
COMP251:	Dynamic	
programming	(2)

Jérôme Waldispühl
School	of	Computer	Science

McGill	University
Based	on	(Kleinberg	&	Tardos,	2005)

Bellman’s	principle	of	optimality

``An	optimal	policy	has	the	property	
that	whatever	the	initial	state	and	
initial	decision	are,	the	remaining	
decisions	must	constitute	an	
optimal	policy	with	regard	to	the	
state	resulting	from	the	first	
decision.’’

PAIRWISE	SEQUENCE	ALIGNMENT

How	similar	two	strings	are?

S1 =	tentation S2	=	temptation

ten-tation
temptation

Pairwise	sequence	alignment

Definition (Pairwise	sequence	alignment)
Let	a=a1…am and	b=b1…bn be	two	sequences	over	an	alphabet	Σ
(i.e.	a,	b	∈Σ*).	A	pairwise	alignment	is	a	mapping	f of	the	letters	
of	a to	b,	such	that	if	f(ai,bj) and	f(ak,bl)	then	i<k	&	j<l	or	k<i &	l<j.	

Example: a=ABBCEE,	b=BBCCDE

ABBC--EE ABB-C-EE ABBCEE A-B-B-C-E-E-
||| | || | | :|:|:|
-BBCCDE- -BBCCD-E BBCCDE -B-B-C-C-D-E

Note: letters	can	be	mapped	to	an	empty	character.
Question:	All	are	valid	alignments,	but	which	one	is	best?

Vocabulary
Match: letters	are	identical
Substitution: letters	are	different
Insertion: a	letter	of	b is	mapped	to	the	empty	character
Deletion: a	letter	of	a is	mapped	to	the	empty	character

Insertions	&	deletions	are	also	call	indels.

Example:
a=ABBCEE,	b=BBCCDE

ABB-CEE
|| |:|

-BBCCDE

substitution

match

insertion

deletion

Notations

The	empty	character/letter	is	noted	-

An	alignment	can	be	decomposed	in	column	(or	vectors).

a1 a2 −

− b1 b2
=

a1
−

"

#
$$

%

&
''

a2
b1

"

#

$
$

%

&

'
'

−
b2

"

#
$$

%

&
''

Bioinformatics

Let	a and	b be	two	homologous	(same	function)	biological	
sequences	(DNA,	RNA,	Protein).	

A	sequence	alignment	allows	us	to	estimate	the	similarity	
between	the	2	sequences	in	order	to:
• model	evolution
• reveal	functional	motifs

ACCAGTAGCGGGGGACA---GACCTCGCAT
ATC--TAGGGGGGGACATTTGACGACGC--

Counting	alignments	(1)

Let	a=a1…am and	b=b1…bn be	two	sequences	over	an	alphabet	Σ.

Let	c(m,n)	be	the	the	number	of	alignments	that	can	be	formed	
between	them.

First,	we	note	that	an	alignment	of	a and	b	must	end	by:

Thus,	c(m,n)	=	c(m-1,n)	+	c(m-1,n-1)	+	c(m,n-1)

am
−

"

#
$$

%

&
''

am
bn

!

"

#
#

$

%

&
&

−
bn

"

#
$$

%

&
''

Counting	alignments	(2)
We	have	a	recursion:

c(m,n)	=	c(m-1,n)	+	c(m-1,n-1)	+	c(m,n-1)

Initialization?

f(0,n)=f(m,0)=f(0,0)=1

Recursive	evaluation	(top-down):

1+1+1=3

1+1+1=3

1+1+1=3

1+1+3=5 3+1+1=5

5+3+5=13

Counting	alignments	(2)
We	have	a	recursion:

c(m,n)	=	c(m-1,n)	+	c(m-1,n-1)	+	c(m,n-1)

Initialization?

f(0,n)=f(m,0)=f(0,0)=1

Recursive	evaluation	(top-down):

1+1+1=3

1+1+1=3

1+1+1=3

1+1+3=5 3+1+1=5

5+3+5=13

Counting	alignments	(3)

