
COMP251:	Heaps	&	Heapsort	

Jérôme	Waldispühl 		
School	of	Computer	Science	

McGill	University	
From	(Cormen	et	al.,	2002)	

Based	on	slides	from	D.	Plaisted	(UNC)	

Heap	data	structure	

•  Tree-based	data	structure	(here,	binary	tree,	but	we	can	
also	use	k-ary	trees)	

•  Max-Heap	
–  Largest	element	is	stored	at	the	root.	
–  for	all	nodes	i,	excluding	the	root,	A[PARENT(i)]	≥	A[i].	

•  Min-Heap	
–  Smallest	element	is	stored	at	the	root.	
–  for	all	nodes	i,	excluding	the	root,	excluding	the	root,	
A[PARENT(i)]	≤	A[i].		

Heaps	–	Example		

26	

24	 20	

18	 17	 19	 13	

12	 14	 11	

Max-heap	as	a	binary	tree.	

Last	row	filled	from	lef	to	right.	

Heaps	as	arrays		

26	 24	 20	 18	 17	 19	 13	 12	 14	 11	

	1								2									3									4									5									6									7									8									9								10	

Max-heap	as	an	
array.	

26	

24	 20	

18	 17	 19	 13	

12	 14	 11	

Map	from	array	elements	to	
tree	nodes	and	vice	versa	
•  Root	–	A[1]	
•  Lef[i]	–	A[2i]	
•  Right[i]	–	A[2i+1]	
•  Parent[i]	–	A[⎣i/2⎦]	

1

2 3

4 5 6 7

8 9 10	

Height	

•  Height	of	a	node	in	a	tree:		the	number	of	edges	on	the	
longest	simple	path	down	from	the	node	to	a	leaf.	

•  Height	of	a	heap	=	height	of	the	root	=	Θ(lg	n).	
•  Most	Basic	operaions	on	a	heap	run	in	O(lg	n)	ime	

•  Shape	of	a	heap	

Soring	with	Heaps	
•  Use	max-heaps	for	soring.	
•  The	array	representaion	of	max-heap	is	not	sorted.	
•  Steps	in	soring	
–  Convert	the	given	array	of	size	n	to	a	max-heap	(BuildMaxHeap)	
–  Swap	the	first	and	last	elements	of	the	array.	

•  Now,	the	largest	element	is	in	the	last	posiion	–	where	it	belongs.	
•  That	leaves	n	–	1	elements	to	be	placed	in	their	appropriate	
locaions.	

•  However,	the	array	of	first	n	–	1	elements	is	no	longer	a	max-heap.	
•  Float	the	element	at	the	root	down	one	of	its	subtrees	so	that	the	
array	remains	a	max-heap	(MaxHeapify)	

•  Repeat	step	2	unil	the	array	is	sorted.	

Heapsort	
•  Combines	the	beker	akributes	of	merge	sort	
and	inserion	sort.	
– Like	merge	sort,	but	unlike	inserion	sort,	running	
ime	is	O(n	lg	n).	

– Like	inserion	sort,	but	unlike	merge	sort,	sorts	in	
place.	

•  Introduces	an	algorithm	design	technique		
– Create	data	structure	(heap)	to	manage	
informaion	during	the	execuion	of	an	algorithm.	

•  The	heap	has	other	applicaions	beside	soring.	
– Priority	Queues	(See	COMP250)	

Maintaining	the	heap	property	
•  Suppose	two	subtrees	are	max-heaps,		
but	the	root	violates	the	max-heap		
property.	

•  Fix	the	offending	node	by	exchanging	the	value	at	the	
node	with	the	larger	of	the	values	at	its	children.		
–  The	resuling	tree	may	have	a	subtree		that	is	not	a	heap.	

•  Recursively	fix	the	children	unil	all	of	them	saisfy	the	
max-heap	property.	

MaxHeapify	–	Example		
26	

14	 20	

24	 17	 19	 13	

12	 18	 11	

14	

14	

24	24	

14	

14	

18	18	

14	
MaxHeapify(A,	2)	

Node	n=2	

Procedure	MaxHeapify	

MaxHeapify(A, i, n)
1. l ← leftNode(i)
2. r ← rightNode(i)
3. if l ≤ heap-size[A] and A[l]>A[i]
4. then largest ← l
5. else largest ← i
6. if r ≤ n and A[r]>A[largest]
7. then largest ← r
8. if largest ≠ i
9. then exchange A[i] ↔ A[largest]
10. MaxHeapify(A, largest)
	

Assump&on:	Lef(i)	and	Right(i)	are	max-heaps.	
	 	 					n	is	the	size	of	the	heap.	

