
COMP251:	Greedy	algorithms

Jérôme Waldispühl
School	of	Computer	Science

McGill	University
Based	on	(Cormen et	al.,	2002)

Based	on	slides	from	D.	Plaisted (UNC)	&	(goodrich &	Tamassia,	2009)

Disjoint	sets	are	represented	with	an	array	rep[],	that	stores	the	
representative	rep[i]	of	each	element	i.	The	running	time	of	the	

function	find(i)	that	returns	the	representative	of	the	set	
containing	i is:

• 𝛀(1)
• O(log	n)
• 𝚹(log	n)	

✓ (More	interestingly	𝚹(1))

Let	h(A)	(resp.	h(B))	be	the	height	of	the	tree	A	(resp.	B)	rooted	
at	x	(resp.	y).	We	assume	that	h(B)	<=	h(A)	+	1.	After	union(x,y),	

which	assertion	are	true?

• h(y) = h(A) + 1
• h(y) = max(h(A)+1, h(B))
• h(y) = h(B)
• h(B) < h(y)

✓

✗

✓
✗

Overview

• Algorithm	design	technique	to	solve	optimization	
problems.

• Problems	exhibit	optimal	substructure.
• Idea	(the	greedy	choice):

–When	we	have	a	choice	to	make,	make	the	one	
that	looks	best	right	now.

–Make	a	locally	optimal	choice	in	hope	of	
getting	a	globally	optimal	solution.

Greedy	Strategy

The	choice	that	seems	best	at	the	moment	is	the	
one	we	go	with.

– Prove	that	when	there	is	a	choice	to	make,	one	of	
the	optimal	choices	is	the	greedy	choice.	Therefore,	
it is	always	safe	to	make	the	greedy	choice.

– Show	that	all	but	one	of	the	sub-problems	resulting	
from	the	greedy	choice	are	empty.

Activity-selection	Problem
• Input: Set	S of	n	activities,	a1,	a2,	…,	an.

– si =	start	time	of	activity	i.
– fi =	finish	time	of	activity	i.

• Output: Subset	A of	maximum	number of	compatible	
activities.
– 2 activities	are	compatible,	if	their	intervals	do	not	overlap.

Example:
Activities	in	each	line
are	compatible.

0									1										2										3									4										5									6										7									8										9								10

Activity-selection	Problem

0									1										2										3									4										5									6										7									8										9								10

s6 a6

a5

a4

a3

a2

a1 a7
s1

s2

s3

s4

s5

s7f1

f2

f3

f4

f5

f6

f7

i 1 2 3 4 5 6 7
si 0 1 2 4 5 6 8
fi 2 3 5 6 9 9 10

Activities	sorted	by	finishing	time.

Optimal	compatible	set:	{	a1 ,	a3 ,	a5 }

Optimal	Substructure
• Assume	activities	are	sorted	by	finishing	times.

• Suppose	an	optimal	solution	includes	activity	ak.	This	
solution	is	obtained	from:
– An	optimal	selection	of	a1,	…,	ak-1 activities	compatible	with	
one	another,	and	that	finish	before ak starts.

– An	optimal	solution	of	ak+1,	…,	an activities	compatible	with	
one	another,	and	that	start	after ak finishes.

0									1										2										3									4										5									6										7									8										9								10

Optimal	Substructure

• Let	Sij =	subset	of	activities	in	S that	start	after	ai
finishes	and	finish	before	aj starts.

• Aij =	optimal	solution	to	Sij

• Aij =	Aik U	{	ak }	U	Akj

Sij = ak ∈ S :∀i, j fi ≤ sk < fk ≤ sj{ }

Recursive	Solution

• Subproblems:	Selecting	maximum	number	of	
mutually	compatible	activities	from	Sij.

• Let	c[i,	j]	=	size	of	maximum-size	subset	of	mutually	
compatible	activities	in	Sij.

c[i, j]=
0 if Sij =Ø

max{c[i,k]+ c[k, j]+1}
i<k< j and ak∈Sij

if Sij ≠Ø

#

$
%

&
%

Recursive	solution:

Note:	Here,	we	do	not	know	which	k	to	use	for	the	optimal	solution.

