
COMP251:	Disjoint	sets	

Jérôme	Waldispühl		
School	of	Computer	Science	

McGill	University	
Based	on	slides	from	M.	Langer	(McGill)	

Announces	

•  Assignment	1	is	due	on	Wednesday	February	1st.	

•  Submit	your	soluOon	on	MyCourse.	

•  WriPen	soluOons	must	be	submiPed	in	PDF	format.	

•  Java	files	must	compile	&	execute	on	SOCS	machine!	

•  Use	the	forum:			hPps://osqa.cs.mcgill.ca		

•  Use	your	SOCS	login/password	to	login	into	the	forum.	

•  If	you	do	not	have	one,	register	at	hPps://newuser.cs.mcgill.ca			

Let	T	be	a	red-black	tree	and	x	a	node	of	this	tree.	Which	of	the	
following	asserOons	are	true?	

•  Half	of	the	nodes	on	any	path	from	x	down	to	a	leaf	are	black*.	
•  If	the	le`	child	of	x	is	red,	then	its	right	child	is	red	too.	
•  The	black	height	of	the	le`	and	right	sub-tree	of	x	are	idenOcal.	
•  A	leaf	can	be	red	if	and	only	if	its	parent	node	is	black.	

*	At	least!	

✔	

✗	
✗	

✗	

Height	of	a	Red-black	Tree	

•  Height	h(x):	
#edges	in	a	longest	path	to	a	leaf.	

•  Black-height	bh(x):	
#	black	nodes	on	path	from	x	to	
leaf,	not	coun(ng	x.	

•  Property:	bh(x)	≤	h(x)	≤	2	bh(x)	

h=4	
bh=2	

h=3	
bh=2	

h=2	
bh=1	

h=2	
bh=1	

h=1	
bh=1	

h=1	
bh=1	

h=1	
bh=1	

26	

17	

30	 47	

38	 50	

41	

Nil	Nil	 Nil	

Nil	

Nil	

Nil	 Nil	

Nil	

In	RB	tree	insert,	we	assign	the	red	color	to	the	new	node	N	
being	inserted.	This	allows	to:	

•  preserve	the	black	height	of	the	paths	traversing	N.	
•  avoid	two	consecuOve	black	nodes.	
•  It	does	not	maPer.	We	can	assign	a	black	color	instead	and	

keep	the	same	algorithm.	

✔	

Consider	the	tree	below	and	the	node	x	and	y.	Which	operaOons	
are	allowed	around	the	edge	(x,y)?	

•  One	le`	rotaOon	
•  One	right	rotaOon	
•  One	right	rotaOon	followed	by	le`	rotaOon	
•  One	right	rotaOon	followed	by	another	right	rotaOon	

✔	
✗	

✗	
✗	

Assume	the	tree	below	is	a	BST.	We	note	h(A)	(resp.	h(B)	and	
h(C))	the	height	of	the	subtree	A	(resp.	B	and	C).	We	perform	a	

le`	rotaOon	at	node	x.	Then…	

•  h(A)	=	h(B)	
•  h(y)	=	h(A)	+	2	
•  h(y)	=	h(x)	+	1	
•  h(x)	=	max(h(A),	h(B))	

y	

x	

A	 B	

C	

x	

y	

C	B	

A	

✗	

✗	
✗	

✗	

Recap	of	the	previous	lecture	
Proper&es:	
1.  Every	node	is	either	red	or	black.	
2.  The	root	is	black.	
3.  Every	leaf	(nil)	is	black.	
4.  If	a	node	is	red,	then	its	children	are	

black.	
5.  All	paths	from	a	node	to	descendant	

leaves	contain	the	same	number	of	
black	nodes	(i.e.	same	black	height).	

26	

17	

30	 47	

38	 50	

Nil	Nil	 Nil	

Nil	

Nil	

Nil	 Nil	

41	

Insert	node	in	a	red-black	tree:	
1.  BST	insert.	
2.  Assign	the	color	red	to	the	new	node.	
3.  Fix	tree	with	recoloring	of	nodes	and	rotaOons			

Case	1	–	uncle	y	is	red	

•  p[p[z]]	(z’s	grandparent)	must	be	black,	since	z	and	p[z]	are	both	red	
and	there	are	no	other	violaOons	of	property	4.	

