
COMP251:	Probabilistic	analysis

Jérôme Waldispühl
School	of	Computer	Science

McGill	University
Based	on	slides	from	Lin	&	Devi	(UNC)

Review	of	Quicksort

Quicksort(A, p, r)
if p < r then

q := Partition(A, p, r);
Quicksort(A, p, q – 1);
Quicksort(A, q + 1, r)

fi

Partition(A, p, r)
x, i := A[r], p – 1;
for j := p to r – 1 do

if A[j] £ x then
i := i + 1;
A[i] «A[j]

fi
od;
A[i + 1] «A[r];
return i + 15

A[p..r]

A[p..q	– 1] A[q+1..r]

£ 5 ³ 5

Partition 5

QuickSort:	Review

Worst-case	Partition	Analysis

Split	off	a	single	element	at	each	level:
T(n)	=	T(n – 1)	+	T(0)	+	PartitionTime(n)

=	T(n	– 1)	+	Q(n)
=	åk=1	to	nQ(k)
=	Q(åk=1	to	n k)
=	Q(n2)

n

n	– 1	

n	– 2	

n	– 3	

2	

1	

n

Recursion	tree	for
worst-case	partition

Best-case	Partitioning

• Each	subproblem size	£ n/2.

• Recurrence	for	running	time
– T(n)	£ 2T(n/2)	+	PartitionTime(n)

=	2T(n/2)	+	Q(n)

• T(n)	=	Q(n	lg n)

cn

cn/2 cn/2

cn/4 cn/4 cn/4 cn/4

c c c cc c

lg	n

Variations
• Quicksort	is	not	very	efficient	on	small	lists.

• This	is	a	problem	because	Quicksort	will	be	
called	on	lots	of	small	lists.

• Fix	1: Use	Insertion	Sort	on	small	problems.

• Fix	2: Leave	small	problems	unsorted.		Fix	with	
one	final	Insertion	Sort	at	end.
– Note: Insertion	Sort	is	very	fast	on	almost-sorted	
lists.

Average	case	analysis

Unbalanced	Partition	Analysis
What	happens	if	we	get	poorly-balanced	partitions,	

e.g.,	something	like:	T(n)	£ T(9n/10)		+	T(n/10)	+	Q(n)?
Still	get	Q(n lg n)!! (As	long	as	the	split	is	of	constant	proportionality.)

Intuition: Can	divide	n by	c >	1	only	Q(lg n)	times	before	getting	1.
n
¯
n/c
¯
n/c2
¯
!
¯
1=	n/clogcn

(Remember: Different	base	logs	are	related	by	a	constant.)

Roughly	logc n	levels;
Cost	per	level	is	O(n).

£ n

£ n

£ n

Intuition	for	the	Average	Case

• Partitioning	is	unlikely	to	happen	in	the	same	
way	at	every	level.
– Split	ratio	is	different	for	different	levels.	
(Contrary	to	our	assumption	in	the	previous	slide.)

• Partition	produces	a	mix	of	“good” and	“bad”
splits,	distributed	randomly	in	the	recursion	tree.

• What	is	the	running	time	likely	to	be	in	such	a	
case?

n

0 n	– 1

(n – 1)/2	– 1 (n	– 1)/2

Q(n)
Bad	split	followed	by	a	good	split:
Produces	subarrays of	sizes	0,
(n – 1)/2	– 1,	and	(n – 1)/2.
Cost	of	partitioning	:	

Q(n)	+	Q(n-1)	=	Q(n).

n

(n – 1)/2 (n	– 1)/2

Q(n)
Good	split	at	the	first	level:
Produces	two	subarrays	of	size		(n – 1)/2.
Cost	of	partitioning	:	

Q(n).

Situation	at	the	end	of	case	1	is	not	worse	than	that	at	the	end	of	case	2.
When	splits	alternate	between	good	and	bad,	the	cost	of	bad	split	can	be	absorbed	
into	the	cost	of	good	split.
Thus,	running	time	is	O(n	lg	n),	though	with	larger	hidden	constants.

