
COMP251:	Red-black	trees	

Jérôme	Waldispühl 		
School	of	Computer	Science	

McGill	University	
Based	on	(Cormen	et	al.,	2002)	

Based	on	slides	from	D.	Plaisted	(UNC)	

	

The	running	Rme	of	inserRons	in	BST	
trees	with	n	nodes	is:		

•  Ω(log(n))	
•  Θ(log(n))	
•  O(log(n))	
•  O(n)	
•  Ω(n)	

Which	asserRon(s)	are	true?		

•  RotaRons	preserve	BST	properRes	
•  RotaRons	preserve	AVL	tree	properRes	
•  AVL	properRes	can	be	restored	using	rotaRons	
•  In	the	worst	case,	a	rotaRon	has	a	O(log	n)	running	Rme	

✔	

✔	
✗	

✗	

How	should	we	modify	BST	sort	to	sort	
numbers	in	decreasing	order?	

•  Use	post-order	traversal	
•  Reverse	the	order	of	recursive	calls	in	in-order	traversal	
•  Use	an	AVL	tree	instead	of	a	BST	

Recap	lecture	3	

Defini&on:	An	AVL	tree	is	a	BST	such	that	the	heights	of	the	two	
child	subtrees	of	any	node	differ	by	at	most	one.	
	
	
	
	
	
	
	
•  AVL	trees	are	self-balanced	binary	search	trees.	
•  Insert,	Delete	&	Search	take	O(log	n)	in	average	and	worst	cases.	

x	

|hlea-hright|≤1	

Recap	lecture	3	

y	
x	

A	 B	

C	

x	
y	

C	B	

A	

Right	rotaRon	

Lea	rotaRon	

RotaRons	preserve	the	BST	property.	
Proof:	elements	in	B	are	≥	x	and	≤	y…	

Recap	lecture	3	
y	

x	

A	 B	

C	

x	
y	

C	B	

A	

x	
y	

C	B	

A	

y	
x	

A	 B	

C	

1	 2	

3	
4	

Insert	in	AVL	trees	

36	

12	 57	

8	 27	 43	

20	

15	

=	

ß	

ß	à	

=	

=	

ß		

ç		

36	

12	 57	

8	 20	 43	

15	 27	

Right	rotaRon	at	27		

=	

=	

=	

ß	

ß	à	

=	

=	

Insert	in	AVL	trees	

RotateLea(T,43)	

36	

12	 57	

8	 20	 50	

15	 27	 43	

Lea	rotaRon	at	43	

ç

36	

12	 57	

8	 20	 43	

15	 27	 50	

ß

ç

à

Insert	in	AVL	trees	

RotateRight(T,57)	

Right	rotaRon	at	57	

ç

36	

12	 50	

8	 20	 57	

15	 27	

43	

=	

36	

12	 57	

8	 20	 50	

15	 27	 43	
ß

Red-black	trees:	Overview	
•  Red-black	trees	are	a	variaRon	of	binary	search	
trees	to	ensure	that	the	tree	is	balanced.	

– Height	is	O(lg	n),	where	n	is	the	number	of	nodes.	

•  OperaRons	take	O(lg	n)	Rme	in	the	worst	case.	

•  Invented	by	R.	Bayer	(1972).	
•  	Modern	definiRon	by	L.J.	Guibas	&	R.	
Sedgewick	(1978).	

Red-black	Tree	

•  Binary	search	tree	+	1	bit	per	node:	the	
amribute	color,	which	is	either	red	or	black.	

•  All	other	amributes	of	BSTs	are	inherited:	
– key,	le+,	right,	and	parent.	

•  All	empty	trees	(leaves)	are	colored	black.	
– Note:	We	can	use	a	single	senRnel,	nil,	for	all	the	
leaves	of	red-black	tree	T,	with	color[nil]	=	black.	
The	root’s	parent	is	also	nil[T].	

Red-black	ProperRes	
1.  Every	node	is	either	red	or	black.	
2.  The	root	is	black.	
3.  Every	leaf	(nil)	is	black.	
4.  If	a	node	is	red,	then	its	children	are	black	

(i.e.	no	2	consecuRve	red	nodes).	

