COMP251: Heaps & Heapsort

Jérôme Waldispühl School of Computer Science McGill University

From (Cormen et al., 2002)

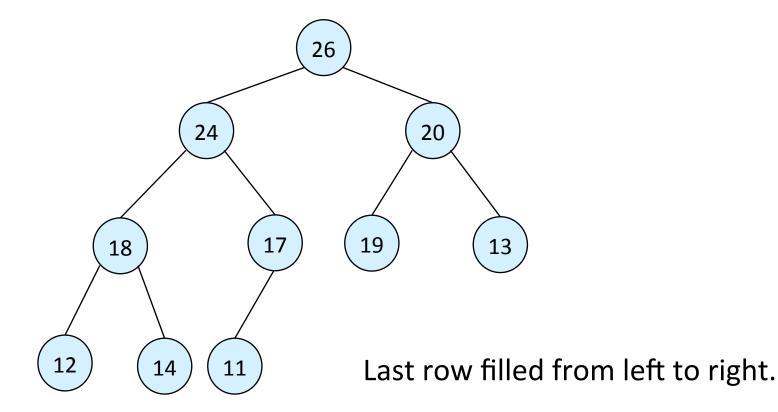
Based on slides from D. Plaisted (UNC)

Heap data structure

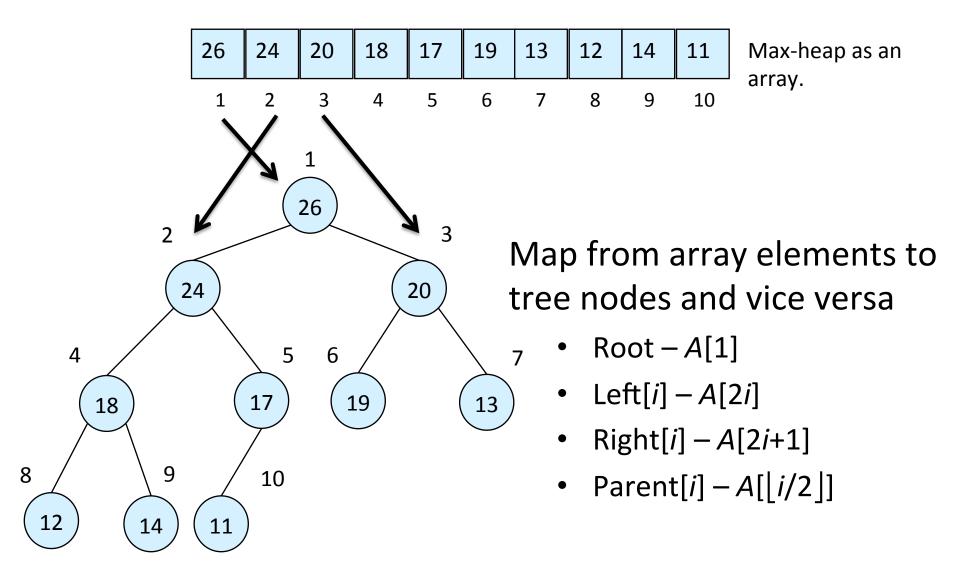
- Tree-based data structure (here, binary tree, but we can also use k-ary trees)
- Max-Heap
 - Largest element is stored at the root.
 - for all nodes *i*, excluding the root, $A[PARENT(i)] \ge A[i]$.
- Min-Heap
 - Smallest element is stored at the root.
 - for all nodes *i*, excluding the root, excluding the root, $A[PARENT(i)] \le A[i].$

Heaps – Example

Max-heap as a binary tree.