•  Make	p[z]	and	y	black	⇒ now	z	and	p[z]	are	not	both	red.	But	
property	5	might	now	be	violated.	

•  Make	p[p[z]]	red	⇒	restores	property	5.	
•  The	next	iteraOon	has	p[p[z]]	as	the	new	z	(i.e.,	z	moves	up	2	levels).	

z	is	a	right	child	here.	
Similar	steps	if	z	is	a	
le`	child.	

C	

A	 D	

B	
α	

β	 γ	

δ	 ε	
z	

y	p[z]	

p[p[z]]	

α	

β	 γ	

δ	 ε	

new	z	
C	

A	 D	

B	

Case	2	–	y	is	black,	z	is	a	right	child	

•  Le`	rotate	around	p[z],	p[z]	and	z	switch	roles	⇒ now	z	is	a	le`	
child,	and	both	z	and	p[z]	are	red.	

•  Takes	us	immediately	to	case	3.	

Cx	

A	

B	
α	

β	 γ	

δ	

z	

y	

p[z]	
C	

B	

A	

α	 β	

γ	

δ	

z	

y	
p[z]	

Case	3	–	y	is	black,	z	is	a	le`	child	

•  Make	p[z]	black	and	p[p[z]]	red.	
•  Then	right	rotate	on	p[p[z]].	Ensures	property	4	is	maintained.	
•  No	longer	have	2	reds	in	a	row.	
•  p[z]	is	now	black	⇒	no	more	iteraOons.	

C	

B	

A	

α	 β	

γ	

δ	 y	
p[z]	

z	

B	

A	

α	 β	 γ	 δ	

C	

AVL	&	Red-Black	trees	

•  Both	are	BST	trees	with	addiOonal	properOes.	
•  These	properOes	allow	to	guarantee	that	the	BST	are	balanced.	
•  InserOon	is	achieved	with	a	classical	BST	insert	followed	by	

operaOons	to	restore	the	tree	properOes	(i.e.	AVL	or	RB).	

•  RotaOon	is	the	basic	operaOon	to	modify	trees	while	preserving	
the	BST	properOes.	

•  	We	can	use	these	data	structures	(i.e.	AVL	and	RB	trees)	to	
design	a	sorOng	algorithms	with	guaranteed	O(log	n)	running	
Ome.	

Problem	

Let	G=(V,E)	be	undirected	graph,	and	A,	B	∈	V		two	nodes	of	G.	
	
QuesOon:	Is	there	a	path	between		A	and	B?	
	
But	we	are	not	interested	in	knowing	the	path	between	A	and	B.	
	
Is	there	a	faster	way	to	solve	this	problem	(faster	than	DFS	or	BFS)?	

Connected	components	

1	

3	

5	

2	

10	

13	

4	

11	
6	

12	

15	

7	
9	

14	
8	

Connected	component:	Set	of	nodes	connected	by	a	path.	

QuesOon:	Given	2	nodes	A	&	B,	are	they	in	the	same	component?		

ParOOon	

1	

3	

5	

2	

10	

13	

4	

11	
6	

12	

15	
7	

9	

14	
8	

GeneralizaOon:	Set	of	object	parOOoned	into	disjoint	subsets.	

S1	

S6	 S5	

S4	

S3	S2	

S = S1∪S2∪...∪Sn
Si ≠Ø∀i ∈ {1,...,n}
Si∩Sj =Ø iff i ≠ j

&
'
(

)(

Map	vs.	RelaOon	

5	4	

1	 2	

3	
6	

7	

8	

9	

5	4	

1	 2	

3	
6	

7	

8	

9	

S	 S	

Map	or	
funcOon	 {(a,f(a)}	f:	

RelaOon	R	⊆	{	(a,b)	:	a,b	∈	S	}		

0	 1	 1	 0	 1	

0	 1	 0	 1	 0	

1	 0	 0	 1	 0	

1	 1	 0	 0	 1	

0	 1	 1	 0	 0	

b	

a	
Any	boolean	
matrix	defines	
a	relaOon	

Equivalence	relaOon	

i	is	equivalent	to	j	if	they	belong	to	the	same	set.	
	