Intuition	for	the	average	case

Randomized	quicksort

Randomized	Quicksort
w Want	to	make	running	time	independent	of	input	
ordering.

w How	can	we	do	that?
» Make	the	algorithm	randomized.
» Make	every	possible	input	equally	likely.

• Can	randomly	shuffle	to	permute	the	entire	array.
• For	quicksort,	it	is	sufficient	if	we	can	ensure	that	every	
element	is	equally	likely	to	be	the	pivot.

• So,	we	choose	an	element	in	A[p..r]	and	exchange	it	
with	A[r].

• Because	the	pivot is	randomly	chosen,	we	expect	the	
partitioning	to	be	well	balanced	on	average.

Variations	(Continued)

• Input	distribution	may	not	be	uniformly	random.

• Fix	1: Use	“randomly” selected	pivot.
–We’ll analyze	this	in	detail.

• Fix	2:Median-of-three	Quicksort.
– Use	median	of	three	fixed	elements	(say,	the	first,	
middle,	and	last)	as	the	pivot.

– To	get	O(n2)	behavior,	we	must	continually	be	unlucky	to	
see	that	two	out	of	the	three	elements	examined	are	
among	the	largest	or	smallest	of	their	sets.

Randomized	Version

Randomized-Partition(A, p, r)
i := Random(p, r);
A[r] « A[i];
Partition(A, p, r)

Randomized-Quicksort(A, p, r)
if p < r then

q := Randomized-Partition(A, p, r);
Randomized-Quicksort(A, p, q – 1);
Randomized-Quicksort(A, q + 1, r)

fi

Want	to	make	running	time	independent	of	input	ordering.

Expectation	&	Indicators
Technical	intermission

Expectation

• Average	or	mean

• The	expected	value	of	a	discrete	random	variable	X is	
E[X]	=	åx	x	Pr{X=x}

• Linearity	of	Expectation
– E[X+Y]	=	E[X]+E[Y],	for	all	X,	Y
– E[aX+Y]	=	a	E[X]	+	E[Y],	for	constant	a and	all	X,	Y

• For	mutually	independent	random	variables X1,…,	Xn
– E[X1X2 …	Xn]	=	E[X1]	·	E[X2]	·	…	·	E[Xn]

Expectation	– Example	
• Let	X be	the	RV	denoting	the	value	obtained	when	a	fair	
die	is	thrown.	What	will	be	the	mean	of	X,	when	the	die	
is	thrown	n times.
– Let	X1,	X2,	…,	Xn denote	the	values	obtained	during	the	n
throws.

– The	mean	of	the	values	is	(X1+X2+…+Xn)/n.
– Since	the	probability	of	getting	values	1	thru	6	is	(1/6),	on	an	
average	we	can	expect	each	of	the	6	values	to	show	up	(1/6)n
times.

– So,	the	numerator	in	the	expression	for	mean	can	be	written	as	
(1/6)n·1+(1/6)n·2+…+(1/6)n·6

– The	mean,	hence,	reduces	to	(1/6)·1+(1/6)·2+…(1/6)·6,	
which is	what	we	get	if	we	apply	the	definition	of	expectation.

Indicator	Random	Variables

• A	simple	yet	powerful	technique	for	computing	the	
expected	value	of	a	random	variable.

• Convenient	method	for	converting	between	
probabilities	and	expectations.

• Helpful	in	situations	in	which	there	may	be	
dependence.

• Takes	only	2	values,	1	and	0.
• Indicator	Random	Variable	for	an event	A of	a	
sample	space	is	defined	as:

I{A} = 1 if A occurs,
0 if A does not occur.

!
"
#

$#

Indicator	Random	Variable

Lemma	5.1
Given	a	sample	space	S and	an	event	A in	the	sample	
space	S,	let	XA=	I{A}.	Then	E[XA]	=	Pr{A}.

