
COMP251:	Hashing	

Jérôme	Waldispühl		
School	of	Computer	Science	

McGill	University	
Based	on	(Cormen	et	al.,	2002)	

Problem	DefiniNon	
Table	S	with	n	records	x:				

	X	
	
	
	
	
	
We	want	a	data	structure	to	store	and	retrieve	these	data.	
OperaNons:	
•  		
•  		
•  		

Key[x]	

InformaNon	
or	data	

associated	
with	x	

Satellite	data	

insert(S, x) : S← S∪{x}
delete(S, x) : S← S \ {x}
search(S,k)

Dynamic	set	

Direct	Address	Table	

•  Each	slot,	or	posiNon,	corresponds	to	a	key	in	U	.	
•  If	there	is	an	element	x	with	key	k,	then	T[k]	contains	a	pointer	to	x.	
•  If	T	[k]	is	empty,	represented	by	NIL.	
All	operaNons	in	O(1),	but	if	n	(#keys)	<	m	(#slots),	lot	of	wasted	space.	

IllustraNon	(CLR,	2005)	

Hash	Tables	
•  Reduce	storage	to	O(n)	keys.	
•  Resolve	conflicts	by	chaining.		
•  Search	Nme	in	O(1)	Nme	in	average,	but	not	the	worst	case.	

Hash	funcNon:		h :U→ {0,1,...,m−1}

h(k1)

h(k4)

Analysis	of	Hashing	with	Chaining	
Inser&on:	O(1)	Nme	(Insert	at	the	beginning	of	the	list).	

Dele&on:	Search	Nme	+	O(1)	if	we	use	a	double	linked	list.	

Search:	

•  Worst	case:	Worst	search	Nme	to	is	O(n).	

Search	Nme	=	Nme	to	compute	hash	funcNon	+	

	 	 							Nme	to	search	the	list.	

	Assuming	the	Nme	to	compute	hash	funcNon	is	O(1).	

	Worst	Nme	happens	when	all	keys	go	the	same	slot	(list	of		size	n),	
	and	we	need	to	scan	the	full	list	=>	O(n).	

•  Average	case:	It	depends	how	keys	are	distributed	among	slots.	

Average	case	Analysis	
Assume	a	simple	uniform	hashing:	n	keys	are	distributed	
uniformly	among	m	slots.	
	
Let	n	be	the	number	of	keys,	and	m	the	number	of	slots.	
	
Average	number	of	element	per	linked	list?	
	
Load	factor:		
	
Theorem:		

The	expected	Nme	of	a	search	is	︎Θ(1	+	α).	Θ(1	+	α).	
	
Note:	O(1)	if	α	<	1,	but	O(n)	if	α	is	O(n).	

α =
n
m

Average	case	Analysis	

Theorem:		
The	expected	Nme	of	a	search	is	︎Θ(1	+	α).	Θ(1	+	α).	

	
	
Proof?	
	

	DisNnguish	two	cases:	

•  search	is	unsuccessful	
•  search	is	successful	

	
	

Unsuccessful	search	

•  Assume	that	we	can	compute	the	hash	funcNon	in	O(1)	Nme.	

•  An	unsuccessful	search	requires	to	scan	all	the	keys	in	the	list.	
	
Search	Nme	=	O(1	+	average	length	of	lists)		
	
Let	ni	be	the	length	of	the	list	aiached	to	slot	i.	
	
Average	value	of	ni	?	
	

⇒ O(1) + O(α) = O(1 + α)

E(ni) =α =
n
m

(Load	factor)	

Successful	search	
•  Assume	the	posiNon	of	the	searched	key	x	is	equally	likely	to	

be	any	of	the	elements	stored	in	the	list.	
•  Keys	scanned	(in	the	list)	a1er	finding	x	have	been	inserted	

in	the	hash	table	before	x	(i.e.	we	insert	at	the	head).		

Xij = I h(ki) = h(kj){ }; E(Xij) = (probability	of	a	collision)	

E 1
n

1+ Xij
j=i+1

n

∑
"

#
$$

%

&
''

i=1

n

∑
(

)
*
*

+

,
-
-
=
1
n

1+ E Xij
() +,

j=i+1

n

∑
"

#
$$

%

&
''

i=1

n

∑

=
1
n

1+ 1
mj=i+1

n

∑
"

#
$$

%

&
''

i=1

n

∑

=1+α
2
+
α
2n

1
m

Search	Nme:												
	
	
	
	
	

Θ(1+1+α
2
+
α
2n
) =Θ(1+α)

Choosing	a	hash	funcNon	
Proper&es:	
1.  Uniform	distribuNon	of	keys	into	slots	
2.  Regularity	in	key	disturb	should	not	affect	uniformity.	
	