Note:	f(1,1)	appears	3	times,	and	evaluated	3	times…

How	to	speed	up	this	calculation?
• Memoization
• Dynamic	programming

Counting	alignments	(4)

c(m,n)	=	c(m-1,n)	+	c(m-1,n-1)	+	c(m,n-1)

• Indices	of	c()	are	strictly	decreasing	during	the	recursion

• We	can	compute	c()	for	smaller	indices	first	(bottom-up)

• Define	a	partial	order	on	the	c()	such	that	c(i,j)<c(i’,j’)	iff i<i’	or	j<j’

• Compute	c()	using	this	partial	order:

for i=0 to m do
for j=0 to n do

c(i,j) = c(i-1,j)+c(i-1,j-1)+c(i,j-1)

• Complexity:	O(mn)

Optimal	pairwise	alignment

a=ABBCEE,	b=BBCCDE

ABBC--EE ABB-C-EE ABBCEE A-B-B-C-E-E-
||| | || | | :|:|:|
-BBCCDE- -BBCCD-E BBCCDE -B-B-C-C-D-E

Among	all	alignments,	which	one	is	the	best?

Levenshtein distance

Definition (Levenshtein Distance)
The	Levenshtein Distance	between	two	words/sequences	is	the	
minimal	number	of	substitutions,	insertions	and	deletions	to
transform	one	into	the	other.

Example:

ABB-CEE
-BBCCDE

1	deletion	+	1	insertion	+	1	substitution	⟹ d=3	

Edit	cost/distance
Definition (edit	cost)
Let	δ(x,y)	be	a	cost	function	for	each	edit	operation	(match,	
substitution,	insertion,	deletion).	The	edit	cost	of	two	
words/sequences	is	the	sum	of	the	cost	of	each	edit	operation	
used	transform	one	into	the	other.
Definition (edit	distance)
The	edit	distance	between	two	words/sequences	is	the	minimal	
cost	(sometimes	max)	to	transform	one	into	the	other.
Example:

𝛿 𝑥, 𝑦 = &0 𝑖𝑓	𝑥 = 𝑦
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

ABB-CEE 4	match+1	deletion+1	insertion+1	substitution
-BBCCDE ⟹ d	=	4	*	(0)	+	1	*	(+1)	+	1	*	(+1)	+	1	*	(+1)		=		3

Edit	distance

If
• Every	edit	operation	has	positive	cost
• for	every	operation,	there	is	an	inverse	operation	

with	equal	cost

Then,	the	edit	distance	is	a	metric:

• d(x,y)	≥	0 (separate	axiom)

• d(x,y)	=	0	iff x=y (coincidence	axiom)

• d(x,y)	=	d(y,x) (symmetry)

• d(x,y)	≤	d(x,z)	+	d(z,y) (triangle	inequality)	

Optimal	sub-structure
``A	sub-alignment	of	an	optimal	alignment	w.r.t.	the	edit	
cost	is	also	optimal’’

Proof:	cut-and-paste	argument	&	contradiction
• Let	A	be	an	optimal	alignment
• Let	A	=	A1A2A3 be	a	decomposition	of	A	such	that	A2 is	

not	optimal.
• Let	A’2 be	an	optimal	alignment	of	the	substrings	in	A2

• Substitute	A2 by	A’2 to	build	a	new	alignment	A’
• δ(A’)	=	δ(A1A’2A3)	=	δ(A1)+δ(A’2)+δ(A3)

<	δ(A1)+δ(A2)+δ(A3)	=	δ(A1A2A3)	=	δ(A)
• contradiction	with	A	optimal

Problem	Structure

Definition (dynamic	array):
d(i,j)	=	minimal	cost	of	aligning	prefix	strings	a1…ai and	b1…bj.

Case	1	(aimatches	bj)
cost	of	matching	aiwith	bj +	min	cost	of	aligning		a1…ai-1 and	b1…bj-1.

