COMP251: Network flows (2)

Jérôme Waldispühl School of Computer Science McGill University

Based on slides from M. Langer (McGill)

Recap Network Flows

G = (V, E) directed.

Each edge (u, v) has a *capacity* $c(u, v) \ge 0$.

If $(u,v) \notin E$, then c(u,v) = 0.

Source vertex *s*, **sink** vertex *t*, assume $s \sim v \sim t$ for all $v \in V$.

Problem: Given G, s, t, and c, find a flow whose value is maximum.

Application

Maximize flow of supplies in eastern europe!

Recap (Ford-Fulkerson algorithm)

3/3

2/2

Recap graph cuts

A graph cut is a partition of the graph vertices into two sets.

The crossing edges from S to V-S are { (u,v) $| u \in S, v \in V-S$ }, also called the cut set.

Cuts in flow networks

Definition: An s-t cut of a flow network is a cut A, B such that $s \in A$ and $t \in B$.

Notation: We write the cut set as cut(A,B). It is the set of edges from A to B.

Definition: The capacity of an s-t cut is

Objectives

For any flow network:

- Maximum value of a flow = the minimum capacity of any cut.
- Ford-Fulkerson gives the "max flow" and the "min cut".

Application

How to cut supplies if cold war turns into real war!

Flow through a cut

Claim: Given a flow network. Let f be a flow and A, B be a s-t cut. Then, $|f| = \sum f(e) - \sum f(e)$

 $e \in cut(A,B)$ $e \in cut(B,A)$

Notation: $|f| = f^{out}(A) - f^{in}(A)$

|*f*|=<mark>9</mark>-4=5

Flow through a cut

Proof:

- for any $u \in V \{s, t\}$, we have $f^{out}(u) = f^{in}(u)$.
- Summing over $u \in A-\{s\}$: $\sum_{u \in A-\{s\}} f^{out}(u) = \sum_{u \in A-\{s\}} f^{in}(u)$

•
$$|f| = f^{out}(s) = \sum_{u \in A} f^{out}(u) - \sum_{u \in A} f^{in}(u)$$

 Each edge *e=(u,v)* with *u,v* ∈ A contributes to both sums, and can be removed (Note: *fⁱⁿ*(s) = 0).

$$\begin{aligned} \left| f \right| &= \sum_{e \in cut(A,B)} f(e) - \sum_{e \in cut(B,A)} f(e) \\ &\equiv f^{out}(A) - f^{in}(A) \end{aligned}$$

Upper bound on flow through cuts

Claim: For any network flow *f*, and any s-t cut(A,B)

$$\left|f\right| \leq \sum_{e \in cut(A,B)} c(e)$$

Proof:

$$\begin{split} \left| f \right| &= f^{out}(A) - f^{in}(A) \\ &\leq f^{out}(A) \\ &\leq \sum_{e \in cut(A,B)} c(e) \end{split}$$

Observations

- Some cuts have greater capacities than others.
- Some flows are greater than others.
- **But**, every flow must be ≤ capacity of every s-t cut.
- Thus, the value of the maximum flow is less than capacity of the minimum cut.

Value of flow in Ford-Fulkerson

- Ford-Fulkerson terminates when there is no augmenting path in the residual graph G_f.
- Let A be the set of vertices reachable from s in G_f, and B=V-A.
- A,B is a s-t cut in G_f.
- A,B is an s-t cut in G (G and G_f have the same vertices).
- |f|=f^{out}(A)-fⁱⁿ(A)
- We want to show:

$$|f| = \sum_{e \in cut(A,B)} c(e)$$

(1)
$$f^{out}(A) = \sum_{e \in cut(A,B)} c(e)$$
 (2) $f^{in}(A) = 0$

Value of flow in Ford-Fulkerson

(1) For any $e=(u,v) \in cut(A,B)$, f(e)=c(e).

- f(e)<c(e) ⇒ e=(u,v) would be a forward edge in the residual graph G_f with capacity c_f(e)=c(e)-f(e)>0.
- v reachable from s in $G_f \Rightarrow$ contradiction.

(2) $f^{in}(A)=0$: $\forall e=(v,u)\in E$ such that $v\in B$, $u\in A$, we have f(e)=0.

- $f(e)>0 \Rightarrow \exists$ backward edge (u,v) in G_f such that $c_f(e)=f(e)$
- v is reachable from s in $G_f \Rightarrow$ contradiction.

Max flow = min cut

- Ford-Fulkerson terminates when there is no path s-t in the residual graph $\rm G_{\rm f}$
- This defines a cut in A,B in G (A = nodes reachable from s)

•
$$|f| = f^{out}(A) - f^{in}(A)$$

 $= \sum_{e \in cut(A,B)} f(e) - \sum_{e \in cut(B,A)} f(e)$
• Ford-Fulkerson flow $= \sum_{e \in cut(A,B)} c(e) - 0$
 $= \text{capacity of cut(A,B)}$

Note: We did not proved uniqueness.

Computing the min cut

Q: Given a flow network, how can we compute a minimum cut?

Answer:

- Run Ford-Fulkerson to compute a maximum flow (it gives us G_f)
- Run BFS or DFS of s.
- The reachable vertices define the set A for the cut

Bipartite matching

Suppose we have an undirected graph bipartite graph G=(V,E).

Q: How can we find the maximal matching? (Recall Lecture 11)

Bipartite matching with network flows

Define a flow network G'=(V',E') such that:

- $V' = V \cup \{s,t\}$
- $E' = \{ (u,v) \mid u \in A, v \in B, (u,v) \in E \} \cup \{ (s,u) \mid u \in A \} \cup \{ (v,t) \mid v \in B \}$
- Capacities of every edge = 1.

Motivation: Max flow \Rightarrow max matching.

Max flow in bipartite graphs

Exercise: The maximal flow found by Ford-Fulkerson defines a maximal matching in the original graph G (the maximal set of edges (u,v) $u \in A \& v \in B$ such that f(u,v)=1.

Max matching with Ford-Fulkerson

Ford-Fulkerson will find an augmenting path with β =1 at each iteration. They are of the form:

Or have more than one zig-zag.

Note:

- No edge from B to A in E'. The back edges are in the residual graph.
- Edges e such that c(e)=0 are not shown.

Running time

Q: How long will it take to find a maximal matching with Ford-Fulkerson?

- The general complexity of Ford-Fulkerson is O(C.|E|), where $C = \sum c(s, u)$
- Suppose |A| = |B| = n
- Then, C=|A|=n and |E'|= |E|+2n = m+2n (Assume m>n)
- Thus, C . |E'| = n . (m + 2n)
- Running time is O(nm)

What is max flow? What is min cut?

What is max flow? What is min cut?

Max flow |f|=2.

There are other flows having |f|=2.

What is the minimum cut?

Find any min cut with capacity 2.

Not a cut!

min cut!

To find a min cut compute a max flow.

To find the cut run BFS (or DFS) from s on the residual graph. The reachable vertices define the (min) cut.