List	of	func&ons:	
•  Division	method	
•  MulNplicaNon	methods	
•  Open	addressing:	
•  Linear	probing	
•  QuadraNc	probing	
•  Double	hashing	

Each	integer	x	accepts	an	unique	decomposiNon	
where	0 ≤ ai < 2	

Example:	

The	binary	number	representaNon	of	an	integer	x	is	its	
(reversed)	sequence	of	a’s.	

Example:	

Binary	number	opera&ons:	

101101	>>	1	=	10110	(right	shim)	:	quoNent	of	division	by	2k	

101101	<<	2	=	10110100	(lem	shim)	:	mulNplicaNon	by	2k	

101101	mod	22	=	01	(modulo	2k)	:	remainder	of	division	by	2k	

Binary	Numbers	(reminder)	

x = ai ⋅2
i

i
∑

x =11=1⋅20 +1⋅21 + 0 ⋅22 +1⋅23

x =11→ 1,0,1,1 →101123	 22	 21	 20	
1	 0	 1	 1	

Division	Method	
h(k) = kmodd

d	must	be	chosen	carefully.	

Example	1:	d	=	2	and	all	keys	are	even?	
	 	 		Odd	slots	are	never	used!	

Example	2:	d	=	2r		

	 	 		k	=	100010110101101011		

	 	 		keeps	only	r	last	bits…	

Good	heurisNc:	Choose	r	prime	not	too	close	from	a	power	of	2	or	10.	

Note:	Easy	to	implement,	but	division	is	slow…	

r	=	2	->	11	
r	=	3	->	011	
r	=	4	->	1011				

MulNplicaNon	method	
h(k) = A ⋅ kmod2w() >> (w− r)

2w-1	<	A	<	2w	

r	

Open	addressing	
No	storage	for	mulNple	keys	on	single	slot	(i.e.	no	chaining).	

Idea:	Probe	the	table.	
•  Insert	if	the	slot	if	empty,	
•  Try	another	hash	funcNon	otherwise.	

h:	U	x	{	1,	…	,	m-1	}	->	{	1,	…	,	m-1	}	

	Universe	of	keys								probe	number								slot	

Constraints:	
•  n	<	m	(i.e.	more	slots	than	keys	to	store)	
•  DeleNon	is	difficult	

Challenge:	How	to	build	the	hash	funcNon?	

Open	addressing	

index	 key	
1	 355	
2	
3	 567	
4	 233	
5	
6	 799	
7	

h(282,0)=3	

h(282,1)=1	

h(282,2)=5	

282	

Note:	Search	must	use	the	same	probe	sequence.		

IllustraNon:	Where	to	store	key	282?	

Full!	

✔	

Linear	&	QuadraNc	probing	

h(k, i) = h '(k)+ i()modm

h(k, i) = h '(k)+ c1 ⋅ i+ c2 ⋅ i
2()modm

Note:	tendency	to	create	clusters.	

Remarks:	
•  We	must	ensure	that	we	have	a	full	permutaNon	of	

⟨	0,	…	,	m-1	⟩.	
•  Secondary	clustering:	2	disNnct	keys	have	the	same	

hʹ	value,	if	they	have	the	same	probe	sequence.		

Linear	probing:	

QuadraNc	probing:	

Double	hashing	

h(k, i) = h1(k)+ i ⋅h2 (k)()modm

Must	have	h2(k)	be	“relaNvely”	prime	to	m	to	guarantee	that	
the	probe	sequence	is	a	full	permutaNon	of	⟨0,	1,	.	.	.	,	m	−1⟩.	

Examples:	
•  m	power	of	2	and	h2	returns	odd	numbers	
•  m	prime	number	and	1	<	h2(k)	<	m	

	

Analysis	of	open-addressing	

We	assume	uniform	hashing:	Each	key	equally	likely	to	have	
anyone	of	the	m’	permutaNons	as	its	probe	sequence,	
independently	of	other	keys.		
	
Theorem	1:	The	expected	number	of	probes	in	an	unsuccessful	

search	is	at	most 	 			.		
	
Theorem	2:	The	expected	number	of	probes	in	a	successful	

search	is	at	most	

	

Reminder:		 	 		is	the	load	factor	

1
1−α

1
α
⋅ log 1

1−α
#

$
%

&

'
(

α =
n
m

Proof	for	unsuccessful	searches	
IniNal	state:	n	keys	are	already	stored	in	m	slots.	
	
Probability	that	the	1st	slot	is	occupied:	n/m.	
Probability	that	the	2nd	slot	is	occupied:	(n-1)/(m-1).	
Probability	that	the	3rd	slot	is	occupied:	(n-2)/(m-2).	

Let	X	be	the	number	of	unsuccessful	probes.	