Greedy	choice

Theorem:
Let	Sij ≠ ∅,	and	let	am be	the	activity	in	Sij with	the	
earliest	finish	time:	fm =	min{	fk :	ak∈Sij}.	Then:
1. am is	used	in	some	maximum-size	subset	of	

mutually	compatible	activities	of	Sij.
2. Sim =	∅,	so	that	choosing	am leaves	Smj as	the	only	

nonempty	subproblem.

Greedy	choice
Proof:
(1)	am is	used	in	some	maximum-size	subset	of	mutually	
compatible	activities	of	Sij.

• Let	Aij be	a	maximum-size	subset	of	mutually	compatible	
activities	in	Sij (i.e.	an	optimal	solution	of	Sij).

• Order	activities	in	Aij in	monotonically	increasing	order	of	finish	
time,	and	let	ak be	the	first	activity	in	Aij.

• If	ak =	am⇒ done.
• Otherwise,		let	A’ij =	Aij - {	ak }	U	{	am }	
• A’ij is	valid	because	am	finishes	before	ak
• Since	|Aij|=|A’ij|	and	Aij maximal⇒ A’ij maximal	too.	

Greedy	choice
Proof:
(2)	Sim =	∅,	so	that	choosing	am leaves	Smj as	the	only	nonempty	
subproblem.

If	there	is	ak∈Sim then	fi	≤	sk <	fk ≤	sm <	fm⇒ fk <	fm which	
contradicts	the	hypothesis	that	am has	the	earlier	finish.

Greedy	choice

Before	theorem After	theorem
#	subproblems in	
optimal	solution

2 1

#	choices	to	consider j-i-1 1

We	can	now	solve	the	problem	Sij top-down:

• Choose	am∈Sij with	the	earliest	finish	time	(greedy	choice).

• Solve	Smj.

Aij =	Aik U	{	ak }	U	Akj Aij =	{	am }	U	Amj

Activity-selection	Problem

0									1										2										3									4										5									6										7									8										9								10

s6 a6

a5

a4

a3

a2

a1 a7
s1

s2

s3

s4

s5

s7f1

f2

f3

f4

f5

f6

f7

i 1 2 3 4 5 6 7
si 0 1 2 4 5 6 8
fi 2 3 5 6 9 9 10

Activities	sorted	by	finishing	time.

Activity-selection	Problem

0									1										2										3									4										5									6										7									8										9								10

s6 a6

a5

a4

a3

a2

a1 a7
s1

s2

s3

s4

s5

s7f1

f2

f3

f4

f5

f6

f7

i 1 2 3 4 5 6 7
si 0 1 2 4 5 6 8
fi 2 3 5 6 9 9 10

Activities	sorted	by	finishing	time.

Activity-selection	Problem

0									1										2										3									4										5									6										7									8										9								10

s6 a6

a5

a4

a3

a2

a1 a7
s1

s2

s3

s4

s5

s7f1

f2

f3

f4

f5

f6

f7

i 1 2 3 4 5 6 7
si 0 1 2 4 5 6 8
fi 2 3 5 6 9 9 10

Activities	sorted	by	finishing	time.

Activity-selection	Problem

0									1										2										3									4										5									6										7									8										9								10

s6 a6

a5

a4

a3

a2

a1 a7
s1

s2

s3

s4

s5

s7f1

f2

f3

f4

f5

f6

f7

i 1 2 3 4 5 6 7
si 0 1 2 4 5 6 8
fi 2 3 5 6 9 9 10

Activities	sorted	by	finishing	time.

Recursive	Algorithm
Recursive-Activity-Selector	(s,	f,	i,	n)
1. m¬ i+1
2. whilem ≤	n and	sm <	fi
3. dom	¬m+1
4. if m ≤ n
5. then return {am}	È

Recursive-Activity-Selector(s,	f,	m,	n)
6. else	return	∅

Initial	Call:	Recursive-Activity-Selector	(s,	f,	0,	n+1)
Complexity:	Q(n)

Note	1:	We	assume	activities	are	already	ordered	by	finishing	time.
Note	2:	Straightforward	to	convert	the	algorithm	to	an	iterative	one.

