
COMP251:	Review	

Jérôme	Waldispühl	
School	of	Computer	Science	

McGill	University	

Running-Hme	O	(m+n)	is	equivalent	to:	
A.  O(m)	+	O	(n)	
B.  O(max(m,n))	

Which	of	these	possibiliHes	are	true?	
	
•  A	and	B	
•  A	only	
•  B	only	
•  neither	A	or	B		

IntuiHon	and	visualizaHon	
•  “f(n)	is	O(g(n))”	iff	there	exists	a	point	n0	
beyond	which	f(n)	is	less	than	some	fixed	
constant	Hmes	g(n)		

n0	

f(n)	

g(n)	

For	all	n	≥	n0	

f(n)	≤	c	•	g(n)		(for	c	=	1)	

From	COMP250	M.	Blanche^e’s	slides	

Let	T1(n)	=	O(f(n))	and	T2	(n)	=	O(f(n)).	Given	the	statements:	
A.  T1(n)	/	T2(n)	=	O(1)	
B.  T1(n)	+	T2	(n)	=	O(f(n)).	

Which	of	them	are	true?	
	
•  A	and	B	
•  A	only	
•  B	only	
•  neither	A	or	B		

What	is	the	Hme-complexity	of	the	following	piece	of	
code	in	Big-Oh	notaHon?	
sum = 0;
for (int i = 0; i < n; i++) {

for (j = 1; j < n; j = j*2) {
sum += n; }}	

•  O(n)	
•  O(n*log(n))	
•  O(n^2)	
•  O(log(n))		

for (i=1; i<N; i=i*2) { … }

Value	of	i	afer	k	iteraHons:	2k		
	
We	have	i	<	N	=>	2k	<	N	=>	k	<	log2(N).	
	
There	is	less	than	log2(N)	iteraHons,	and	
the	running	Hme	of	this	loop	is	O(log(n)).	

For	this	Binary	Tree,	which	of	the	
following	represents	a	post-order	
traversal?	
	
•  A,	B,	C,	D,	E,	F,	G,	H,	I	
•  F,	B,	A,	D,	C,	E,	G,	I,	H	
•  A,	C,	E,	D,	B,	H,	I,	G,	F	
•  None	of	the	above		

Post-order	traversal	

A

F

B

C

E

H

I

D

L

postorderTraversal(treeNode x)
for each c in children(x) do

postorderTraversal(c);
print x.value;

D	 E	 F	 B	 I		L		H		A	C	

For	the	Binary	Search	Tree	shown	
above,	deleHon	of	node	F	would	result	
in	which	of	the	following	nodes	
becoming	the	root	node?	
•  B	
•  G	
•  B	or	G	
•  E	or	G		

BST	-	remove	
1)  Find	the	node	N	to	be	removed	using	the	“find” algo	
2)  If (N is a leaf) { remove it }

Else if (N is an internal node with only one child)
{

 replace N by its child
}
Else if (N is an internal node with two children)
{

N will be replaced by the node N’ that has the
next largest key after (or before) N.

}

			To	find	N’:	
1.  Go	to	the	right	child	of	N	
2.  Go	down	lef	unHl	no	lef	child	is	found.		

					The	node	found	is	N’	

Suppose	we	need	to	sort	a	list	of	employee	records	in	
ascending	order,	using	the	social	security	number	(a	9-digit	
number)	as	the	key	(i.e.,	sort	the	records	by	social	security	
number).	If	we	need	to	guarantee	that	the	running	Hme	will	be	
no	worse	than	n	log	n	,	which	sorHng	methods	could	we	use?	
	
•  Merge	sort	
•  Quicksort	
•  InserHon	sort	
•  Either	merge	sort	or	quicksort	
•  None	of	these	sorHng	algorithms		

Algo	 Best	case	 Average	case	 Worst	case	

MergeSort	 O(n	*	log(n))	 O(n	*	log(n))	 O(n	*	log(n))	

QuickSort	 O(n	*	log(n))	 O(n	*	log(n))	 O(n	^	2)	

InserHonSort	 O(n)	 O(n	^	2)	 O(n	^	2)	

HeapSort	 O(n	*	log(n))	 O(n	*	log(n))	 O(n	*	log(n))	

BubbleSort	 O(n)	 O(n	^	2)	 O(n	^	2)	

Merge	Sort	

4	 2	 3	 1	

4	 2	 3	 1	

4	 2	 3	 1	

2	 4	 1	 3	

1	 2	 3	 4	

Divide

Merge

Which	of	the	following	asserHons	are	true?	(mulHple	choices)	
	
•  Heaps	are	binary	search	trees.	
•  Heaps	are	binary	trees.		
•  Heaps	can	be	used	to	implement	priority	queues.	
•  Heaps	can	be	used	to	implement	lists.	