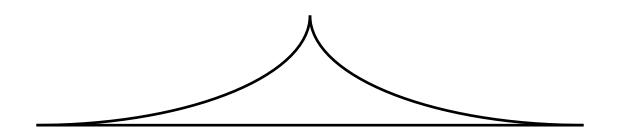


Heaps as arrays



Height

- *Height of a node in a tree*: the number of edges on the longest simple path down from the node to a leaf.
- Height of a heap = height of the root = $\Theta(\lg n)$.
- Most Basic operations on a heap run in O(lg n) time
- Shape of a heap



Sorting with Heaps

- Use max-heaps for sorting.
- The array representation of max-heap is not sorted.
- Steps in sorting
 - Convert the given array of size *n* to a max-heap (*BuildMaxHeap*)
 - Swap the first and last elements of the array.
 - Now, the largest element is in the last position where it belongs.
 - That leaves n 1 elements to be placed in their appropriate locations.
 - However, the array of first n 1 elements is no longer a max-heap.
 - Float the element at the root down one of its subtrees so that the array remains a max-heap (MaxHeapify)
 - Repeat step 2 until the array is sorted.

Heapsort

- Combines the better attributes of merge sort and insertion sort.
 - Like merge sort, but unlike insertion sort, running time is $O(n \lg n)$.
 - Like insertion sort, but unlike merge sort, sorts in place.
- Introduces an algorithm design technique
 - Create data structure (*heap*) to manage information during the execution of an algorithm.
- The *heap* has other applications beside sorting.
 Priority Queues (See COMP250)

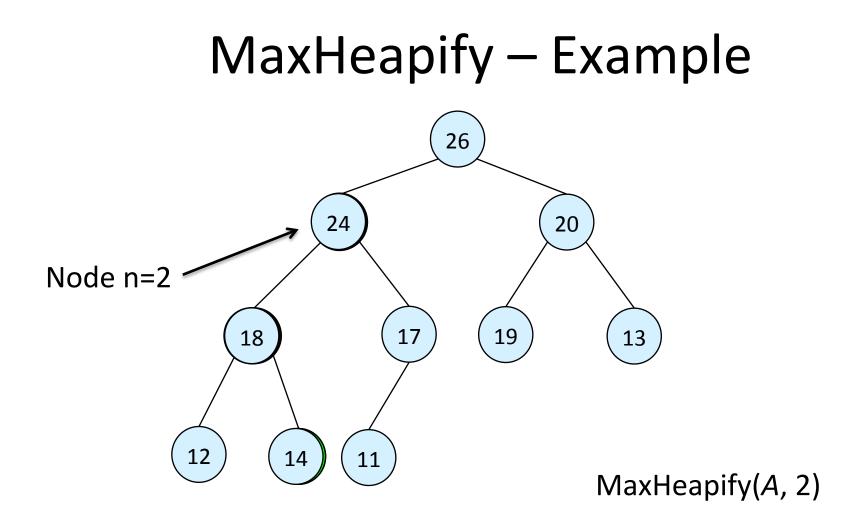
Maintaining the heap property

 Suppose two subtrees are max-heaps, but the root violates the max-heap property.

• Fix the offending node by exchanging the value at the node with the larger of the values at its children.

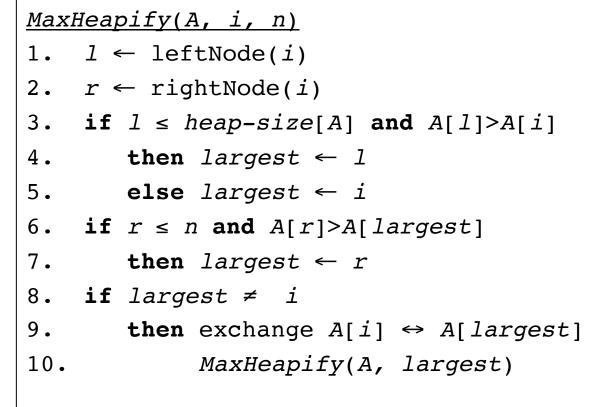
- The resulting tree may have a subtree that is not a heap.

• Recursively fix the children until all of them satisfy the max-heap property.



Procedure MaxHeapify

Assumption: Left(*i*) and Right(*i*) are max-heaps. n is the size of the heap.

