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The running time of insertions in BST
trees with n nodes is:
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Which assertion(s) are true?

Rotations preserve BST properties ‘/

Rotations preserve AVL tree properties X

AVL properties can be restored using rotations ﬁ/

In the worst case, a rotation has a O( log n ) running time X



How should we modify BST sort to sort
numbers in decreasing order?
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e Use an AVL tree instead of a BST



Recap lecture 3

Definition: An AVL tree is a BST such that the heights of the two
child subtrees of any node differ by at most one.

| hIeft_hright <1 1

 AVL trees are self-balanced binary search trees.
* Insert, Delete & Search take O(log n) in average and worst cases.



Recap lecture 3

Right rotation

'
C A
AN /B R J B\ /C

Left rotation

Rotations preserve the BST property.
Proof: elementsin Bare>xand <y...



Recap lecture 3




Insert in AVL trees




Insert in AVL trees

Left rotation at 43

Rotateleft(T,43)



Insert in AVL trees

Right rotation at 57

RotateRight(T,57)



Red-black trees: Overview

Red-black trees are a variation of binary search
trees to ensure that the tree is balanced.

— Height is O(lg n), where n is the number of nodes.
Operations take O(lg n) time in the worst case.
Invented by R. Bayer (1972).

Modern definition by L.J. Guibas & R.
Sedgewick (1978).



Red-black Tree

* Binary search tree + 1 bit per node: the
attribute color, which is either red or black.

e All other attributes of BSTs are inherited:
—key, left, right, and parent.

e All empty trees (leaves) are colored black.

— Note: We can use a single sentinel, nil, for all the
leaves of red-black tree T, with color[nil] = black.
The root’ s parent is also nil[T].
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Red-black Properties

Every node is either red or black.
The root is black.
Every leaf (nil) is black.

If a node is red, then its children are black
(i.e. no 2 consecutive red nodes).

For each node, all paths from the node to
descendant leaves contain the same number
of black nodes (i.e. same black height).



Red-black Tree — Example

Note: every internal

node has two children,
even though nil leaves
are not usually shown.




Height of a Red-black Tree

* Height of a node:
— h(x) = number of edges in the longest path to a leaf.

* Black-height of a node x, bh(x):

— bh(x) = number of black nodes (including nil[T ])
on the path from x to leaf, not counting x.

* Black-height of a red-black tree is the black-height
of its root.

— By Property 5, black height is well defined.



Height of a Red-black Tree

h=4

* Height h(x):
#edges in a longest path to a leaf.
* Black-height bh(x):

# black nodes on path from x to
leaf, not counting x.

* Property: bh(x) < h(x) <2 bh(x)

bh=1



Bound on RB Tree Height

Lemma 1: Any node x with height h(x) has a black-height
bh(x) = h(x)/2.

Proof: By property 4, <h / 2 nodes on the path from the
node to a leaf are red. Hence > h/2 are black. ®
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Bound on RB Tree Height

Lemma 2: The subtree rooted at any node x contains = 2bhx—1
internal nodes.

Proof: By induction on height of x.

* Base Case: Height h(x) = 0 => xis a leaf = bh(x) = 0.
Subtree has = 2°-1 = 0 nodes.

* Induction Step:

— Each child of x has height h(x) - 1 and
black-height either b(x) (child is red) or b(x) - 1 (child is black).

— By ind. hyp., each child has = 2bhx}-1—1 internal nodes.

— Subtree rooted at x has = 2. (2bh0-1—-1) + 1
= 2bh() — 1 internal nodes. (The +1 is for x itself) ®



Bound on RB Tree Height

Lemma 1: Any node x with height h(x) has a black-height
bh(x) = h(x)/2.

Lemma 2: The subtree rooted at any node x has
> 2bh¥—1 internal nodes.

Lemma 3: A red-black tree with n internal nodes has
height at most 2 lg(n+1).

Proof:

e Bylemma2,n=2b—1,
 Bylemma1l, bh=h/2,thusn=2"—1.
e« = h=<2lg(nh+1).



Insertion in RB Trees

* |[nsertion must preserve all red-black properties.
* Should an inserted node be colored Red? Black?

* Basic steps:

— Use BST Tree-Insert to insert a node x into T.
e Procedure RB-Insert(x).

— Color the node x red.

— Fix the new tree by (1) re-coloring nodes, and (2)
performing rotation to preserve RB tree property.
* Procedure RB-Insert-Fixup.