50%	

Heap	-	DefiniHon	

	A	heap	is	a	binary	tree	such	that:	

– For	any	node	n	other	than	the	root,		
	key(n)	≥	key(parent(n))	

– Let	h	be	the	height	of	the	heap	
•  First	h-1	levels	are	full:	
	For	i	=	0,…,h-1,	there	are	2i	nodes	of	depth	i	
•  At	depth	h,	the	leaves	are	packed	on	the	lef	side	of	the	
tree	

What	is	the	Hme-complexity	of	the	removal	of	the	highest	
priority	key	in	a	heap	(where	n	is	the	number	of	keys	
stored)?	
	
•  O(1)		
•  O(n)	
•  O(log(n))	

Heaps:	RemoveMin()	
•  The	minimum	key	is	always	at	the	root	of	the	
heap!	

•  Replace	the	root	with	last	node	

•  Restore	heap-order	property	(see	next)	

Heaps:	Bubbling-down	
Restoring	the	heap-order	property:	

–  Keep	swapping	the	node	with	its	smallest	child	as	long	as	the	node’s	
key	is	larger	than	it’s	child’s	key	

Running	Hme?	

Ο(h) =Ο(log(n))

You	are	using	a	hash	table	to	store	keys.	Assuming	there	is	
no	collision,	which	of	the	following	operaHons	have	a	O(1)	
Hme-complexity?	(mulHple	choices)	
	
•  Insert	key.	
•  Remove	key.	
•  Find	key.		

50%	

Which	of	the	following	asserHons	are	true?*	(mulHple	choices)	
	
•  Graphs	are	trees.	
•  Trees	are	graphs.	
•  A	graph	that	is	not	a	tree	has	at	least	one	cycle.**	
•  An	Hamiltonian	cycle	visits	each	vertex	exactly	once.	
•  An	Eulerian	cycle	visits	each	vertex	exactly	once.		

*	The	graph	is	connected,	undirected	and	#nodes	>	2.	
**	True	only	if	edges	are	undirected.	

50%	

In	the	graph	shown	above,	starHng	from	
the	green	node	at	the	top,	which	
algorithm	will	visit	the	least	number	of	
nodes	before	visiHng	the	yellow	goal	
node?	
	
•  Depth	First	Search	(DFS)	
•  Breadth	First	Search	(BFS)	
•  BFS	and	DFS	encounter	same	

number	of	nodes	before	encounter	
the	goal	node.		

Depth-First	Search	

Idea:		
•  Search	"deeper"	in	the	graph	whenever	possible	
•  Start	at	some	vertex	v	
•  Afer	visiHng	vertex	v,	the	next	vertex	to	be	explored	is	
the	first	unvisited	neighbor	of	v	

•  If	v	has	no	neighbor	or	if	all	its	neighbors	have	explored,	
backtrack	to	the	vertex	from	which	we	reached	v	

•  Corresponds	to	adventurous	web	browsing:	always	click	
the	first	unvisited	link	available.	Click	"back"	when	you	
hit	a	dead-end.	

1	

2	

3	

4	

5	

5	

6	

7	

8	

9	

10	

Breadth-First	Search	
Idea:	

•  Explore	graph	layers	by	layers	
•  Start	at	some	vertex	v	
•  Then	explore	all	the	neighbors	of	v	
•  Then	explore	all	the	unvisited	neighbors	of	the	

neighbors	of	v	
•  Then	explore	all	the	unvisited	neighbors	of	the	

neighbors	of	the	neighbors	of	v	
•  unHl	no	more	unvisited	verHces	remain	

1	

2	

4	 5	

3	

6	

You	read	the	following	statement	in	a	Java	program	that	
compiles	and	executes:	

submarine.dive(depth);
	
•  depth	must	be	an	int.	
•  dive	must	be	a	method.	
•  submarine	must	be	the	name	of	a	class.	
•  submarine	must	be	a	method.		

