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The	running	Rme	of	inserRons	in	BST	
trees	with	n	nodes	is:		

•  Ω(log(n))	
•  Θ(log(n))	
•  O(log(n))	
•  O(n)	
•  Ω(n)	



Which	asserRon(s)	are	true?		

•  RotaRons	preserve	BST	properRes	
•  RotaRons	preserve	AVL	tree	properRes	
•  AVL	properRes	can	be	restored	using	rotaRons	
•  In	the	worst	case,	a	rotaRon	has	a	O(	log	n	)	running	Rme	

✔	

✔	
✗	

✗	



How	should	we	modify	BST	sort	to	sort	
numbers	in	decreasing	order?	

•  Use	post-order	traversal	
•  Reverse	the	order	of	recursive	calls	in	in-order	traversal	
•  Use	an	AVL	tree	instead	of	a	BST	



Recap	lecture	3	

Defini&on:	An	AVL	tree	is	a	BST	such	that	the	heights	of	the	two	
child	subtrees	of	any	node	differ	by	at	most	one.	
	
	
	
	
	
	
	
•  AVL	trees	are	self-balanced	binary	search	trees.	
•  Insert,	Delete	&	Search	take	O(log	n)	in	average	and	worst	cases.	
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Recap	lecture	3	
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RotaRons	preserve	the	BST	property.	
Proof:	elements	in	B	are	≥	x	and	≤	y…	



Recap	lecture	3	
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Insert	in	AVL	trees	
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Insert	in	AVL	trees	

RotateLea(T,43)	
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Insert	in	AVL	trees	

RotateRight(T,57)	
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Red-black	trees:	Overview	
•  Red-black	trees	are	a	variaRon	of	binary	search	
trees	to	ensure	that	the	tree	is	balanced.	

– Height	is	O(lg	n),	where	n	is	the	number	of	nodes.	

•  OperaRons	take	O(lg	n)	Rme	in	the	worst	case.	

•  Invented	by	R.	Bayer	(1972).	
•  	Modern	definiRon	by	L.J.	Guibas	&	R.	
Sedgewick	(1978).	



Red-black	Tree	

•  Binary	search	tree	+	1	bit	per	node:	the	
amribute	color,	which	is	either	red	or	black.	

•  All	other	amributes	of	BSTs	are	inherited:	
– key,	le+,	right,	and	parent.	

•  All	empty	trees	(leaves)	are	colored	black.	
– Note:	We	can	use	a	single	senRnel,	nil,	for	all	the	
leaves	of	red-black	tree	T,	with	color[nil]	=	black.	
The	root’s	parent	is	also	nil[T	].	



Red-black	ProperRes	
1.  Every	node	is	either	red	or	black.	
2.  The	root	is	black.	
3.  Every	leaf	(nil)	is	black.	
4.  If	a	node	is	red,	then	its	children	are	black	

(i.e.	no	2	consecuRve	red	nodes).	

5.  For	each	node,	all	paths	from	the	node	to	
descendant	leaves	contain	the	same	number	
of	black	nodes	(i.e.	same	black	height).	



Red-black	Tree	–	Example		
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Note:	every	internal	
node	has	two	children,	
even	though	nil	leaves	
are	not	usually	shown.	
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Height	of	a	Red-black	Tree	

•  Height	of	a	node:	
– h(x)	=	number	of	edges	in	the	longest	path	to	a	leaf.	

•  Black-height	of	a	node	x,	bh(x):	
– bh(x) =	number	of	black	nodes	(including	nil[T	])		
on	the	path	from	x	to	leaf,	not	counRng	x.	

•  Black-height	of	a	red-black	tree	is	the	black-height	
of	its	root.	
– By	Property	5,	black	height	is	well	defined.	



Height	of	a	Red-black	Tree	

•  Height	h(x):	
#edges	in	a	longest	path	to	a	leaf.	

•  Black-height	bh(x):	
#	black	nodes	on	path	from	x	to	
leaf,	not	coun7ng	x.	