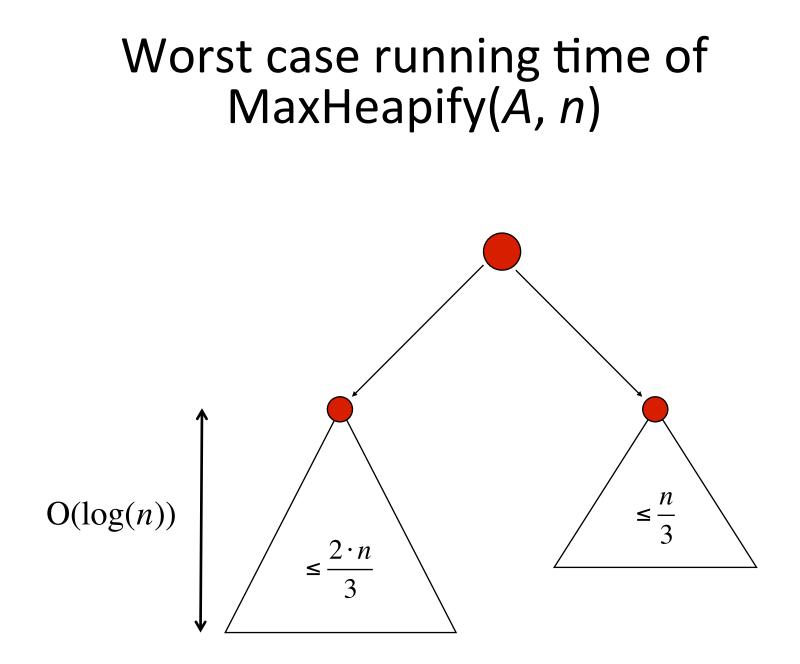


Time to fix node *i* and its children = $\Theta(1)$

Time to fix the
subtree rooted at one of *i*'s children = *T*(size of subtree)

Worst case running time of MaxHeapify(*A*, *n*)

- $T(n) = T(largest) + \Theta(1)$
- *largest* ≤ 2n/3 (worst case occurs when the last row of tree is exactly half full)
- $T(n) \leq T(2n/3) + \Theta(1) \Rightarrow T(n) = O(\lg n)$
- Alternately, MaxHeapify takes O(h) where h is the height of the node where MaxHeapify is applied



Building a heap

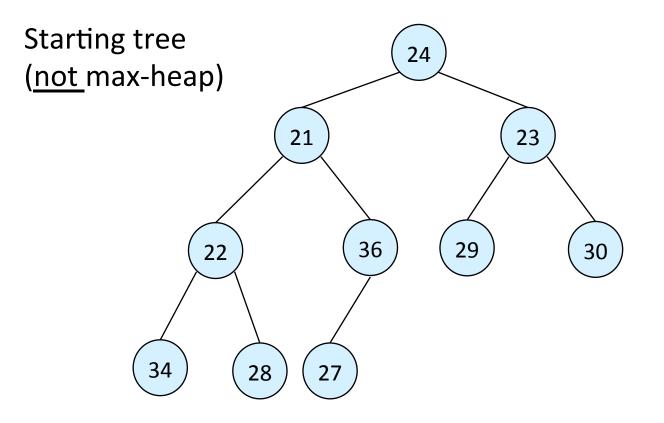
- Use *MaxHeapify* to convert an array *A* into a max-heap.
- Call MaxHeapify on each element in a bottom-up manner.

BuildMaxHeap(A)1.
$$n \leftarrow length[A]$$
2. for $i \leftarrow [length[A]/2]$ downto 13. do MaxHeapify(A, i, n)