Case	2a	(ai deleted)
cost	of	deletion	of	ai +	min	cost	of	aligning		a1…ai-1 and	b1…bj.

Case	2b	(bj inserted)
cost	of	insertion	of	bj +	min	cost	of	aligning		a1…ai and	b1…b-1j.

Recursion

𝑑 𝑖, 𝑗 =

𝑗 5 𝛿(−,∗) 𝑖𝑓	𝑖 = 0

𝑚𝑖𝑛
𝛿 𝑎=, 𝑏? + 𝑑(𝑖 − 1, 𝑗 − 1)
𝛿 𝑎=, −	 + 𝑑(𝑖 − 1, 𝑗)
𝛿 −, 𝑏? + 𝑑(𝑖, 𝑗 − 1)

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑖 5 𝛿(∗, −) 𝑖𝑓	𝑗 = 0

Delete string of length i

Insert string of length j
Match, delete, or insert
rightmost character(s)

Needleman-Wunch Algorithm

for i=0 to m do
d(i,0)=i*δ(-,-)

for j=0 to n do
d(0,j)=j*δ(-,-)

for i=1 to m do
for j=1 to n do

d(i,j) = min(d(i-1,j)+δ(ai,-),
d(i-1,j-1)+δ(ai,bj),
d(i,j-1)+δ(-,bj))

return d(m,n)

Example

- A T T G
- 0 1 2 3 4
C 1
T 2

a=ATTG	b=CT 𝛿 𝑥, 𝑦 = &0 𝑖𝑓	𝑥 = 𝑦
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Example

- A T T G
- 0 1 2 3 4
C 1 ?
T 2

a=ATTG	b=CT

• match/substitution:	d(0,0)	+	δ(A,C)=0+(+1)=+1

𝛿 𝑥, 𝑦 = &0 𝑖𝑓	𝑥 = 𝑦
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Example

- A T T G
- 0 1 2 3 4
C 1 ?
T 2

a=ATTG	b=CT

• match/substitution:	d(0,0)	+	δ(A,C)=0+(+1)=+1
• insertion:	d(1,0)+δ(-,C) = 1+(+1)=+2

𝛿 𝑥, 𝑦 = &0 𝑖𝑓	𝑥 = 𝑦
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Example

- A T T G
- 0 1 2 3 4
C 1 ?
T 2

a=ATTG	b=CT

• match/substitution:	d(0,0)	+	δ(A,C)=0+(+1)=+1
• insertion:	d(1,0)+δ(-,C) = +1+(+1)=+2
• deletion:	d(0,1)+δ(A,-) = +1+(+1)=+2

𝛿 𝑥, 𝑦 = &0 𝑖𝑓	𝑥 = 𝑦
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Example

- A T T G
- 0 1 2 3 4
C 1 1
T 2

a=ATTG	b=CT

• match/substitution:	d(0,0)	+	δ(A,C)=0+(+1)=+1
• insertion:	d(1,0)+δ(-,C) = +1+(+1)=+2
• deletion:	d(0,1)+δ(A,-) = +1+(+1)=+2

𝛿 𝑥, 𝑦 = &0 𝑖𝑓	𝑥 = 𝑦
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Example

- A T T G
- 0 1 2 3 4
C 1 1 2
T 2

a=ATTG	b=CT 𝛿 𝑥, 𝑦 = &0 𝑖𝑓	𝑥 = 𝑦
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Example

- A T T G
- 0 1 2 3 4
C 1 1 2 3
T 2

a=ATTG	b=CT 𝛿 𝑥, 𝑦 = &0 𝑖𝑓	𝑥 = 𝑦
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Example

- A T T G
- 0 1 2 3 4
C 1 1 2 3 4
T 2

a=ATTG	b=CT 𝛿 𝑥, 𝑦 = &0 𝑖𝑓	𝑥 = 𝑦
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Example

- A T T G
- 0 1 2 3 4
C 1 1 2 3 4
T 2 2

a=ATTG	b=CT 𝛿 𝑥, 𝑦 = &0 𝑖𝑓	𝑥 = 𝑦
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Example