Time	to	fix	node	i	and	
its	children	=	Θ(1)	

Time	to	fix	the	
subtree	rooted	at	one	
of	i’s	children	=	T(size	
of	subtree)	

Worst	case	running	ime	of	
MaxHeapify(A,	n)	

•  	T(n)	=		T(largest)		+	Θ(1)		

•  largest	≤	2n/3	(worst	case	occurs	when	the	last	row	
of	tree	is	exactly	half	full)	

•  T(n)	≤		T(2n/3)	+	Θ(1)	⇒	T(n)	=	O(lg	n)		

•  Alternately,	MaxHeapify	takes	O(h)	where	h	is	the	
height	of	the	node	where	MaxHeapify	is	applied	

≤
2 ⋅n
3

≤
n
3

Ο(log(n))

Worst	case	running	ime	of	
MaxHeapify(A,	n)	

Building	a	heap	

•  Use	MaxHeapify	to	convert	an	array	A	into	a	max-heap.	
•  Call	MaxHeapify	on	each	element	in	a	bokom-up	manner.	

BuildMaxHeap(A)
1. n ← length[A]
2. for i ← ⎣length[A]/2⎦ downto 1
3. do MaxHeapify(A, i, n)
	

BuildMaxHeap	–	Example		

24	 21	 23	 22	 36	 29	 30	 34	 28	 27	

Input	Array:	

24	

21	 23	

22	 36	 29	 30	

34	 28	 27	

Staring	tree	
(not	max-heap)	

BuildMaxHeap	–	Example		

24	

21	 23	

22	 36	 29	 30	

34	 28	 27	
MaxHeapify(⎣10/2⎦	=	5)	

36	36	

MaxHeapify(4)	

22	34	

22	

MaxHeapify(3)	

23	30	

23	

MaxHeapify(2)	

21	36	

21	

MaxHeapify(1)	

24	36	

24	34	

24	28	

24	

21	

21	

27	

Correctness	of	BuildMaxHeap	
•  Loop	Invariant:	At	the	start	of	each	iteraion	of	the	for	loop,	

each	node	i+1,	i+2,	…,	n	is	the	root	of	a	max-heap.	
•  Ini&aliza&on:		
–  Before	first	iteraion	i	=	⎣n/2⎦	
–  Nodes	⎣n/2⎦+1,	⎣n/2⎦+2,	…,	n	are	leaves,	hence	roots	of	trivial	
max-heaps.	

•  Maintenance:	
–  By	LI,	subtrees	at	children	of	node	i	are	max	heaps.	
–  Hence,	MaxHeapify(i)	renders	node	i	a	max	heap	root	(while	
preserving	the	max	heap	root	property	of	higher-numbered	
nodes).	

–  Decremening	i	reestablishes	the	loop	invariant	for	the	next	
iteraion.	

	

Running	Time	of	BuildMaxHeap	
•  Loose	upper	bound:	
–  Cost	of	a	MaxHeapify	call	×	No.	of	calls	to	MaxHeapify	
–  O(lg	n)	×	O(n)	=	O(n	lg	n)	

•  Tighter	bound:	
–  Cost	of	MaxHeapify	is	O(h).	
–  ≤	⎡n/2h+1⎤	nodes	of	height	h.	
–  Height	of	heap	is		

n
2h+1

!

""
#

$$h=0

lgn"% $&

∑ O(h) =O n h
2h

h=0

lgn"% $&

∑
(

)
**

+

,
--=O(n)

lgn!" #$

Running	ime	of	BuildMaxHeap	is	O(n)	

Heapsort	

1.  Builds	a	max-heap	from	the	array.	

2.  Put	the	maximum	element	(i.e.	the	root)	at	the	correct	place	
in	the	array	by	swapping	it	with	the	element	in	the	last	
posiion	in	the	array.	

3.  “Discard”	this	last	node	(knowing	that	it	is	in	its	correct	
place)	by	decreasing	the	heap	size,	and	call	MAX-HEAPIFY	on	
the	new	root.	

4.  Repeat	this	process	(goto	2)	unil	only	one	node	remains.	

Heapsort(A)	

HeapSort(A)
1. Build-Max-Heap(A)
2. for i ← length[A] downto 2
3. do exchange A[1] ↔ A[i]
4. MaxHeapify(A, 1, i-1)

	

Heapsort		–	Example		

7	

4	 3	

1	 2	

7	 4	 3	 1	 2	

Heapsort		–	Example		

2	

4	 3	

1	

2	 4	 3	 1	 7	

7	

4	

2	 3	

1	

4	 2	 3	 1	 7	

Heapify	

Heapsort		–	Example		

1	

2	 3	

1	 2	 3	 4	 7	

7	

3	

2	 1	

3	 2	 1	 4	 7	

Heapify	

4	

Heapsort		–	Example		

1	

2	

1	 2	 3	 4	 7	

7	

2	

1	

2	 1	 3	 4	 7	

Heapify	

4	 3	

Heapsort		–	Example		

1	

2	

1	 2	 3	 4	 7	

7	

1	 2	 3	 4	 7	

4	 3	

Heap	Procedures	for	Soring	

•  BuildMaxHeap							O(n)	
•  for	loop	n-1	imes	(i.e.	O(n))	
– exchange	elements	O(1)	
– MaxHeapify	O(lg	n)	

	
=>	HeapSort																O(n	lg	n)	