5.  For	each	node,	all	paths	from	the	node	to	
descendant	leaves	contain	the	same	number	
of	black	nodes	(i.e.	same	black	height).	

Red-black	Tree	–	Example		
26	

17	

30	 47	

38	 50	

41	

Note:	every	internal	
node	has	two	children,	
even	though	nil	leaves	
are	not	usually	shown.	

Nil	Nil	 Nil	

Nil	

Nil	

Nil	 Nil	

Nil	

Height	of	a	Red-black	Tree	

•  Height	of	a	node:	
– h(x)	=	number	of	edges	in	the	longest	path	to	a	leaf.	

•  Black-height	of	a	node	x,	bh(x):	
– bh(x) =	number	of	black	nodes	(including	nil[T])		
on	the	path	from	x	to	leaf,	not	counRng	x.	

•  Black-height	of	a	red-black	tree	is	the	black-height	
of	its	root.	
– By	Property	5,	black	height	is	well	defined.	

Height	of	a	Red-black	Tree	

•  Height	h(x):	
#edges	in	a	longest	path	to	a	leaf.	

•  Black-height	bh(x):	
#	black	nodes	on	path	from	x	to	
leaf,	not	coun7ng	x.	

•  Property:	bh(x)	≤	h(x)	≤	2	bh(x)	

h=4	
bh=2	

h=3	
bh=2	

h=2	
bh=1	

h=2	
bh=1	

h=1	
bh=1	

h=1	
bh=1	

h=1	
bh=1	

26	

17	

30	 47	

38	 50	

41	

Nil	Nil	 Nil	

Nil	

Nil	

Nil	 Nil	

Nil	

Bound	on	RB	Tree	Height		
Lemma	1:	Any	node	x	with	height	h(x)	has	a	black-height	
bh(x)	≥	h(x)/2.	

Proof:	By	property	4,	≤	h	/	2	nodes	on	the	path	from	the	
node	to	a	leaf	are	red.	Hence	≥	h/2	are	black.	n	

26	

17	

30	 47	

38	 50	

Nil	Nil	 Nil	

Nil	

Nil	

Nil	 Nil	

41	

Bound	on	RB	Tree	Height	

Lemma	2:	The	subtree	rooted	at	any	node	x	contains	≥ 2bh(x)–1	
internal	nodes.	

Proof:	By	inducRon	on	height	of	x.	
•  Base	Case:		Height	h(x)	= 0	⇒ x	is	a	leaf	⇒	bh(x) = 0.	

Subtree	has	≥	20–1	= 0	nodes.		
•  Induc&on	Step:	

–  Each	child	of	x	has	height	h(x)	- 1	and		
black-height	either	b(x)	(child	is	red)	or	b(x)	- 1	(child	is	black).	

–  	By	ind.	hyp.,	each	child	has	≥ 2bh(x)– 1–1	internal	nodes.	
–  Subtree	rooted	at	x	has		≥ 2	�	(2bh(x) – 1	– 1) + 1		

= 2bh(x) – 1	internal	nodes.	(The	+1	is	for	x	itself)	n	

Bound	on	RB	Tree	Height	

Lemma	1:	Any	node	x	with	height	h(x)	has	a	black-height	
bh(x)	≥	h(x)/2.	

Lemma	2:	The	subtree	rooted	at	any	node	x	has		
≥	2bh(x)–1	internal	nodes.	

Lemma	3:	A	red-black	tree	with	n	internal	nodes	has	
height	at	most	2	lg(n+1).	
Proof:	
•  By	lemma	2,	n	≥ 2bh	– 1,	
•  By	lemma	1,	bh	≥	h/2,	thus	n	≥	2h/2	– 1.	
•  ⇒		h	≤ 2	lg(n	+ 1).	

InserRon	in	RB	Trees	
•  InserRon	must	preserve	all	red-black	properRes.	
•  Should	an	inserted	node	be	colored	Red?	Black?	
•  Basic	steps:	

– Use	BST	Tree-Insert	to	insert	a	node	x	into	T.	
•  Procedure	RB-Insert(x).	

