+1

2. while m \le n and s_m < f_i // Find first activity in S_{i,n+1}

3. do m \leftarrow m+1

4. if m \le n

5. then return \{a_m\} \cup

Recursive-Activity-Selector (s, f, m, n)

6. else return \emptyset
```

Initial Call: Recursive-Activity-Selector (s, f, 0, n+1)

Complexity: $\Theta(n)$

Note 1: We assume activities are already ordered by finishing time.

Note 2: Straightforward to convert the algorithm to an iterative one.

Typical Steps

- Cast the optimization problem as one in which we make a choice and are left with one subproblem to solve.
- Prove that there is always an optimal solution that makes the greedy choice (greedy choice is safe).
- Show that greedy choice and optimal solution to subproblem \Rightarrow optimal solution to the problem.
- Make the greedy choice and solve top-down.
- You may have to preprocess input to put it into greedy order (e.g. sorting activities by finish time).

Elements of Greedy Algorithms

No general way to tell if a greedy algorithm is optimal, but two key ingredients are:

- Greedy-choice Property.
 - A globally optimal solution can be arrived at by making a locally optimal (greedy) choice.
- Optimal Substructure.

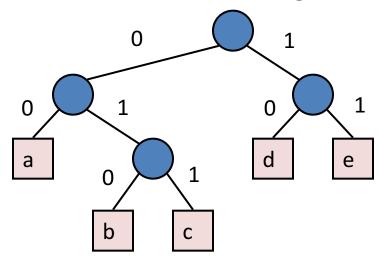
Text Compression

- Given a string X, efficiently encode X into a smaller string Y
 - Saves memory and/or bandwidth
- A good approach: Huffman encoding
 - Compute frequency f(c) for each character c.
 - Encode high-frequency characters with short code words
 - No code word is a prefix for another code
 - Use an optimal encoding tree to determine the code words

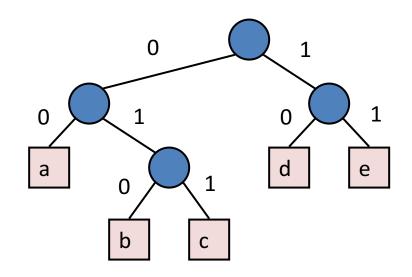
Encoding Tree Example

- A code is a mapping of each character of an alphabet to a binary code-word
- A prefix code is a binary code such that no code-word is the prefix of another code-word
- An encoding tree represents a prefix code
 - Each external node (leaf) stores a character
 - The code word of a character is given by the path from the root to the external node storing the character (0 for a left child and 1 for a right child)

00	010	011	10	11
a	b	С	d	е



Encoding Example

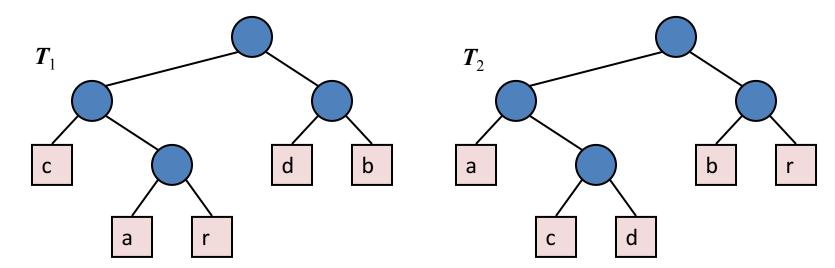


Initial string: X = acda

Encoded string: $X = 00 \ 011 \ 10 \ 00$

Encoding Tree Optimization

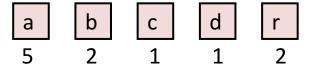
- Given a text string X, we want to find a prefix code for the characters of X that yields a small encoding for X
 - Frequent characters should have long code-words
 - Rare characters should have short code-words
- Example
 - -X= abracadabra
 - T_1 encodes X into 29 bits
 - T_2 encodes X into 24 bits

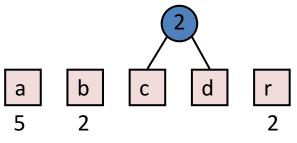


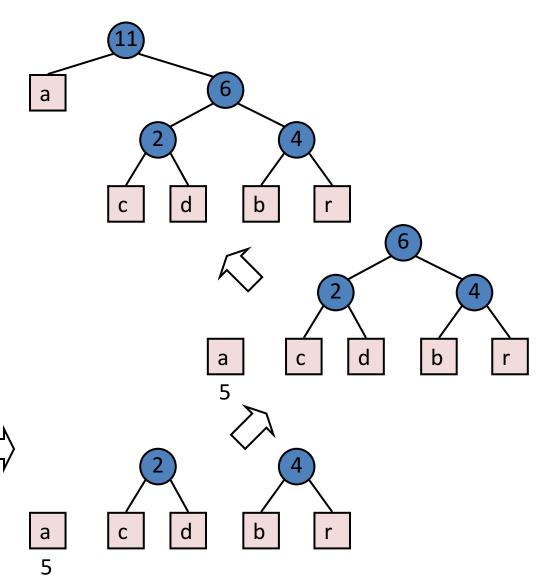
Example

Frequencies

а	b	C	d	r
5	2	1	1	2



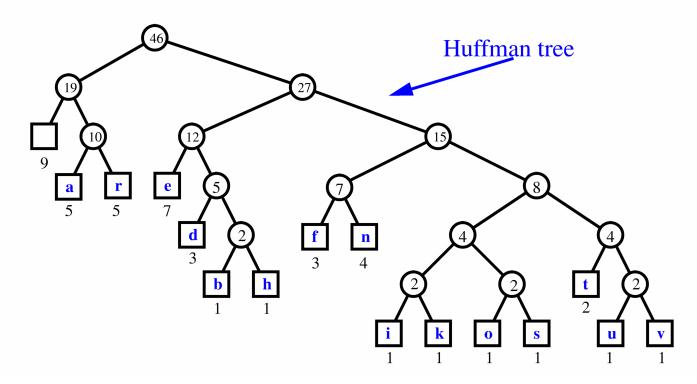




Extended Huffman Tree Example

String: a fast runner need never be afraid of the dark

Character		a	b	d	e	f	h	i	k	n	0	r	S	t	u	v
Frequency	9	5	1	3	7	3	1	1	1	4	1	5	1	2	1	1



Huffman's Algorithm

- Given a string X,
 Huffman's algorithm construct a prefix code the minimizes the size of the encoding of X
- It runs in time $O(n + d \log d)$, where n is the size of X and d is the number of distinct characters of X
- A heap-based priority queue is used as an auxiliary structure

```
Algorithm HuffmanEncoding(X)
  Input string X of size n
  Output optimal encoding trie for X
  C \leftarrow distinctCharacters(X)
  computeFrequencies(C, X)
  Q \leftarrow new empty heap
  for all c \in C
     T \leftarrow new single-node tree storing c
     O.insert(getFrequency(c), T)
  while Q.size() > 1
     f_1 \leftarrow Q.minKey()
     T_1 \leftarrow Q.removeMin()
     f_2 \leftarrow Q.minKey()
     T_2 \leftarrow Q.removeMin()
     T \leftarrow join(T_1, T_2)
     Q.insert(f_1 + f_2, T)
  return Q.removeMin()
```