Proof:
Let	Ā =	S	– A	(Complement	of	A)
Then,
E[XA]	=	E[I{A}]

=	1·Pr{A}	+	0·Pr{Ā}
=	Pr{A}

Indicator	RV	– Example

Problem: Determine	the	expected	number	of	
heads	in	n coin	flips.

Method	1: Without	indicator	random	variables.
Let	X be	the	random	variable	for	the	number	of	
heads	in	n flips.
Then,	E[X]	=	åk=0..nk·Pr{X=k}
We	can	solve	this	with	a	lot	of	math.

Indicator	RV	– Example	
• Method	2	: Use	Indicator	Random	Variables
• Define	n indicator	random	variables,	Xi,	1	£ i £ n.
• Let	Xi be	the	indicator	random	variable	for	the	event	
that	the	ith flip	results	in	a	Head.

• Xi =	I{the	ith flip	results	in	H}
• Then	X =	X1 +	X2 +	…+	Xn =	åi=1..nXi.
• By	Lemma	5.1,	E[Xi]	=	Pr{H}	=	½,	1	£ i £ n.
• Expected	number	of	heads	is	E[X]	=	E[åi=1..nXi].
• By	linearity	of	expectation,	E[åi=1..nXi]	=	åi=1..nE[Xi].
• E[X]	=	åi=1..nE[Xi]	=	åi=1..n½	=	n/2.

Average	case	analysis
Back	to	business

Average	Case	Analysis	of	Randomized	Quicksort

Let	RV	X =	number	of	comparisons	over	all	calls	to	Partition.

Q:	Why	is	it	a	good	measure?

Notation:
• Let	z1,	z2,	…,	zn denote	the	list	items	(in	sorted	order).
• Let	Zij =	{zi,	zi+1,	…,	zj}.

Let	RV	Xij =

Thus,	

1		if	zi is	compared	to	zj
0		otherwise

Xij is	an	
indicator	random	variable.
Xij=I{zi is	compared	to	zj}.

.XX
1n

1i

n

1ij
ijåå

-

= +=

=

Analysis	(Continued)

We	have:

]z tocompared is P[z

]E[X

XEE[X]

1n

1i

n

1ij
ji

1n

1i

n

1ij
ij

1n

1i

n

1ij
ij

åå

åå

åå

-

= +=

-

= +=

-

= +=

=

=

ú
û

ù
ê
ë

é
=

Reminder:
E[Xij]	=		0·P[Xij=0]	+	1·P[Xij=1]

=		P[Xij=1]	

So,	all	we	need	to	do	is	to	compute	P[zi is	compared	to	zj].

Analysis	(Continued)
zi and	zj are	compared	iff the	first	element	to	be	chosen	as	a	pivot
from	Zij is	either	zi or	zj.

Exercise: Prove	this.

So,

1ij
2

1ij
1

1ij
1

] Zfrompivot first is P[z

] Zfrompivot first is P[z

] Zfrompivot first is zor P[z]z tocompared is P[z

ijj

iji

ijjiji

+-
=

+-
+

+-
=

+

=

=

Analysis	(Continued)

n). lgO(n

n) O(lg

k
2

1k
2

1ij
2E[X]

Therefore,

1-n

1i

1-n

1i

n

1k

1-n

1i

i-n

1k

1-n

1i

n

1ij

=

=

<

+
=

+-
=

å

åå

åå

åå

=

= =

= =

= +=

1
kk=1

n

∑ =Hn (nth Harmonic number)

Hn = ln n + O(1)

Substitute	k =	j – i.

Deterministic	vs.	Randomized	Algorithms
• Deterministic	Algorithm :	Identical	behavior for	different	runs	

for	a	given	input.
• Randomized	Algorithm :	Behavior	is	generally	different for	

different	runs	for	a	given	input.

Algorithms

Deterministic Randomized

Worst-case	
Analysis

Worst-case
Running	Time

Probabilistic
Analysis

Average
Running	Time

Probabilistic
Analysis

Average
Running	Time