•  Property:	bh(x)	≤	h(x)	≤	2	bh(x)	
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Bound	on	RB	Tree	Height		
Lemma	1:	Any	node	x	with	height	h(x)	has	a	black-height	
bh(x)	≥	h(x)/2.	

Proof:	By	property	4,	≤	h	/	2	nodes	on	the	path	from	the	
node	to	a	leaf	are	red.	Hence	≥	h/2	are	black.	n	
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Bound	on	RB	Tree	Height	

Lemma	2:	The	subtree	rooted	at	any	node	x	contains	≥ 2bh(x)–1	
internal	nodes.	

Proof:	By	inducRon	on	height	of	x.	
•  Base	Case:		Height	h(x)	= 0	⇒ x	is	a	leaf	⇒	bh(x) = 0.	

Subtree	has	≥	20–1	= 0	nodes.		
•  Induc&on	Step:	

–  Each	child	of	x	has	height	h(x)	- 1	and		
black-height	either	b(x)	(child	is	red)	or	b(x)	- 1	(child	is	black).	

–  	By	ind.	hyp.,	each	child	has	≥ 2bh(x)– 1–1	internal	nodes.	
–  Subtree	rooted	at	x	has		≥ 2	�	(2bh(x) – 1	– 1) + 1		

= 2bh(x) – 1	internal	nodes.	(The	+1	is	for	x	itself)	n	



Bound	on	RB	Tree	Height	

Lemma	1:	Any	node	x	with	height	h(x)	has	a	black-height	
bh(x)	≥	h(x)/2.	

Lemma	2:	The	subtree	rooted	at	any	node	x	has		
≥	2bh(x)–1	internal	nodes.	

Lemma	3:	A	red-black	tree	with	n	internal	nodes	has	
height	at	most	2	lg(n+1).	
Proof:	
•  By	lemma	2,	n	≥ 2bh	– 1,	
•  By	lemma	1,	bh	≥	h/2,	thus	n	≥	2h/2	– 1.	
•  ⇒		h	≤ 2	lg(n	+ 1).	



InserRon	in	RB	Trees	
•  InserRon	must	preserve	all	red-black	properRes.	
•  Should	an	inserted	node	be	colored	Red?	Black?	
•  Basic	steps:	

– Use	BST	Tree-Insert	to	insert	a	node	x	into	T.	
•  Procedure	RB-Insert(x).	

– Color	the	node	x	red.	
– Fix	the	new	tree	by	(1)	re-coloring	nodes,	and	(2)	
performing	rotaRon	to	preserve	RB	tree	property.	

•  Procedure	RB-Insert-Fixup.	



InserRon	
RB-Insert(T,	z)	
1.   	y	←	nil[T]	
2.  x	←	root[T]	
3.   while	x	≠	nil[T]	
4.  				do	y	←	x	
5.  									if	key[z]	<	key[x]	
6.  														then	x	←	le+[x]	
7.  														else	x	←	right[x]	
8.  p[z]	←	y	
9.   if	y	=	nil[T]	
10.  				then	root[T]	←	z	
11.  				else	if	key[z]	<	key[y]	
12.  										then		le+[y]	←	z	
13.  										else	right[y]	←	z	

RB-Insert(T,	z)	Contd.	
14.  le+[z]	←	nil[T]	
15.  right[z]	←	nil[T]	
16.  color[z]	←	RED	
17.  RB-Insert-Fixup	(T,	z)	

Regular	BST	insert	+	color	
assignment	+	fixup.	



Insert	RB	Tree	–	Example		
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Insert	RB	Tree	–	Example		
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Insert	RB	Tree	–	Example		
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Insert	RB	Tree	–	Example		
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Insert	RB	Tree	–	Example		
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Insert	RB	Tree	–	Example		
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Insert	RB	Tree	–	Example		
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Insert	RB	Tree	–	Example		
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InserRon	–	Fixup		

RB-Insert-Fixup	(T, z) 
1.   while	color[p[z]]	= RED	
2.   				do	if	p[z]	= le+[p[p[z]]]	
3.   										then	y	← right[p[p[z]]]	
4.   																		if	color[y]	= RED	
5.   																						then	color[p[z]]	← BLACK		// Case	1	
6.  																														color[y]	← BLACK							// Case	1	
7.  																														color[p[p[z]]]	← RED			// Case	1	
8.  																														z	← p[p[z]]																				// Case	1	