(more	constrained	that	general	relaOon)	

1	 2	 3	 4	 5	 6	 7	

1	 1	 0	 0	 0	 0	 1	 1	

2	 0	 1	 1	 0	 0	 0	 0	

3	 0	 1	 1	 0	 0	 0	 0	

4	 0	 0	 0	 1	 0	 0	 0	

5	 0	 0	 0	 0	 1	 0	 0	

6	 1	 0	 0	 0	 0	 1	 1	

7	 1	 0	 0	 0	 0	 1	 1	

5	
4	

1	 2	
3	6	 7	

Equivalence	relaOon	
•  Reflexivity	
•  Symmetry	

•  TransiOvity	

∀a ∈ S, (a,a)∈ R

∀a,b∈ S, (a,b)∈ R⇒ (b,a)∈ R

∀a,b,c ∈ S, (a,b)∈ R and (b,c)∈ R⇒ (a,c)∈ R

Example:	

For	any	undirected	graph,	the	connecOons	define	an	equivalence	
relaOon	on	verOces.	
•  For	all	u	∈	V,	there	is	a	path	of	length	0	from	u	to	u.	
•  For	all	u,v	∈	V,	There	is	a	path	from	u	to	v,	iff	there	is	a	path	

from	v	to	u.		
•  For	all	u,v,w	∈	V,	if	there	is	a	path	from	u	to	v	and	a	path	from	

v	to	w,	then	there	is	a	path	from	u	to	w.		

Disjoint	set	ADT	

1	

3	

5	 2	
10	

13	

4	

11	
6	

12	

15	7	9	

14	 8	

Each	set	in	the	parOOon	as	a	representaOve	member.	

•  find(i)	returns	the	representaOve	of	the	set	that	contains	i.	
•  sameset(i,j)	returns	the	boolean	value	find(i)==find(j)	

•  union(i,j)	merges	the	sets	containing	i	and	j.	

Union	of	disjoint	sets	

union(i,j)	merges	the	sets	containing	i	and	j.	

	

	

•  Does	nothing	if	i	and	j	are	already	in	the	same	set.	

•  Otherwise,	we	merge	the	set	and	need	a	policy	to	decide	
who	will	be	the	representaOve	of	the	new	merged	set.	

Quick	find	

1	 1	

2	 3	

3	 3	

4	 4	

5	 7	

6	 1	

7	 7	

8	 7	

9	 1	

7	
4	

1	 2	
3	6	 9	

8	

5	

Rep[]	

Let	Rep[i]	∈	{	1,	2,	…	,	n	}	be	the	
representaOve	of	the	set	containing	i.	

Quick	fund	&	union	

1	 1	

2	 3	

3	 3	

4	 4	

5	 7	

6	 1	

7	 7	

8	 7	

9	 1	

1	 1	

2	 3	

3	 3	

4	 4	

5	 7	

6	 1	

7	 7	

8	 7	

9	 1	

1	 1	

2	 1	

3	 1	

4	 4	

5	 7	

6	 1	

7	 7	

8	 7	

9	 1	

i	

j	

•  find(i)	{	return	rep[i];	}	
•  union(i,j)	merges	the	sets	containing	i	and	j.	

Example:	union(2,6)	

Quick	find	&	union	
union(i,j) {

if rep[i] != rep[j] {
prevrepi = rep[i];
for (k=1; k<=n; k++) {

if rep[k] == rep[i] {
rep[k] = rep[j];

}
}

}
}

prevrepi {

•  	store	value	of	rep[i]	because	it	may	change	
during	the	execuOon	of	the	algorithm.	

•  O(n)	running	Ome…	slow.	

Tree	representaOon	&	forests	

•  Represent	the	disjoint	sets	by	a	forest	of	rooted	trees.	
•  Roots	are	the	representaOve	(i.e.	find(i)	==	findroot(i)).	
•  Each	node	points	to	its	parent.	