- A T T G
- 0 1 2 3 4
C 1 1 2 3 4
T 2 2 1

a=ATTG	b=CT 𝛿 𝑥, 𝑦 = &0 𝑖𝑓	𝑥 = 𝑦
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Example

- A T T G
- 0 1 2 3 4
C 1 1 2 3 4
T 2 2 1 2

a=ATTG	b=CT 𝛿 𝑥, 𝑦 = &0 𝑖𝑓	𝑥 = 𝑦
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Example

- A T T G
- 0 1 2 3 4
C 1 1 2 3 4
T 2 2 1 2 3

a=ATTG	b=CT 𝛿 𝑥, 𝑦 = &0 𝑖𝑓	𝑥 = 𝑦
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Backtracking

How	to	retrieve	the	optimal	alignment?
• Each	move	is	associated	to	one	edit	operation
• Vertical	=	insertion
• Diagonal	=	match/substitution
• Horizontal	=	deletion

• We	use	one	of	these	3	move	to	fill	a	cell	of	the	array
• From	the	bottom-right	corner	(i.e.	d(m,n)),	find	the	move	

that	has	been	used	to	determine	the	value	of	this	cell.
• Apply	this	principle	recursively.

Example

- A T T G
- 0 1 2 3 4
C 1 1 2 3 4
T 2 2 1 2 3

a=ATTG	b=CT 𝛿 𝑥, 𝑦 = &0 𝑖𝑓	𝑥 = 𝑦
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Example

- A T T G
- 0 1 2 3 4
C 1 1 2 3 4
T 2 2 1 2 3

a=ATTG	b=CT

G
-

𝛿 𝑥, 𝑦 = &0 𝑖𝑓	𝑥 = 𝑦
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Example

- A T T G
- 0 1 2 3 4
C 1 1 2 3 4
T 2 2 1 2 3

a=ATTG	b=CT

TG
T-

𝛿 𝑥, 𝑦 = &0 𝑖𝑓	𝑥 = 𝑦
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Example

- A T T G
- 0 1 2 3 4
C 1 1 2 3 4
T 2 2 1 2 3

a=ATTG	b=CT

TTG
-T-

𝛿 𝑥, 𝑦 = &0 𝑖𝑓	𝑥 = 𝑦
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Example

- A T T G
- 0 1 2 3 4
C 1 1 2 3 4
T 2 2 1 2 3

a=ATTG	b=CT

ATTG
C-T-

𝛿 𝑥, 𝑦 = &0 𝑖𝑓	𝑥 = 𝑦
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Example

- A T T G
- 0 1 2 3 4
C 1 1 2 3 4
T 2 2 1 3 3

a=ATTG	b=CT

ATTG ATTG ATTG
C-T- CT-- -CT-

𝛿 𝑥, 𝑦 = &0 𝑖𝑓	𝑥 = 𝑦
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Analysis

Theorem:	The	dynamic	programming	algorithm	computes	the	
edit	distance	(and	optimal	alignment)	of	two	strings	of	length	m
and	n in	𝛩(mn)	time	and	𝛩(mn)	space.

Proof:
• Algorithm	computes	edits	distance.
• Can	trace	back	to	extract	an	optimal	alignment.

Q. Can	we	avoid	using	quadratic	space?
A. Easy	to	compute	optimal	value	in	𝛩(mn)	time	and	𝛩(m+n)	
space.
• Compute	OPT(i,⦁)	from	OPT(i-1,⦁).
• But,	no	longer	easy	to	recover	optimal	alignment	itself.

Bioinformatics

• Different	cost	functions,	For	instance:

𝛿 𝑥, 𝑦 = & 1 𝑖𝑓	𝑥 = 𝑦
−1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Cost	of	alignment	is	being	maximized.

• Variants	of	optimal	pairwise	alignment	algorithm:
- Ignore	trailing	gaps	(Smith	&	Waterman,	1981)	

• Optimal	alignment	not	practical	for	multiple	sequences.