Consider	the	following	program:	
public class MyClass{

public MyClass() { /*code*/ };
// more code...

}
How	would	you	instanciate	MyClass?	
	
•  MyClass mc = new MyClass();
•  MyClass mc = MyClass();
•  MyClass mc = new MyClass;
•  MyClass mc = new MyClass;
•  It	can't	be	done.	The	constructor	of	MyClass	should	be	

defined	as:	public void MyClass(){/*code*/}

You	want	to	iniHalize	all	of	the	elements	of	a	double	array	a	to	the	
same	value	equal	to	1.5.	What	could	y	ou	write?	Assume	that	the	
array	has	been	correctly	iniHalized.	
	
•  for(int i=1; i<a.length; i++) a[i] = 1.5;
•  for(int i=0; i<=a.length; i++) a[i] = 1.5;
•  for(int i=0; i<a.length; i++) a[i] = 1.5;
•  for(int i=0; i<a.length+1; i++) a[i] = 1.5;
•  for(int i=0; i<a.length-1; i++) a[i] = 1.5;

T(n)	=	T(n-1)	+	O(n)	is	a	recurrence	for	the	running	Hme	of?	
	
•  InserHon	sort	
•  Merge	sort		
•  Quick	sort	
•  Bubble	sort	

for i ← 1 to length(A) - 1
 j ← i
 while j > 0 and A[j-1] > A[j]
 swap A[j] and A[j-1]
 j ← j - 1

InserHonSort	

3	7	4	9	5	2	6	1	
3	7	4	9	5	2	6	1	
3	7	4	9	5	2	6	1	
3	4	7	9	5	2	6	1	
3	4	7	9	5	2	6	1	
3	4	5	7	9	2	6	1	
2	3	4	5	7	9	6	1	
2	3	4	5	6	7	9	1	
1	2	3	4	5	6	7	9	 h^p://en.wikipedia.org/wiki/InserHon_sort	

Example:	

The	probability	of	team	A	winning	any	game	is	1/3.	Team	A	
plays	team	B	in	a	tournament.	If	either	team	wins	two	games	
in	a	row,	that	team	is	declared	the	winner.	At	most	three	
games	are	played	in	the	tournament	and,	if	no	team	has	won	
the	tournament	at	the	end	of	three	games,	the	tournament	is	
declared	a	draw.	What	is	the	expected	number	of	games	in	
the	tournament?	
	
•  3	
•  19/9	
•  22/9	
•  25/9	
•  61/27		

ExpectaHon	value	

f (x) = E[f (x)]= f (x) ⋅ p
x
∑ (x)

•  x	is	a	random	variable	
•  f(x)	is	a	funcHon	over	x	
•  P(x)	probability	of	x	

Example:	Expected	value	of	a	fair	6-sided	die	roll?	
•  Each	side	has	a	probability	of	1/6	
•  The	value	of	each	is	the	number	associated	with	

f (x) = f (1) ⋅P(1)+ f (2) ⋅P(2)+ f (3) ⋅P(3)+ f (4) ⋅P(4)+ f (5) ⋅P(5)+ f (6) ⋅P(6)

= 1⋅ 1
6
+ 2 ⋅ 1

6
+3⋅ 1

6
+ 4 ⋅ 1

6
+ 5 ⋅ 1

6
+ 6 ⋅ 1

6
+

= 3.5

SoluHon	
What	are	the	possible	outcomes?	

A	 B	

Ø	

A	 B	 A	 B	

A	 B	 A	 B	

A	wins	
B	wins	
Draw	

⅓	

⅓	

⅓	

⅓	

⅓	

⅔	

⅔	

⅔	

⅔	

⅔	

E = l(AA) ⋅P(AA)+ l(BAA) ⋅P(BAA)+ l(BB) ⋅P(BB)+ l(ABB) ⋅P(ABB)+ l(ABA) ⋅P(ABA)+ l(BAB) ⋅P(BAB)

= 2 ⋅ 1
9
+3⋅ 2

27
+ 2 ⋅ 4

9
+3⋅ 4

27
+3⋅ 2

27
+3⋅ 4

27

=
22
9

Review	

Review	Appendix	A	&	C	1-4.	

[CLRS2009]	Cormen,	Leiserson,	Rivest,	&	Stein,	Introduc)on	
to	Algorithms.	(available	as	E-book)	