– Color	the	node	x	red.	
– Fix	the	new	tree	by	(1)	re-coloring	nodes,	and	(2)	
performing	rotaRon	to	preserve	RB	tree	property.	

•  Procedure	RB-Insert-Fixup.	

InserRon	
RB-Insert(T,	z)	
1.   	y	←	nil[T]	
2.  x	←	root[T]	
3.   while	x	≠	nil[T]	
4.  				do	y	←	x	
5.  									if	key[z]	<	key[x]	
6.  														then	x	←	le+[x]	
7.  														else	x	←	right[x]	
8.  p[z]	←	y	
9.   if	y	=	nil[T]	
10.  				then	root[T]	←	z	
11.  				else	if	key[z]	<	key[y]	
12.  										then		le+[y]	←	z	
13.  										else	right[y]	←	z	

RB-Insert(T,	z)	Contd.	
14.  le+[z]	←	nil[T]	
15.  right[z]	←	nil[T]	
16.  color[z]	←	RED	
17.  RB-Insert-Fixup	(T,	z)	

Regular	BST	insert	+	color	
assignment	+	fixup.	

Insert	RB	Tree	–	Example		
7	

3	

10	 20	

11	 22	

Nil	Nil	 Nil	Nil	

Nil	 Nil	

18	

Nil	
8	

Nil	Nil	

Insert	RB	Tree	–	Example		
7	

3	

10	 20	

11	 22	

Nil	Nil	Nil	

Nil	 Nil	

18	

Nil	

Insert(T,15)	

15	

Nil	Nil	

8	

Nil	Nil	

Insert	RB	Tree	–	Example		
7	

3	

10	 20	

11	 22	

Nil	Nil	Nil	

Nil	 Nil	

18	

Nil	

Recolor	10,	8	&11	

15	

Nil	Nil	

8	

Nil	Nil	

Insert	RB	Tree	–	Example		
7	

3	

10	 20	

11	 22	

Nil	Nil	Nil	

Nil	 Nil	

18	

Nil	

15	

Nil	Nil	

8	

Nil	Nil	

Right	rotate	at	18	

Insert	RB	Tree	–	Example		
7	

3	

18	Nil	 Nil	

10	

20	

22	

Nil	Nil	

Nil	

Right	rotate	at	18	(parent	&	child	with	conflict	are	aligned)	

11	

Nil	 15	

Nil	Nil	

8	

Nil	Nil	

Insert	RB	Tree	–	Example		
7	

3	

18	Nil	 Nil	

10	

20	

22	

Nil	Nil	

Nil	

Lea	rotate	at	7	

11	

Nil	 15	

Nil	Nil	

8	

Nil	Nil	

Insert	RB	Tree	–	Example		

7	

3	

Nil	 Nil	

10	

Lea	rotate	at	7	

18	

20	

22	

Nil	Nil	

Nil	

11	

Nil	 15	

Nil	Nil	

8	

Nil	Nil	

Insert	RB	Tree	–	Example		

7	

3	

Nil	 Nil	

10	

Recolor	10	&	7	(root	must	be	black!)	

18	

20	

22	

Nil	Nil	

Nil	

11	

Nil	 15	

Nil	Nil	

8	

Nil	Nil	

InserRon	–	Fixup		

RB-Insert-Fixup	(T, z)
1.   while	color[p[z]]	= RED	
2.   				do	if	p[z]	= le+[p[p[z]]]	
3.   										then	y	← right[p[p[z]]]	
4.   																		if	color[y]	= RED	
5.   																						then	color[p[z]]	← BLACK		// Case	1	
6.  																														color[y]	← BLACK							// Case	1	
7.  																														color[p[p[z]]]	← RED			// Case	1	
8.  																														z	← p[p[z]]																				// Case	1	

InserRon	–	Fixup		

RB-Insert-Fixup(T, z) (Contd.)
9.   															else	if	z	= right[p[z]]		//	color[y]	≠	RED	
10.   																						then	z	← p[z]																											// Case	2	
11.  																														LEFT-ROTATE(T, z) // Case	2	
12. 																						color[p[z]]	← BLACK												// Case	3	
13. 																						color[p[p[z]]]	← RED													// Case	3	
14.  																						RIGHT-ROTATE(T, p[p[z]]) // Case	3	
15.   							else	(if	p[z]	=	right[p[p[z]]])(same	as	10-14	
16.  																	with	“right”	and	“lea”	exchanged)	
17. color[root[T]]	← BLACK	

Case	1	–	uncle	y	is	red	

•  p[p[z]]	(z’s	grandparent)	must	be	black,	since	z	and	p[z]	are	both	red	
and	there	are	no	other	violaRons	of	property	4.	

