COMP251: Red-black trees

Jérome Waldispuhl
School of Computer Science
McGill University

Based on (Cormen et al., 2002)

Based on slides from D. Plaisted (UNC)

The running time of insertions in BST
trees with n nodes is:

—————

NNNNN

Which assertion(s) are true?

Rotations preserve BST properties ‘/

Rotations preserve AVL tree properties X

AVL properties can be restored using rotations ﬁ/

In the worst case, a rotation has a O(log n) running time X

How should we modify BST sort to sort
numbers in decreasing order?

-—--_____-_ --_-------_-—

- - _—

— _—ay
oy aal S

-
-
L i - -
L |
-----------——__--------——--——————-____

e Use an AVL tree instead of a BST

Recap lecture 3

Definition: An AVL tree is a BST such that the heights of the two
child subtrees of any node differ by at most one.

| hIeft_hright <1 1

 AVL trees are self-balanced binary search trees.
* Insert, Delete & Search take O(log n) in average and worst cases.

Recap lecture 3

Right rotation

'
C A
AN /B R J B\ /C

Left rotation

Rotations preserve the BST property.
Proof: elementsin Bare>xand <y...

Recap lecture 3

Insert in AVL trees

Insert in AVL trees

Left rotation at 43

Rotateleft(T,43)

Insert in AVL trees

Right rotation at 57

RotateRight(T,57)

Red-black trees: Overview

Red-black trees are a variation of binary search
trees to ensure that the tree is balanced.

— Height is O(lg n), where n is the number of nodes.
Operations take O(lg n) time in the worst case.
Invented by R. Bayer (1972).

Modern definition by L.J. Guibas & R.
Sedgewick (1978).

Red-black Tree

* Binary search tree + 1 bit per node: the
attribute color, which is either red or black.

e All other attributes of BSTs are inherited:
—key, left, right, and parent.

e All empty trees (leaves) are colored black.

— Note: We can use a single sentinel, nil, for all the
leaves of red-black tree T, with color[nil] = black.
The root’ s parent is also nil[T].

N

Red-black Properties

Every node is either red or black.
The root is black.
Every leaf (nil) is black.

If a node is red, then its children are black
(i.e. no 2 consecutive red nodes).

For each node, all paths from the node to
descendant leaves contain the same number
of black nodes (i.e. same black height).

Red-black Tree — Example

Note: every internal

node has two children,
even though nil leaves
are not usually shown.

Height of a Red-black Tree

* Height of a node:
— h(x) = number of edges in the longest path to a leaf.

* Black-height of a node x, bh(x):

— bh(x) = number of black nodes (including nil[T])
on the path from x to leaf, not counting x.

* Black-height of a red-black tree is the black-height
of its root.

— By Property 5, black height is well defined.

Height of a Red-black Tree

h=4

* Height h(x):
#edges in a longest path to a leaf.
* Black-height bh(x):

black nodes on path from x to
leaf, not counting x.

* Property: bh(x) < h(x) <2 bh(x)

bh=1

Bound on RB Tree Height

Lemma 1: Any node x with height h(x) has a black-height
bh(x) = h(x)/2.

Proof: By property 4, <h / 2 nodes on the path from the
node to a leaf are red. Hence > h/2 are black. ®

o

® 00

Bound on RB Tree Height

Lemma 2: The subtree rooted at any node x contains = 2bhx—1
internal nodes.

Proof: By induction on height of x.

* Base Case: Height h(x) = 0 => xis a leaf = bh(x) = 0.
Subtree has = 2°-1 = 0 nodes.

* Induction Step:

— Each child of x has height h(x) - 1 and
black-height either b(x) (child is red) or b(x) - 1 (child is black).

— By ind. hyp., each child has = 2bhx}-1—1 internal nodes.

— Subtree rooted at x has = 2. (2bh0-1—-1) + 1
= 2bh() — 1 internal nodes. (The +1 is for x itself) ®

Bound on RB Tree Height

Lemma 1: Any node x with height h(x) has a black-height
bh(x) = h(x)/2.

Lemma 2: The subtree rooted at any node x has
> 2bh¥—1 internal nodes.

Lemma 3: A red-black tree with n internal nodes has
height at most 2 lg(n+1).

Proof:

e Bylemma2,n=2b—1,
 Bylemma1l, bh=h/2,thusn=2"—1.
e« = h=<2lg(nh+1).

Insertion in RB Trees

* |[nsertion must preserve all red-black properties.
* Should an inserted node be colored Red? Black?

* Basic steps:

— Use BST Tree-Insert to insert a node x into T.
e Procedure RB-Insert(x).