E(X) =1+ n
m
1+ n−1

m−1
1+ n− 2

m− 2
... 1+ 1

m− n
"

#
$

%

&
'

"

#
$

%

&
'

"

#
$

%

&
'

"

#
$$

%

&
''

≤1+α 1+α 1+α ... 1+α()()()() ≤1+α +α 2 +... = α i

i=1

∞

∑ =
1

1−α

Consequences	

Corollary		
The	expected	number	of	probes	to	insert	is	at	most	1/(1	−	α).	
	
Interpreta&on:	
•  If	α	is	constant,	an	unsuccessful	search	takes	O(1)	Nme.	
•  If	α	=	0.5,	then	an	unsuccessful	search	takes	an	average	of	

1/(1	−	0.5)	=	2	probes.	
•  If	α	=	0.9,	takes	an	average	of	1/(1	−	0.9)	=	10	probes.	

Proof	of	Theorem	on	successful	searches:	See	[CLRS,	2009].	

Universal	Hashing	
•  A	malicious	adversary	who	has	learned	the	hash	funcNon	

chooses	keys	that	all	map	to	the	same	slot,	giving	worst-case	
behavior.	

•  Defeat	the	adversary	using	Universal	Hashing	
– Use	a	different	random	hash	funcNon	each	Nme.	
–  Ensure	that	the	random	hash	funcNon	is	independent	of	
the	keys	that	are	actually	going	to	be	stored.	

–  Ensure	that	the	random	hash	funcNon	is	“good”	by	
carefully	designing	a	class	of	funcNons	to	choose	from:	
•  Design	a	universal	class	of	funcNons.	
	
	

Note:	We	solve	now	collision	by	chaining	

Universal	Set	of	Hash	FuncNons	

•  A	finite	collecNon	of	hash	funcNons	H	that	map	a	
universe	U	of	keys	into	the	range	{0, 1,…, m–1} is	
universal		if:	
	 	for	each	pair	of	disNnct	keys	k, l ∈ U,	

						 	the	number	of	hash	funcNons	h ∈ H 	
										 	for	which	h(k)=h(l)	is	≤	|H|/m.		
•  For	a	hash	funcNon	h	chosen	randomly	from	H,	the	
chance	of	a	collision	between	two	keys	is	≤	1/m.	

	
Universal	hash	funcNons	give	good	hashing	behavior.	

Example	of	Universal	Hashing	

•  The	table	size	m	is	a	prime,	
•  key	x	is	decomposed	into	bytes	s.t.	x	=	<x0	,…,	xr>,	
•  a	=	<a0	,…,	ar>	denotes	a	sequence	of		r+1				
			elements	randomly	chosen	from	{0,	1,	…	,	m	–	1}.	

The	class	H	defined	by:	

H	=	∪a	{ha}	with	ha(x)	=	∑i=0	to	r	aixi	mod	m		

				is	an	universal	funcNon.	

Cost	of	Universal	Hashing	
Theorem:	
Using	chaining	and	universal	hashing	on	key	k:	
•  If	k	is	not	in	the	table	T,	the	expected	length	of	the	list	that	k	

hashes	to	is	≤	α.	
•  If	k	is	in	the	table	T,	the	expected	length	of	the	list	that	k	

hashes	to	is	≤	1+α.	

Proof:	
Xk = #	of	keys	(≠k)	that	hash	to	the	same	slot	as	k.	
Ckl = I{h(k)=h(l)}; E[Ckl] = Pr{h(k)=h(l)} ≤ 1/m.

Xk = Ckl
l∈T \{k}
∑ , and E[Ck]= E Ckl

l∈T \{k}
∑

#

$
%
%

&

'
(
(
= E[Ckl]

l∈T \{k}
∑ ≤

1
ml∈T∧l≠k

∑

If k ∉ T, E[Xk]≤ n /m =α.
If k ∈ T, E[Xk]+1≤ (n−1) /m+1=1+α −1/m <1+α.

Proof	
Let																																								and																																								be	2	disNnct	keys.	

They	differ	at	(at	least)	one	posiNon.	WLOG	let	0	be	this	posiNon.	

For	how	many	h	do	X	and	Y	collide?	

Y = y0, y1,..., yrX = x0, x1,..., xr

aixi
i=0

r

∑ ≡ aiyi
i=0

r

∑ (modm)

ai (xi − yi)
i=0

r

∑ ≡ 0(modm)

a0 (x0 − y0) ≡ − ai (xi − yi)
i=1

r

∑ (modm)

a0 ≡ − ai (xi − yi)
i=1

r

∑
⎛

⎝
⎜

⎞

⎠
⎟⋅ (x0 − y0)

−1 (modm)

For	any	choice	of	<	a1,	a2,	…	,	ar>	there	
is	only	one	choice	of	a0	s.t.	X	and	Y	
collide.	
#{h	that	collide}	=	m	x	m	x	…	x	m	x	1	

	 	 	 				=	mr	=	|H|/m	

Quiz	

Answer	online	anonymous	quiz	at:	

hips://goo.gl/forms/mi7oZwM0rRSRDok92			