7	

4	

2	 6	9	

1	

5	 8	

11	

3	

10	

Array	representaOon	

7	

4	

2	 6	9	

1	

5	 8	

11	

3	

10	

1	 1	

2	 7	

3	 3	

4	 9	

5	 1	

6	 7	

7	 7	

8	 1	

9	 7	

10	 3	

11	 5	

p[]	

•  Non-root	nodes	hold	index	of	their	parent.	
•  Root	nodes	store	their	own	value.	

Find	&	Union	
find(i) {

if p[i] == i {
return i;

} else {
return find(p[i]);

}
}

union(i,j) {
if find(i) != find(j) {

p[find(i)] = find(j);
}

}

Remark:	Arbitrarily	merge	the	set	on	i	into	the	set	of	j.		

Union	example	

7	

4	

2	 6	9	

1	

5	 8	

11	

union(9,11)	

7	

4	

2	 6	9	

1	

5	 8	

11	

Root	of	the	tree	of	11	becomes	the	
parent	of	the	root	of	the	tree	of	9.	

Worst	case	

union(1,2)	

union(1,3)	

union(1,4)	

…	

union(1,n)	

Then	find(1)	is	O(n)!	

2	

1	

3	

4	

n	

n-1	

…
	

Union	by	size	
HeurisOc	to	control	the	height	to	the	trees	a`er	merging.	
	
Idea:	Merge	tree	with	smaller	number	of	nodes	into	the	tree	with	
the	largest	number	of	nodes	(In	pracOce,	we	can	also	use	rank	
which	is	an	upper	bound	on	the	height	of	nodes).	

7	

4	

2	 6	9	

1	

5	 8	

7	

4	

2	 6	9	 1	

5	 8	

Union	by	size	
Claim:	The	depth	of	any	node	is	at	most	log	n.	

Proof:	

•  If	union	causes	the	depth	of	a	node	to	increase,	then	this	
node	must	belong	to	the	smallest	tree.		

•  Thus,	the	size	of	the	(merged)	tree	containing	this	node	will	at	
least	double.	

•  But	we	can	double	the	size	of	a	tree	at	most	log	n	Omes.	

7	

4	

2	 6	9	 1	

5	 8	

+1	

Union	by	height	

Idea:	Merge	tree	with	smaller	height	into	tree	with	larger	height.	
	
Claim:	The	height	of	trees	obtained	by	union-by-height	is	at	most	
log	n.			
	
Corollary:	An	union-by-height	tree	of	height	h	has	at	least	nh	≥	2h	
nodes.		
	
Proof	(Corollary):	
•  Base	case:	a	tree	of	height	0	has	one	node.	
•  InducOon:	(hypothesis)	nh	≥	2h.	Show	nh+1	≥	2h+1.	

Running	Ome	

find(i)	 union(i,j)	
Quick	find	 O(1)	 O(n)	

Union	by	size	 O(log	n)	 O(log	n)	
Union	by	height	 O(log	n)	 O(log	n)	

Quick	Union	

Note:	These	are	worst	case	complexiOes.	

Quick	union	makes	
2	calls	to	find.	

Path	compression	

•  Find	path	=	nodes	visited	during	the	execuOon	of	find()	on	the	
trip	to	the	root.	

•  Make	all	nodes	on	the	find	path	direct	children	of	root.	

a	

b	

c	

d	

a	

b	d	 c	

Path	compression	

find(i) {
if p[i] == i {

return i;
} else {

return find(p[i]);
}

}

p[i] = find(p[i]);
return p[i];

}
}

Running	Ome	
•  Use	union	by	size	and	path	compression.	

•  Worst	case	running	Ome	is	O(log	n).	

•  However,	we	can	show	that	m	union	or	find	operaOons	
take	O(m	α(n)).	

What	is	α(n)	?	

n	 α(n)	
0	-	2	 0	
3	 1	

4	-	7	 2	
8	-	2047		 3	

2048	–	A4(1)	 4	 Where	A4(1)	>>	1080	!!		