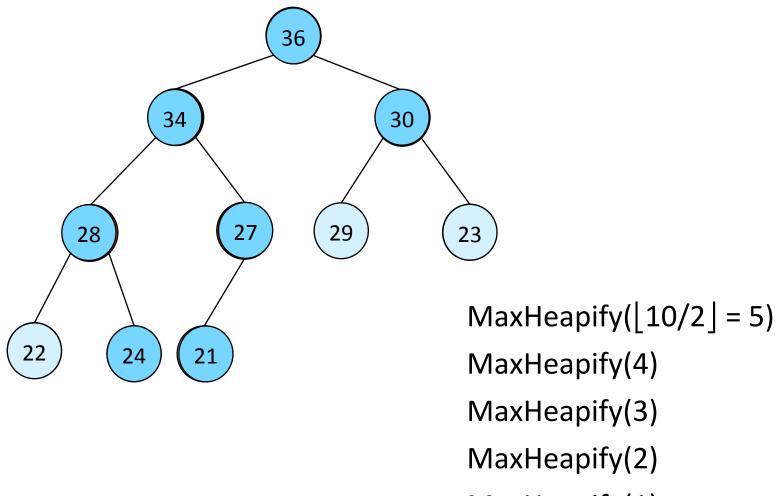
BuildMaxHeap – Example

Input Array:

24 21 2	23 22	36 29	30	34	28	27
---------	-------	-------	----	----	----	----



BuildMaxHeap – Example



MaxHeapify(1)

Correctness of BuildMaxHeap

- Loop Invariant: At the start of each iteration of the for loop, each node *i*+1, *i*+2, ..., *n* is the root of a max-heap.
- Initialization:
 - Before first iteration $i = \lfloor n/2 \rfloor$
 - Nodes [n/2]+1, [n/2]+2, ..., n are leaves, hence roots of trivial max-heaps.

Maintenance:

- By LI, subtrees at children of node *i* are max heaps.
- Hence, MaxHeapify(i) renders node i a max heap root (while preserving the max heap root property of higher-numbered nodes).
- Decrementing *i* reestablishes the loop invariant for the next iteration.

Running Time of BuildMaxHeap

- Loose upper bound:
 - Cost of a MaxHeapify call × No. of calls to MaxHeapify
 - $O(\lg n) \times O(n) = O(n \lg n)$

• Tighter bound:

- Cost of MaxHeapify is O(h).
- $\leq \lfloor n/2^{h+1} \rfloor$ nodes of height *h*.
- Height of heap is $\lfloor \lg n \rfloor$

$$\sum_{h=0}^{\lfloor \lg n \rfloor} \left[\frac{n}{2^{h+1}} \right] O(h) = O\left(n \sum_{h=0}^{\lfloor \lg n \rfloor} \frac{h}{2^h}\right) = O(n)$$

Running time of BuildMaxHeap is O(n)

Heapsort

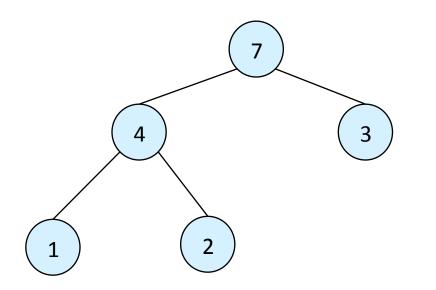
- 1. Builds a max-heap from the array.
- 2. Put the maximum element (i.e. the root) at the correct place in the array by swapping it with the element in the last position in the array.
- "Discard" this last node (knowing that it is in its correct place) by decreasing the heap size, and call MAX-HEAPIFY on the new root.
- 4. Repeat this process (goto 2) until only one node remains.