— Color the node x red.

— Fix the new tree by (1) re-coloring nodes, and (2)
performing rotation to preserve RB tree property.
* Procedure RB-Insert-Fixup.

Insertion

RB-Insert(T, z) RB-Insert(T, z) Contd.

1. y < nil[T] 14. left[z] < nil[T]

2. x<root[T] 15. right[z] <= nil[T]

3. while x = nil[T] 16. color[z] < RED

4. doy < x 17. RB-Insert-Fixup (T, z)
5. if key[z] < key[x]

6. then x < /left[x]

;: o] < yelse A Regular BST in§ert + color
9. ify=nilll] assignment + fixup.
10. then root[T] <z

11. else if key|z] < key|[y]

12. then leftly] < z

13. else rightly] < z

Insert RB Tree — Example

Insert RB Tree — Example

0o

Insert(T,15)

Insert RB Tree — Example

Recolor 10, 8 &11

Insert RB Tree — Example

Right rotate at 18

Insert RB Tree — Example

7

00 ¢

D O

Right rotate at 18 (parent & child with conflict are aligned)

Insert RB Tree — Example

7

00 ¢

Left rotate at 7

Insert RB Tree — Example

Left rotate at 7

Insert RB Tree — Example

o

Recolor 10 & 7 (root must be black!)

Insertion — Fixup

RB-Insert-Fixup (7, z)
while color[p[z]] = RED
do if p[z] = left[p|p[z]]]

then y < right[p(p(z]]]
if color[y] = RED

then color[p[z]] < BLACK //Case 1
color[y] <= BLACK //Case 1
color[p[p[z]]] <= RED //Case 1
z < plp[z]] // Case 1

O N OO 1 A W N =

Insertion — Fixup

RB-Insert-Fixup(T, z) (Contd.)

9. else if z = right[p[z]] // color[y] = RED
10. then z <— p[Z] // Case 2
11. LEFT-ROTATE(T, z) //Case 2
12. color[p|[z]] <= BLACK // Case 3
13. color[p[p[z]]] <= RED // Case 3
14. RIGHT-ROTATE(T, p[p[z]]) // Case 3
15. else (if p[z] = right[p[p[z]]])(same as 10-14

16. with “right” and “left” exchanged)

17.color[root[T]] <= BLACK

Case 1 —uncleyis red

new z

z is a right child here.

Similar stepsif zis a
B Y left child.

B b
* plp[z]] (z' s grandparent) must be black, since z and p[z] are both red
and there are no other violations of property 4.

* Make p[z] and y black = now z and p|z] are not both red. But
property 5 might now be violated.

 Make p[p[z]] red = restores property 5.
 The next iteration has p[p[z]] as the new z (i.e., z moves up 2 levels).

Case 2 — vy is black, z is a right child

plz] y

:I/I\ (new) plz]

(new) z Y

o §

* Left rotate around p[z], p[z] and z switch roles = now z is a left
child, and both z and p|z] are red.

* Takes us immediately to case 3.

Case 3 —y is black, z is a left child

plpl(z]]

Make pl[z] black and p[p]z]] red.
Then right rotate right on p[p[z]] (in order to maintain property 4).

No longer have 2 reds in a row.

plz] is now black = no more iterations.

Algorithm Analysis

* O(lg n) time to get through RB-Insert up to the
call of RB-Insert-Fixup.
* Within RB-Insert-Fixup:
— Each iteration takes O(1) time.
— Each iteration but the last moves z up 2 levels.
— O(lg n) levels = O(lg n) time.
— Thus, insertion in a red-black tree takes O(lg n) time.

— Note: there are at most 2 rotations overall.

Correctness

Loop invariant:

e At the start of each iteration of the while
loop,
— Zis red.

— There is at most one red-black violation:
* Property 2: zis ared root, or
e Property 4: z and p[z] are both red.

Correctness — Contd.

* |nitialization: v/
 Termination: The loop terminates only if p[z] is black.

Hence, property 4 is OK.
The last line ensures property 2 always holds.

 Maintenance: We drop out when z is the root (since
then p[z] is sentinel nil[T], which is black). When we

start the loop body, the only violation is of property 4.

— There are 6 cases, 3 of which are symmetric to the other 3.
We consider cases in which p[z] is a left child.

— See cases 1, 2, and 3 described above.

Further Readings

[CLRS2009] Cormen, Leiserson, Rivest, & Stein, Introduction
to Algorithms. (available as E-book)

INTRODUCTION

See Chapter 13 for the complete proofs & deletion