Insertion

RB-Insert(T, z) RB-Insert(T, z) Contd.

1.  y < nil[T] 14. left[z] < nil[T]

2.  x<root[T] 15.  right[z] <= nil[T]

3.  while x = nil[T] 16. color[z] < RED

4. doy < x 17. RB-Insert-Fixup (T, z)
5. if key[z] < key[x]

6. then x < /left[x]

;: o] < yelse A Regular BST in§ert + color
9. ify=nilll] assignment + fixup.
10. then root[T] <z

11. else if key|z] < key|[y]

12. then leftly] < z

13. else rightly] < z




Insert RB Tree — Example




Insert RB Tree — Example
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Insert(T,15)



Insert RB Tree — Example

Recolor 10, 8 &11



Insert RB Tree — Example

Right rotate at 18



Insert RB Tree — Example
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Right rotate at 18 (parent & child with conflict are aligned)



Insert RB Tree — Example

7

00 ¢

Left rotate at 7



Insert RB Tree — Example

Left rotate at 7



Insert RB Tree — Example

o

Recolor 10 & 7 (root must be black!)



Insertion — Fixup

RB-Insert-Fixup (7, z)
while color[p[z]] = RED
do if p[z] = left[p|p[z]]]

then y < right[p(p(z]]]
if color[y] = RED

then color[p[z]] < BLACK //Case 1
color[y] <= BLACK  //Case 1
color[p[p[z]]] <= RED //Case 1
z < plp[z]] // Case 1
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Insertion — Fixup

RB-Insert-Fixup(T, z) (Contd.)

9. else if z = right[p[z]] // color[y] = RED
10. then z <— p[Z] // Case 2
11. LEFT-ROTATE(T, z)  //Case 2
12. color[p|[z]] <= BLACK // Case 3
13. color[p[p[z]]] <= RED // Case 3
14. RIGHT-ROTATE(T, p[p[z]]) // Case 3
15. else (if p[z] = right[p[p[z]]])(same as 10-14

16. with “right” and “left” exchanged)

17.color[root[T ]] <= BLACK




Case 1 —uncleyis red

new z

z is a right child here.

Similar stepsif zis a
B Y left child.

B b
* plp[z]] (z' s grandparent) must be black, since z and p[z] are both red
and there are no other violations of property 4.

* Make p[z] and y black = now z and p|z] are not both red. But
property 5 might now be violated.

 Make p[p[z]] red = restores property 5.
 The next iteration has p[p[z]] as the new z (i.e., z moves up 2 levels).



Case 2 — vy is black, z is a right child

plz] y

:I/I\ (new) plz]

(new) z Y
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* Left rotate around p[z], p[z] and z switch roles = now z is a left
child, and both z and p|z] are red.

* Takes us immediately to case 3.



Case 3 —y is black, z is a left child

plpl(z]]

Make pl[z] black and p[p]z]] red.
Then right rotate right on p[p[z]] (in order to maintain property 4).

No longer have 2 reds in a row.

plz] is now black = no more iterations.



Algorithm Analysis

* O(lg n) time to get through RB-Insert up to the
call of RB-Insert-Fixup.
* Within RB-Insert-Fixup:
— Each iteration takes O(1) time.
— Each iteration but the last moves z up 2 levels.
— O(lg n) levels = O(lg n) time.
— Thus, insertion in a red-black tree takes O(lg n) time.

— Note: there are at most 2 rotations overall.



Correctness

Loop invariant:

e At the start of each iteration of the while
loop,
— Zis red.

— There is at most one red-black violation:
* Property 2: zis ared root, or
e Property 4: z and p[z] are both red.



Correctness — Contd.

* |nitialization: v/
 Termination: The loop terminates only if p[z] is black.

Hence, property 4 is OK.
The last line ensures property 2 always holds.

 Maintenance: We drop out when z is the root (since
then p[z] is sentinel nil[T ], which is black). When we

start the loop body, the only violation is of property 4.

— There are 6 cases, 3 of which are symmetric to the other 3.
We consider cases in which p[z] is a left child.

— See cases 1, 2, and 3 described above.



Further Readings

[CLRS2009] Cormen, Leiserson, Rivest, & Stein, Introduction
to Algorithms. (available as E-book)

INTRODUCTION

See Chapter 13 for the complete proofs & deletion