//	Find	first	activity	in	Si,n+1

Typical	Steps
• Cast	the	optimization	problem	as	one	in	which	we	
make	a	choice	and	are	left	with	one	subproblem to	
solve.

• Prove	that	there is	always	an	optimal	solution	that	
makes	the	greedy	choice (greedy	choice	is	safe).

• Show	that	greedy	choice	and	optimal	solution	to	
subproblemÞ optimal	solution	to	the	problem.

• Make	the	greedy	choice	and	solve	top-down.
• You	may	have	to	preprocess	input	to	put	it	into	
greedy	order (e.g.	sorting	activities	by	finish	time).

Elements	of	Greedy	Algorithms

No	general	way	to	tell	if	a	greedy	algorithm	is	optimal,	
but	two	key	ingredients	are:
• Greedy-choice	Property.

– A	globally	optimal	solution	can	be	arrived	at	by	
making	a	locally	optimal	(greedy)	choice.

• Optimal	Substructure.

Text	Compression

• Given	a	string	X,	efficiently	encode	X	into	a	smaller	
string	Y
– Saves	memory	and/or	bandwidth

• A	good	approach:	Huffman	encoding
– Compute	frequency	f(c)	for	each	character	c.
– Encode	high-frequency	characters	with	short	code	words
– No	code	word	is	a	prefix	for	another	code
– Use	an	optimal	encoding	tree	to	determine	the	code	words

Encoding	Tree	Example
• A	code is	a	mapping	of	each	character	of	an	alphabet	to	a	binary	

code-word
• A	prefix	code is	a	binary	code	such	that	no	code-word	is	the	prefix	

of	another	code-word
• An	encoding	tree represents	a	prefix	code

– Each	external	node	(leaf)	stores	a	character
– The	code	word	of	a	character	is	given	by	the	path	from	the	root	to	the	

external	node	storing	the	character	(0	for	a	left	child	and	1	for	a	right	child)

a

b c

d e

00 010 011 10 11
a b c d e

0

0

0

0

1

11

1

Encoding	Example

a

b c

d e

0

0

0

0

1

11

1

Initial	string:	X	=	acda
Encoded	string: X	=	00 011 10 00

Encoding	Tree	Optimization
• Given	a	text	string	X,	we	want	to	find	a	prefix	code	for	the	

characters	of	X that	yields	a	small	encoding	for	X
– Frequent	characters	should	have	long	code-words
– Rare	characters	should	have	short	code-words

• Example
– X = abracadabra
– T1 encodes	X into	29 bits
– T2 encodes	X into	24 bits

c

a r

d b a

c d

b r

T1 T2

Example

a b c d r
5 2 1 1 2

X = abracadabra

Frequencies

ca rdb
5 2 1 1 2

ca rdb

2

5 2 2
ca bd r

2

5

4

ca bd r

2

5

4

6
c

a

bd r

2 4

6

11

Extended	Huffman	Tree	Example

Huffman’s	Algorithm

• Given	a	string	X,	
Huffman’s	algorithm	
construct	a	prefix	code	
the	minimizes	the	size	
of	the	encoding	of	X

• It	runs	in	time
O(n + d log d),	where	n
is	the	size	of	X and	d is	
the	number	of	distinct	
characters	of	X

• A	heap-based	priority	
queue	is	used	as	an	
auxiliary	structure

Algorithm HuffmanEncoding(X)
Input string X of size n
Output optimal encoding trie for X
C ¬ distinctCharacters(X)
computeFrequencies(C, X)
Q ¬ new empty heap
for all c Î C

T ¬ new single-node tree storing c
Q.insert(getFrequency(c), T)

while Q.size() > 1
f1 ¬ Q.minKey()
T1 ¬ Q.removeMin()
f2 ¬ Q.minKey()
T2 ¬ Q.removeMin()
T ¬ join(T1, T2)
Q.insert(f1 + f2, T)

return Q.removeMin()

0									1										2										3									4										5									6										7									8										9								10

a2

a5

a8

a1

a4

a7 a9

a6

a3