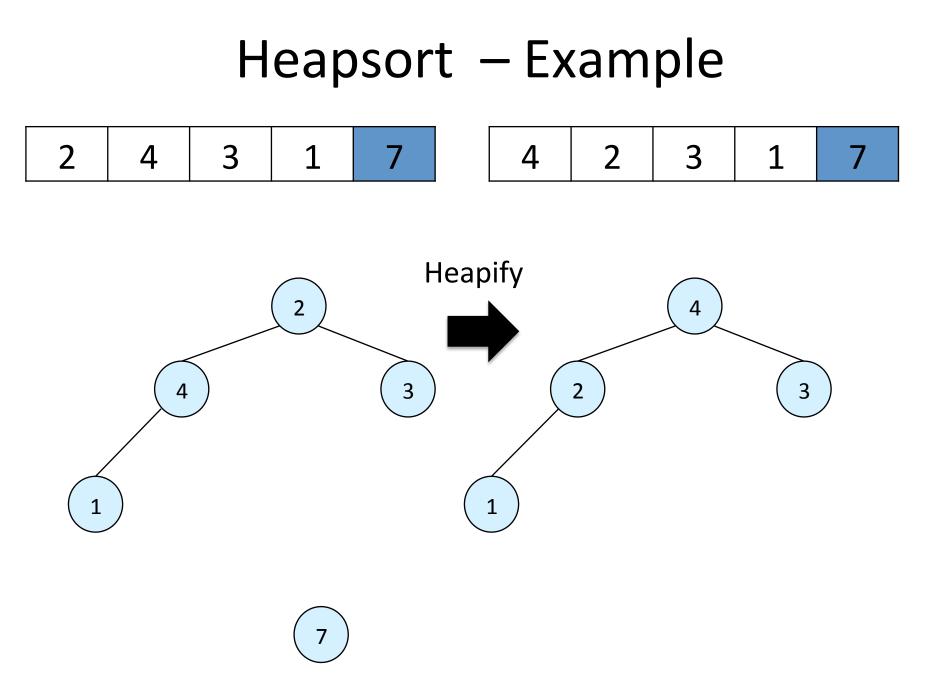
Heapsort(A)

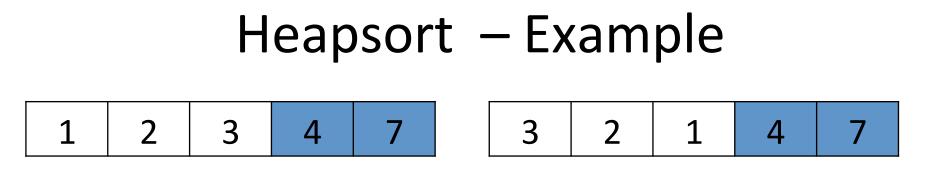
```
HeapSort(A)
1. Build-Max-Heap(A)
2. for i \leftarrow length[A] downto 2
3. do exchange A[1] \Leftrightarrow A[i]
4. MaxHeapify(A, 1, i-1)
```

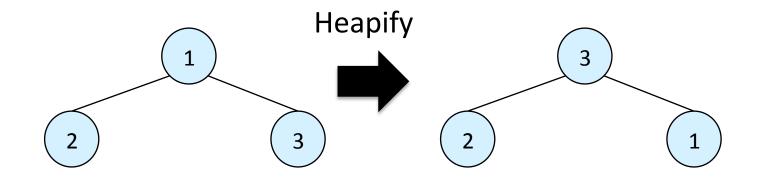
Heapsort – Example

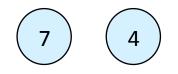
7	4 3	1	2
---	-----	---	---

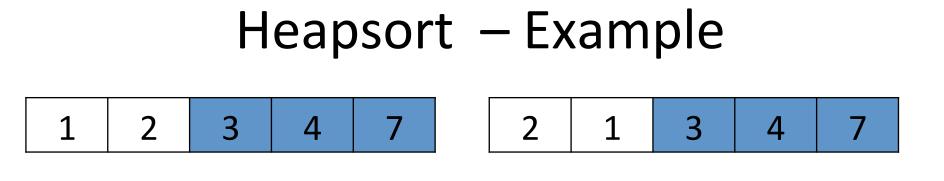


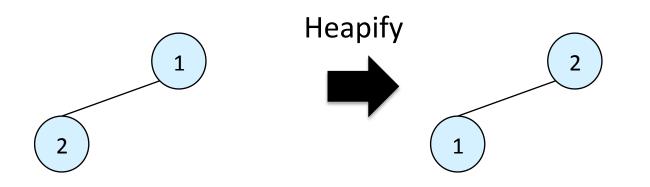




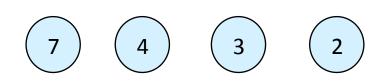








Heapsort Example 1 2 3 4 7 1 2 3 4 7



Heap Procedures for Sorting

- BuildMaxHeap O(n)
- for loop n-1 times (i.e. O(n))
 exchange elements O(1)
 - MaxHeapify O(lg n)

=> HeapSort $O(n \lg n)$