•  Make	p[z]	and	y	black	⇒ now	z	and	p[z]	are	not	both	red.	But	
property	5	might	now	be	violated.	

•  Make	p[p[z]]	red	⇒	restores	property	5.	
•  The	next	iteraRon	has	p[p[z]]	as	the	new	z	(i.e.,	z	moves	up	2	levels).	

z	is	a	right	child	here.	
Similar	steps	if	z	is	a	
lea	child.	

C	

A	 D	

B	
α	

β	 γ	

δ	 ε	
z	

y	p[z]	

p[p[z]]	

α	

β	 γ	

δ	 ε	

new	z	
C	

A	 D	

B	

Case	2	–	y	is	black,	z	is	a	right	child	

•  Lea	rotate	around	p[z],	p[z]	and	z	switch	roles	⇒ now	z	is	a	lea	
child,	and	both	z	and	p[z]	are	red.	

•  Takes	us	immediately	to	case	3.	

C	

A	

B	
α	

β	 γ	

z	

y	p[z]	
C	

B	

A	

α	 β	

γ	(new)	z	

y	(new)	p[z]	
D	 D	

δ	 λ	 δ	 λ	

Case	3	–	y	is	black,	z	is	a	lea	child	

•  Make	p[z]	black	and	p[p[z]]	red.	
•  Then	right	rotate	right	on	p[p[z]]	(in	order	to	maintain	property	4).	
•  No	longer	have	2	reds	in	a	row.	
•  p[z]	is	now	black	⇒	no	more	iteraRons.	

C	

B	

A	

α	 β	

γ	

y	p[z]	

z	

D	

B	

A	

α	 β	 γ	

C	

D	
δ	 λ	

δ	 λ	

p[p[z]]	

z	

p[z]	

Algorithm	Analysis	

•  O(lg	n) Rme	to	get	through	RB-Insert	up	to	the	
call	of	RB-Insert-Fixup.	

•  Within	RB-Insert-Fixup:	
– Each	iteraRon	takes	O(1) Rme.	
– Each	iteraRon	but	the	last	moves	z	up	2	levels.	
– O(lg	n) levels	⇒ O(lg	n) Rme.	
– Thus,	inserRon	in	a	red-black	tree	takes	O(lg	n) Rme.	
– Note:	there	are	at	most	2	rotaRons	overall.

Correctness	

Loop	invariant:	
•  At	the	start	of	each	iteraRon	of	the	while	
loop,	
– z	is	red.	
– There	is	at	most	one	red-black	violaRon:	

•  Property	2:	z	is	a	red	root,	or	
•  Property	4:	z	and	p[z]	are	both	red.	

Correctness	–	Contd.	

•  Ini&aliza&on:	✓	
•  Termina&on:	The	loop	terminates	only	if	p[z]	is	black.	
Hence,	property	4	is	OK.		
The	last	line	ensures	property	2	always	holds.	

•  Maintenance:	We	drop	out	when	z	is	the	root	(since	
then	p[z]	is	senRnel	nil[T],	which	is	black).	When	we	
start	the	loop	body,	the	only	violaRon	is	of	property	4.	
–  There	are	6	cases,	3	of	which	are	symmetric	to	the	other	3.	
We	consider	cases	in	which	p[z]	is	a	lea	child.	

–  See	cases	1,	2,	and	3	described	above.	

Further	Readings	

See	Chapter	13	for	the	complete	proofs	&	deleRon	

[CLRS2009]	Cormen,	Leiserson,	Rivest,	&	Stein,	Introduc7on	
to	Algorithms.	(available	as	E-book)	