InserRon	–	Fixup		

RB-Insert-Fixup(T, z) (Contd.) 
9.   															else	if	z	= right[p[z]]		//	color[y]	≠	RED	
10.   																						then	z	← p[z]																											// Case	2	
11.  																														LEFT-ROTATE(T, z)      // Case	2	
12. 																						color[p[z]]	← BLACK												// Case	3	
13. 																						color[p[p[z]]]	← RED													// Case	3	
14.  																						RIGHT-ROTATE(T, p[p[z]])  // Case	3	
15.   							else	(if	p[z]	=	right[p[p[z]]])(same	as	10-14	
16.  																	with	“right”	and	“lea”	exchanged)	
17. color[root[T	]]	← BLACK	



Case	1	–	uncle	y	is	red	

•  p[p[z]]	(z’s	grandparent)	must	be	black,	since	z	and	p[z]	are	both	red	
and	there	are	no	other	violaRons	of	property	4.	

•  Make	p[z]	and	y	black	⇒ now	z	and	p[z]	are	not	both	red.	But	
property	5	might	now	be	violated.	

•  Make	p[p[z]]	red	⇒	restores	property	5.	
•  The	next	iteraRon	has	p[p[z]]	as	the	new	z	(i.e.,	z	moves	up	2	levels).	

z	is	a	right	child	here.	
Similar	steps	if	z	is	a	
lea	child.	
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Case	2	–	y	is	black,	z	is	a	right	child	

•  Lea	rotate	around	p[z],	p[z]	and	z	switch	roles	⇒ now	z	is	a	lea	
child,	and	both	z	and	p[z]	are	red.	

•  Takes	us	immediately	to	case	3.	
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Case	3	–	y	is	black,	z	is	a	lea	child	

•  Make	p[z]	black	and	p[p[z]]	red.	
•  Then	right	rotate	right	on	p[p[z]]	(in	order	to	maintain	property	4).	
•  No	longer	have	2	reds	in	a	row.	
•  p[z]	is	now	black	⇒	no	more	iteraRons.	
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Algorithm	Analysis	

•  O(lg	n) Rme	to	get	through	RB-Insert	up	to	the	
call	of	RB-Insert-Fixup.	

•  Within	RB-Insert-Fixup:	
– Each	iteraRon	takes	O(1) Rme.	
– Each	iteraRon	but	the	last	moves	z	up	2	levels.	
– O(lg	n) levels	⇒ O(lg	n) Rme.	
– Thus,	inserRon	in	a	red-black	tree	takes	O(lg	n) Rme.	
– Note:	there	are	at	most	2	rotaRons	overall. 



Correctness	

Loop	invariant:	
•  At	the	start	of	each	iteraRon	of	the	while	
loop,	
– z	is	red.	
– There	is	at	most	one	red-black	violaRon:	

•  Property	2:	z	is	a	red	root,	or	
•  Property	4:	z	and	p[z]	are	both	red.	



Correctness	–	Contd.	

•  Ini&aliza&on:	✓	
•  Termina&on:	The	loop	terminates	only	if	p[z]	is	black.	
Hence,	property	4	is	OK.		
The	last	line	ensures	property	2	always	holds.	

•  Maintenance:	We	drop	out	when	z	is	the	root	(since	
then	p[z]	is	senRnel	nil[T	],	which	is	black).	When	we	
start	the	loop	body,	the	only	violaRon	is	of	property	4.	
–  There	are	6	cases,	3	of	which	are	symmetric	to	the	other	3.	
We	consider	cases	in	which	p[z]	is	a	lea	child.	

–  See	cases	1,	2,	and	3	described	above.	



Further	Readings	

See	Chapter	13	for	the	complete	proofs	&	deleRon	

[CLRS2009]	Cormen,	Leiserson,	Rivest,	&	Stein,	Introduc7on	
to	Algorithms.	(available	as	E-book)	


